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Attenuation of flexural phonons in free-standing crystalline two-dimensional materials
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We develop the theory for dynamics of the out-of-plane deformations in flexible two-dimensional materials.
We focus on study of attenuation of flexural phonons in free-standing crystalline membranes. We demonstrate
that the dynamical renormalization does not involve the ultraviolet divergent logarithmic contributions contrary
to the static ones. This fact allows us to find the scaling form of the attenuation, determine its small- and
large-frequency asymptotes, and to derive the exact expression for the dynamical exponent of flexural phonons
in the long-wave limit: z = 2 − η/2. Here η is the universal exponent controlling the static renormalization
of the bending rigidity. Also we determine the dynamical exponent for the long-wave in-plane phonons:
z′ = (2 − η/2)/(1 + η/2). We discuss implication of our results to experiments on phonon spectra in graphene
and dynamics of graphene-based nanomechanical resonators.
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I. INTRODUCTION

Following the discovery of graphene [1–3] and other
atomically thin materials [4], flexible two-dimensional (2D)
materials [5] have been attracting a lot of theoretical and
experimental interest. These materials, the so-called crys-
talline membranes, have a peculiar elastic properties dubbed
as anomalous elasticity. The latter includes nontrivial scaling
of elastic modules with the system size, crumpling transition
with increasing temperature and disorder, nonlinear Hooke’s
law, negative Poisson ratios, etc. [6–21]. Currently there has
been substantial progress in further theoretical understanding
of static properties of crystalline membranes [22–41].

Contrary to extensive study of thermodynamics of mem-
branes, there are just a few works (at least to our knowledge)
devoted to membrane’s dynamics. The renormalization group
method developed to study the static elastic properties of
D = 4 − ε-dimensional membranes (with ε � 1) has been
extended to investigate dynamical exponent for out-of-plane
and in-plane phonons [42]. The dynamics of 2D membranes
has recently been studied within phenomenological Langevin-
type approach [43–46]. Intriguingly, the dynamical exponents
predicted in both above-mentioned approaches differ from
each other. To resolve the issue, the microscopic theory for the
attenuation of flexural phonons in 2D crystalline materials is
needed to be developed. One more motivation for such a the-
ory comes from recent measurement of the phonon spectrum
in graphene by the method of the high-resolution electron
energy loss spectroscopy [47].

A detailed theory for the attenuation of flexural phonons
(due to nonlinear effects induced by coupling between in-
plane and out-of-plane displacements) is not only of an
academic interest. Graphene and other 2D crystalline materi-
als are intensively explored as nanoelectromechanical systems
with relatively high-quality factors [48,49] (see Refs. [50,51]
for a review). Also a real-time height dynamics of a free-
standing graphene membrane has recently been monitored

[52]. Although there could be many microscopic sources for
damping of graphene mechanical nanoresonators [53], the
flexural phonon decay is unavoidable source for intrinsic con-
tribution to damping.

In this paper, we develop the comprehensive theory of
the decay time (τk) of out-of-plane phonons in free-standing
2D crystalline membranes. We focus on an experimentally
relevant temperature range in which flexural phonons can be
treated classically, kBT � h̄ωk . We establish an unexpected
result that the decay rate of long-wave flexural phonons is
independent of temperature and is of the order of the phonon
frequency, 1/τk ∼ ωk . Also we determine exactly the dynam-
ical exponent for the long-wave flexural phonons: ωk ∼ kz,
z = 2 − η/2, cf. Eq. (62). Here k denotes the phonon mo-
mentum and η is the universal exponent controlling the static
renormalization of the bending rigidity. Also we derive similar
relation for the spectrum of in-plane phonons with the corre-
sponding dynamical exponent z′ = (2 − η/2)/(1 + η/2). As
application of our results we compute the time-dependent pair
correlation function of membrane’s height, cf. Eq. (63).

The outline of the paper is as follows. In Sec. II we formu-
late the model of elastic deformations of 2D membrane and
announce our main results. In Sec. III we remind a reader
the results for the static renormalization of the theory. The
computation of the flexural phonon attenuation is presented
in Sec. IV. We explain why there is no effect of dynamics on
the crumpling transition in Sec. V. In Sec. VI we compute
the time dependence of pair correlation function of out-of-
plane displacement. We end the paper with discussions and
conclusions (Sec. VII). Details of computations are relegated
to the Appendices. Throughout the paper we use unites with
kB = h̄ = 1.

II. MODEL AND MAIN RESULTS

The theory of elasticity of clean 2D crystalline mem-
branes embedded in d = 3-dimensional space is given by the
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FIG. 1. A sketch of rippled membrane with dynamical fluctua-
tions (colored) and reference plane (gray).

following free energy [6–8]:

F =
∫

d2x
[

κ

2
(�r)2 + μuαβuαβ + λ

2
u2

αα

]
. (1)

Here x is the d = 2 coordinate vector of a point on the
reference plane while r denotes a d = 3-dimensional vector
parametrizing a point on the membrane (see Fig. 1). We intro-
duced the deformation tensor uαβ = (∂αr∂βr − δαβ )/2, with
α, β = x, y. The bending rigidity is denoted by κ while λ and
μ are Lamé coefficients.

In order to describe the membrane which is not close to
the crumpling transition, it is convenient to separate homoge-
neous stretching (ξ ) of the membrane, parametrizing the 3D
vector r as

r1 = ξx + ux, r2 = ξy + uy, r3 = h. (2)

Then the deformation tensor acquires the following form
uαβ = (ξ 2 − 1)δαβ/2+ũαβ , where (no summation over re-
peating indices is assumed)

ũαβ = 1
2 (ξβ∂αuβ + ξα∂βuα + ∂αh∂βh + ∂αu∂βu). (3)

An inhomogeneous deformation of the membrane is char-
acterized by the d = 2 in-plane displacement vector u =
{ux, uy} and the scalar out-of-plane deformation h.

In order to study dynamics of the in-plane and out-of-plane
fluctuations we will work within the path integral formulation
in the imaginary time. The partition function is given as

Z =
∫

D[h, u] exp

[
−
∫ β

0
dτ

(
ρ

2

∫
d2x (∂τ r)2 + F

)]
.

(4)

Here β = 1/T is the inverse temperature and ρ is the mass
density of the membrane.

Provided the membrane is in the flat phase away from
the crumpling transition, it is legitimate [6] to omit the term
∂αu∂βu in Eq. (3). Similarly, one can neglect the contribution
from u to the bending energy. Then the free energy Eq. (1)
becomes quadratic in terms of the in-plane displacements. It
allows us to integrate over u in Eq. (4) exactly and to derive
the effective action for the out-of-plane displacement alone
(see details of derivation in Refs. [23,25]),

Z =
∫

D[h]e−S, S = S0 + Sdyn, (5)

where

S0 = β

8

∫
d2x cαβεαεβ, εα = ξ 2 − 1+

∑
ω,k

k2
α|hk,ω|2, (6)

and

Sdyn = 1

2

∑
ω,k

(κk4 + ρω2)|hk,ω|2

+ Y

8

∑
�,q �=0

∣∣∣∣∣∑
ω,k

[k × q]2

q2
hk+q,ω+�h−k,−�

∣∣∣∣∣
2

. (7)

Here cαβ = λ+2μδαβ denotes the matrix of elastic stiffness
constants and Y = 4μ(μ+λ)/(2μ+λ) is the Young’s modu-
lus. Also we performed the Fourier transform

h(x, τ ) =
∑
ωn,k

hk,ωn ei(kx−ωnτ ), (8)

where ωn = 2πT n are the bosonic Matsubara frequencies.
Here and in what follows, we use the short-hand nota-
tion

∑
ωn,k = T

∑
ωn

∫
d2k/(2π )2. We note that the term∑

ω,k k2
α|hk,ω|2 in the displacement εα is responsible for the

anomalous Hooke’s law.
Generally, due to dynamics of the in-plane phonons, the

interaction in the second line of Eq. (7), i.e., the Young’s mod-
ulus Y , depends on the transferred frequency �, see Ref. [25].
However, as one can check, the static limit of interaction me-
diated by the in-plane phonons is enough for our computations
(see Appendix A for details).

The quadratic part of action (7) determines the “bare”
Green’s function in the Matsubara representation,

Gk(iω) = 1

ρω2 + κk4
. (9)

The corresponding retarded and advanced Green’s functions
are given as

GR/A
k (ω) = − 1

ρ(ω ± i0+)2 − κk4
. (10)

Using Eq. (10) one can extract the spectrum of noninteracting
flexural phonons:

ω
(0)
k = Dk2, D =

√
κ/ρ. (11)

Since the theory (7) is interacting, the exact Green’s func-
tion is related with the bare one by the Dyson equation

G−1
k (iω) = G−1

k (iω) − �k(iω),[
GR/A

k (ω)
]−1 = [

GR/A
k (ω)

]−1 − �
R/A
k (ω). (12)

In this paper our aim is to compute the frequency depen-
dence of the retarded self-energy �R

k (ω). As usual, it is related
with �k(iω) by analytic continuation iω → ω+i0+. The static
self-energy �R

k (0) was studied in many works before. It is well
established that the perturbation theory in powers of interac-
tion produces ultraviolet logarithmic divergences that can be
summed by means of the renormalization group (RG). The
emergent ultraviolet scale is the so-called inverse Ginzburg
length, q∗ =

√
3Y T/(32πκ

2). Such RG-improved perturba-
tion theory results in a power-law renormalization of the
bending rigidity and Young’s modulus [7,9],

κ(k) = κ(q∗/k)η, Y (k) = Y (q∗/k)2−2η, k � q∗, (13)

where the universal exponent η 	 0.795±0.01 is determined
numerically [54].
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FIG. 2. A sketch of the range of momenta and frequencies ω con-
sidered in the paper. The horizontal axis represents the frequency ωq

corresponding to the momentum q: ωq = Dq2(q/q∗)−η/2 for q < q∗
and ωq = Dq2 for q > q∗.

It is convenient to introduce the frequency scale corre-
sponding to the Ginzburg length, ω∗ = Dq2

∗. Introducing the
dimensionless parameter characterizing the strength of quan-
tum effects for membrane, g = 21Y/(128π

√
ρκ

3) [22,24,25],
we find that ω∗ = (4/7)gT . In what follows we will assume
that g � 1 (e.g., for graphene g ≈ 0.05). Also we will con-
sider the following range of momenta and frequencies, see
Fig. 2:

k � q∗, |ω| � ω∗ � T . (14)

Below we will call the regime (14) as the universal regime.
We demonstrate below that the retarded self-energy in the

range (14) can be written in the following scaling form:

Re�R
k (ω) − �R

k (0) = ρω2
kF1(ω/ωk ),

Im�R
k (ω) = ρωωkF2(ω/ωk ). (15)

This is the main result of our work. Here we introduce

ωk = Dk2(k/q∗)−η/2 ∼ kz, z = 2 − η/2, (16)

that is up to an unknown numerical factor describes the
exact spectrum of a flexural phonon. The scaling functions
F1(z) and F2(z) are even functions of their argument, satisfy
the normalization condition F1(0) = 0, and obey Kramers-
Kronig-type relations,

F1(z) = p.v.

∫ ∞

−∞

dx

π

zF2(x)

x − z
,

F2(z) = p.v.

∫ ∞

−∞

dx

π

F1(x)

z(z − x)
. (17)

The qualitative behavior of functions F1(z) and F2(z) is
shown in Fig. 3.

The relations (15) implies the following scaling form of the
exact retarded Green’s function:

GR
k (ω) = − 1

ρ

[
ω2 − ω2

k

[
1 − F1

(
ω

ωk

)]
+iωωkF2

(
ω

ωk

)]−1

.

(18)

FIG. 3. The sketch of the behavior of the functions F1(z) (blue
solid curve) and F2(z) (red dashed curve). The exponent γ is defined
in (32).

In the next two sections, Secs. III and IV, we will explain
how the results (15) can be derived and present asymptotic
expressions for the functions F1,2. Physical implications of
the result (18) are discussed in Secs. V and VI.

III. STATIC RENORMALIZATION

The theory of static out-of-plane displacements was exten-
sively explored previously (see Ref. [28] for a review). In this
section, we remind a reader how these results, in particular,
Eq. (13), can be derived within frequency-dependent Green’s
functions.

Let us start from the self-energy contribution shown in
Fig. 4,

�
(1)
k (iω) = −2

∑
�,q

[k × q]4

q4
Nq(i�)Gk+q(iω + i�). (19)

It is the first-order correction to the self-energy in the dynam-
ically screened interaction computed within random phase
approximation (RPA) (see Fig. 4),

Nq(i�) = Y/2

1 + 3Y �
(0)
q (i�)/2

. (20)

Here the “bare” polarization operator is given as

�(0)
q (i�) = 1

3

∑
ω,k

[k × q]4

q4
Gk(iω)Gk+q(iω + i�). (21)

Σ(1)
k (iω) =

Nq(iΩ)

Gk+q(iω + iΩ)

Nq(iΩ)
= Y/2 − Y/2

3Πq(iΩ)

Nq(iΩ)

FIG. 4. Top: SCSA-like contribution to the self-energy correc-
tion. Bottom: RPA-like screened interaction.
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We emphasize that RPA-type screening is crucial in the region q � q∗ since Y �(0)
q (0) ∼ (q∗/q)2 � 1. Making the analytic

continuation in Eq. (19) to the real frequencies, iω → ω+i0, we find

�
(1),R
k (ω) = −

∫
d�

π

∫
d2q

(2π )2

[k×q]4

q4

[
coth

�

2T
ImNR

q (�)GR
k+q(ω+�)+ coth

ω+�

2T
NA

q (�)ImGR
k+q(ω+�)

]
. (22)

Here we introduced retarded dynamically screened interaction, NR
q (�) = (Y/2)/[1+3Y �(0),R

q (�)/2], where

�(0),R
q (�) =

∫
dω

2π

∫
d2k

(2π )2

[k × q]4

3q4

{
coth

ω

2T
ImGR

k (ω)GR
k+q(ω+�)+ coth

ω+�

2T
GA

k (ω)ImGR
k+q(ω + �)

}
. (23)

is the retarded polarization operator corresponding to the Mat-
subara one, cf. Eq. (21). We note that NA

q (�) can be obtained
from NR

q (�) by complex conjugation.
Setting in Eq. (19) the frequency ω to zero, we obtain

Re�(1),R
k (0) = −

∫
d�

π
coth

�

2T

∫
d2q

(2π )2

[k × q]4

q4

× Im
[
NR

q (�)GR
k+q(�)

]
. (24)

In the classical regime, T � |�| we can use the following
approximation: coth(�/2T ) ∼ 2T/�. Then we perform the
integral over � in Eq. (24) with the help of Kramers-Kronig
relation. Eventually, we find

Re�(1),R
k (0) = −2T

∫
d2q

(2π )2

[k × q]4

q4
NR

q (0)GR
k+q(0). (25)

Comparison of Eq. (25) with Eq. (19) shows that Eq. (25) fully
reproduces the result of static treatment.

A similar procedure can be performed for all other dia-
grams as well. For example, for the diagram shown in Fig. 5
we find (see Appendix B):

Re�(2),R
k (0) = − 4T 2

∑
q,Q

[(k+Q)×q]2

q2

[(k+q)×Q]2

Q2

[k×q]2

q2

× [k×Q]2

Q2
GR

k+q(0)GR
k+Q(0)

× GR
k+q+Q(0)NR

q (0)NR
Q (0). (26)

The analysis above can be extended to any self-energy
diagram with zero external frequency. Indeed, only the static
Green’s function and static screened interaction contribute
to the zero-frequency self-energy corrections in the classical
regime, ω � T .

FIG. 5. Non-SCSA-like contribution to the self-energy correction.

As we discussed above, the diagrams for static self-energy
are logarithmically divergent and q∗ serves as the ultraviolet
cutoff. Therefore, it is worthwhile, at first, to sum up all
contributions to �R

k (0), and only then to develop perturbation
theory for Im�R

k (ω) (see discussion of similar approach in
Ref. [42]). This idea implies that new “bare” Green’s function
for such “dynamical” perturbation theory reads

G (0)
k (iω) = 1

ρω2+κk4 − �R
k (0)

≡ 1

ρ
(
ω2+ω2

k

) , (27)

where ωk is given by Eq. (16). We note that the perturbation
theory for Im�k(ω) consists of the same diagrams as the one
for the full self-energy but, additionally, a number of diagrams
to avoid double counting is needed to be considered. We
discuss this issue in detail in Appendix C. Although, due to
counterterms such a diagrammatic technique is not convenient
beyond the lowest order in interaction; nevertheless, it has
an important advantage: As we will demonstrate below the
diagrams computed with the help of the Green’s function with
the statically renormalized phonon spectrum, Eq. (27), are
convergent in the ultraviolet.

IV. INTERACTION-INDUCED FLEXURAL
PHONON DECAY

Now we are ready to compute the imaginary part of the
self-energy that determines the decay of flexural phonons. The
source of decay is the four-phonon processes, see Fig. 6, due
to the interaction term in the second line of Eq. (7).

FIG. 6. Diagram illustrating a four-phonon process.
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We start from the diagram shown in Fig. 4. Taking the
imaginary part of the expression (24), we find the following
result in the universal regime (regions Ia and Ib in Fig. 2):

Im�
(1),R
k (ω) = − 2T ω

3

∫
d�

π

∫
d2q

(2π )2

[k×q]4

q4

Im�(0),R
q (�)∣∣�(0),R

q (�)
∣∣2

×
ImG (0),R

k+q (ω + �)

�(ω + �)
. (28)

Here we substituted G by G (0). Also the polarization operator
�R

q (�) is given by Eq. (23) with the Green’s function G
substituted by G (0). Before analyzing the correction (28), we
discuss the frequency dependence of the polarization operator.

A. Polarization operator

Taking the imaginary part of the right-hand side of
Eq. (23), we obtain the following expression in the universal
regime:

Im�(0),R
q (�) = 2T �

3

∫
dω

2π

∫
d2k

(2π )2

[k×q]4

q4

ImG (0),R
k (ω)

ω

×
ImG (0),R

k+q (ω + �)

ω + �
. (29)

Neglecting the external frequency � under the integral signs
in Eq. (29), we find the following asymptotic behavior at � →
0:

Im�(0),R
q (�) ∝ T

κ
2q2−2ηq2η

∗

�

ωq
, |�| � ωq. (30)

In the opposite case of high frequencies, we obtain

Im�(0),R
q (�) ∝ T

κ
2q2−2ηq2η

∗

(
�

ωq

)−γ

, |�| � ωq, (31)

where we introduced the exponent

γ = 1 − η

1 − η/4
	 0.256. (32)

The detailed derivation of the above asymptotic results is
given in Appendix D.

Equations (30) and (31) together with analytic properties
suggest the following form of the polarization operator:

�(0),R
q (�) = AηT q−2η

∗
κ

2q2−2η

[
P (0)

1

(
�

ωq

)
+ iP (0)

2

(
�

ωq

)]
. (33)

Here we introduce numerical factor [23]

Aη = �(1+η/2)�(1 − η)

25+η
√

π�2(2 − η/2)�((3+η)/2)
(34)

to ensure the normalization condition, P (0)
1 (0) = 1. As it fol-

lows from Eqs. (30) and (31), the odd function P (0)
2 (z) has the

following asymptotic behavior:

P (0)
2 (z) ∝

{
z, |z| � 1,

sgnz |z|−γ , |z| � 1.
(35)

Thus the function P (0)
2 (z) has extrema at |z| ∼ 1.

In order to determine the asymptotic behavior of the real
part of the polarization operator at finite frequency, i.e., the
function P (0)

1 (z), we use the Kramers-Kronig relation:

P (0)
1 (z) = 1 + 2z2

π
p.v.

∫ ∞

0

dy

y

P (0)
2 (y)

y2 − z2
. (36)

Neglecting z under the integral sign in Eq. (36), we find

P (0)
1 (z) 	 1 + z2

π

∫ ∞

0

dy

y

d

dy

P (0)
2 (y)

y
, |z| � 1. (37)

At large magnitudes of the argument, we obtain (see Ap-
pendix D)

P (0)
1 (z) ∝ z−γ , |z| � 1. (38)

We note that at high frequencies, � � ωq, the polarization
operator is independent of the momentum, �(0),R

q (�) ∼ �−γ .
This fact can be naturally understood. One needs to take
the static polarization operator and substitute the momen-
tum q∗(�/ω∗)1/(2−η/2) instead of q. The former momentum
corresponds to the mass-shell condition, � = ωq. We note
that such situation is consistent with the dynamical exponent
z = 2 − η/2 (see more detail in Sec. VI).

B. Result for the first-order self-energy correction

Now we turn back to Eq. (28). With known asymptotic
behavior of the polarization operator �(0),R

q (�), we are able
to show (see Appendix E) that

Im�
(1),R
k (ω) = ρωωkF (1)

2

(
ω

ωk

)
, (39)

where the even function F (1)
2 (z) has the following asymptotic

behavior:

F (1)
2 (z) − F (1)

2 (0) ∝ z2, |z| � 1,

F (1)
2 (z) ∝ |z|γ−1, |z| � 1. (40)

We emphasize that Im�
(1),R
k (ω) is given by the ultraviolet

convergent integrals and, consequently, it does not involve the
frequency scale ω∗.

The real part of the self-energy correction can be
parametrized in a similar way as the imaginary one,

Re�(1),R
k (ω) − Re�(1),R

k (0) = ρω2
kF

(1)
1

(
ω

ωk

)
. (41)

Here the even function F (1)
1 (z) is related with F (1)

2 (z) by
Kramers-Kronig-type relation,

F (1)
1 (z) = p.v.

∫ ∞

−∞

dx

π

zF (1)
2 (x)

x − z
. (42)

Using asympotics of F (1)
2 (z) we find the following behavior

of F (1)
1 (z) at small and large arguments (see Appendix E):

F (1)
1 (z) ∝

{
z2, |z| � 1,

|z|γ , |z| � 1.
(43)

We emphasize that the frequency integral in the Kramers-
Kronig relation (42) is convergent in the ultraviolet such that
there is no need in ω∗ as ultraviolet cutoff for computation of
the function F (1)

1 (z).
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(a)

(b)

FIG. 7. (a) Correction to the polarization operator. (b) Correction
to the self-energy in the next order in the interaction

C. Analysis of higher-order diagrams

In general, there is no reason to limit computation of the
dynamical self-energy just by the lowest-order diagram shown
in Fig. 4. Moreover, even for that diagram, the polarization op-
erator should be computed in the next orders in the interaction.
We show examples of higher-order diagrams in Fig. 7. Al-
though the analytical computation of all necessary diagrams
is hopeless, we can compute asymptotic behavior of both the
exact polarization operator and the exact self-energy.

Assuming that frequency behavior of the self-energy is the
same as given by Eqs. (40) and (43), one can check that the
exact polarization operator retains the same scaling form as in
Eq. (33) (see Appendix F for details). So we find that the exact
polarization operator can be written as

�R
q (�) = T

κ
2q2−2ηq2η

∗

[
P1

(
�

ωq

)
+ iP2

(
�

ωq

)]
, (44)

where P1(z) and P2(z) are even and odd functions of z, re-
spectively. They have the following asymptotic behavior:

P1(z) = P1(0)
(
1+B(0)

1 z2
)
, P2(z) = B(0)

2 z, |z| � 1,

(45)

and

P1(z) = B(∞)
1 |z|−γ , P2(z) = B(∞)

2 sgnz |z|−γ , |z| � 1,

(46)

where B(0,∞)
1,2 are numerical coefficients. We note that we do

not normalize P1(0) to be equal to unity. In virtue of the
Kramers-Kronig relations we find relations the numerical co-
efficients introduced above have to satisfy,

P1(0) = 2

π

∫ ∞

0

dx

x
P2(x), B(0)

1 =
∫∞

0 dx P ′′
2 (x)/x∫∞

0 dx P2(x)/(2x)
(47)

and

B(∞)
1 = −B(∞)

2 �γ , �γ =
∫ ∞

0

dt

πt
[(1 + t )γ − |1 − t |γ ].

(48)

Now we can use the results (44)–(46) in order to compute
higher-order diagrams for the self-energy whose examples
are shown in Fig. 7. Then for the exact Green’s function we
reproduce the result (18) (see Appendix G). The functions
F1,2(z) have the following asymptotics:

F1(z) = C(0)
1 z2, F2(z) = F2(0)[1 + C(0)

2 z2], |z| � 1,

(49)

and

F1(z) = C(∞)
1 |z|γ , F2(z) = C(∞)

2 |z|γ−1, |z| � 1, (50)

where C(0,∞)
1,2 are numerical coefficients which satisfy the fol-

lowing relations:

C(0)
1 = 2

π

∫ ∞

0

dx

x
F ′

2(x), C(∞)
1 = C(∞)

2 �γ . (51)

We note that the numerical coefficients introduced above
for the asymptotic expressions of the exact polarization oper-
ator and the self-energy can be found within 1/dc expansion
for 2D membrane embedded into dc + 2-dimensional space
[9]. We present the results of such calculations in Appendix H.

So far we analyze the exact self-energy in the universal
regime (regions Ia and Ib in Fig. 2). The behavior of the
self-energy beyond the universal regime is controlled by the
lowest-order diagrams and discussed in Appendix I.

D. Attenuation of flexural phonons

The above results proves the form (18) of the exact Green’s
function and provides asymtotic expressions for the functions
F1,2. The exact Green’s function in the form of (18) implies
that the spectrum of flexural phonons at k � q∗ is given as
ω = sωk where a complex number s solves the following
equation:

s2 − 1 + F1(s) + isF2(s) = 0. (52)

The solution of this equation is a complex number s with,
generically, |s| ∼ 1. It implies that the imaginary part of the
flexural phonon’s spectrum Ims ωk is of the same order as
its real part, Res ωk . In particular, if one defines the decay
rate 1/τk = Im�R

k (ωk )/(ρωk ), then one finds ωkτk ∼ 1. This
poses several questions: (i) Why do we not see implications of
such a short decay time in the theory of anomalous elasticity?
and (ii) How can such strong decay of flexural phonons be
observed? We will discuss both questions in the next sections.

V. ABSENCE OF IMPLICATION FOR
THE CRUMPLING TRANSITION

The equilibrium stretching of membrane is determined by
the condition that average displacement, cf. Eq. (6), vanishes
in the absence of external tension

〈εα〉 = ξ 2 − 1 +
∑
ω,k

k2
α〈|hk,ω|2〉 = 0. (53)

This equation determines dependence of the stretching factor
ξ 2 on temperature as

ξ 2 = 1 − 1
2 〈[∇h(x, t )]2〉. (54)
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The temperature Tc, at which ξ 2 vanishes, determines the
crumpling transition of a membrane from the flat to crumpled
phase. Computing 〈h2(x, t )〉, we find

〈[∇h(x, t )]2〉 =
∫

dω

π

∫
d2k

(2π )2
k2ImGR

k (ω) coth
ω

2T

	 2T
∫

d2k
(2π )2

k2
∫

dω

π

ImGR
k (ω)

ω

= 2T
∫

d2k
(2π )2

k2ReGR
k (0)

=
∫

d2k
(2π )2

2T k2

κk4−ηqη
∗
. (55)

It is exactly the same result as in the static theory. There-
fore, the attenuation of flexural phonons does not affect the
crumpling transition. Similarly, one can demonstrate that all
the other static effects known as anomalous elasticity are not
affected by the phonon dynamics.

VI. TIME-DEPENDENT PAIR CORRELATION FUNCTION
OF OUT-OF-PLANE DISPLACEMENT

In this section we discuss the time-dependent pair corre-
lation function of the out-of-plane displacement h(x, t ). We
start from the variance, 〈h2(x, t )〉. As it follows from Eq. (55),
〈h2(x, t )〉 diverges in the infrared such that

〈h2(x, t )〉 ∝ T L2ζ q−η
∗ /κ. (56)

Here L � 1/q∗ denotes the membrane’s system size. The
roughness exponent equals [28]

ζ = 1 − η/2. (57)

Next we consider a different time pair correlation function,

〈[h(x, t ) − h(x, 0)]2〉 = 2
∫

dω

π

∫
d2k

(2π )2
sin2 ωt

2
coth

ω

2T

× ImGR
k (ω). (58)

Here the integrals are convergent both in ultraviolet and in-
frared. So we consider infinite membrane. Then integral over k
is dominated by k ∼ [ρω2/(κqη

∗ )]1/(4−η), which corresponds
to the mass-shell condition ωk = ω. Therefore, we find

〈
[h(x, t ) − h(x, 0)]2

〉 	 2Wη

T

ρ

(
ρ

κqη
∗

) 2
4−η

∫ ∞

0

dω

πω

× ω
− 4−2η

4−η sin2 ωt

2
, (59)

where the constant

Wη =
∫ ∞

0

dx x(3−η/2)F2(x−2+η/2)/π

{1 − x2[1 − F1(x−2+η/2)]}2+x4−ηF2
2 (x−2+η/2)

.

(60)

Integral over frequency is dominated by ω ∼ 1/t such that we
find 〈

[h(x, t ) − h(x, 0)]2
〉 	 W̃η

T

κq2∗
[ω∗t]2ζ/z, (61)

where W̃η = −22ζ/z cos(πζ/z)�(−2ζ/z)Wη/π . We note the
exact relation between dynamical and roughness exponents,

z = 1 + ζ = 2 − η/2. (62)

The result (61) is valid for long times ω∗t � 1. Since the
exponent 2ζ/z = (2 − η)/(2 − η/2) < 1, Eq. (61) implies a
subdiffusive dynamics of out-of-plane deformations.

One can combine Eqs. (56) and (61) in the following form:〈
[h(x, t ) − h(x, 0)]2

〉 = T

κ

L2ζ q−η
∗ �[ω∗t/(q∗L)z], (63)

where the scaling function �(y) has the following asymptotic
behavior:

�(y) ∝
{

const, y → 0,

y2ζ/z, y → ∞.
(64)

For shorter times, T −1 � t � ω−1
∗ , the integral over the

momentum in Eq. (58) is still dominated by the mass-shell
condition. Since there is no renormalization of the bending
rigidity for k � q∗, we find diffusive-type dynamics at T −1 �
t � ω−1

∗ ,

〈[h(x, t ) − h(x, 0)]2〉 ∼ T

κq2∗
ω∗t . (65)

We discuss significance of the above results in the next
section.

VII. DISCUSSION AND CONCLUSION

A. Comparison with the generalized Langevin approach

One could try to describe the low-frequency dynamics
of the 2D membrane phenomenologically by means of the
Langevin-type approach. The form (18) of the exact Green’s
function for the out-of-plane displacement h at low frequen-
cies suggests the following Langevin-type equation:

−ρD̃k2(q∗/k)η/2∂t hk(t ) = ρω2
khk(t )+k(q∗/k)η/4 fk(t ). (66)

Here D̃ = F2(0)D and a white-noise random force has the
correlation function dictated by the fluctuation-dissipation re-
lation,

〈 f (x, t ) f (x′, t ′)〉 = 4T D̃ρδ(t − t ′)δ(x − x′). (67)

We note that in contrast with Langevin-type equation used
in Refs. [43–46], all terms of Eq. (66) contains explicit k
dependence. We emphasize that Eq. (66) can be only used for
study of long-time dynamics, ωkt � 1, where ωk is fixed by
the magnitude of a relevant wave vector, k ∼ 1/L. In general,
one could try to derive the Langevin-type equation for the
considered problem with the help of Wyld technique (see
Ref. [42] for details) or, alternatively, by means of the Keldysh
path integral. We leave it for future works.

Another complication with application of a Langevin-type
equation to the description of dynamics of a 2D membrane is
nonlinearity (interaction of flexural phonos) which leads not
only to renormalization of the bending rigidity and attenuation
but also to real mode coupling [55,56]. The latter appears as
nonlinear terms in the Langevin-type equation.
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B. Attenuation of flexural phonons for membranes
of higher dimensions

The Wyld technique has recently been used for analysis of
classical dynamics (in the sense of inequality ω � T ) of a
D = 4 − ε-dimensional crystalline membrane [42]. Analyz-
ing the perturbative renormalization group controlled by a
small parameter ε � 1, the authors of Ref. [42] essentially
arrived at the same scaling form of the Green’s function, cf.
Eq. (18), and the same expression for the dynamical exponent
z, cf. Eq. (57). Together with our result, this suggests that the
scaling form (18) and Eq. (57) for z are valid for a membrane
of arbitrary dimension D � 2.

C. Attenuation of in-plane phonons

Due to the O(2) rotational symmetry existing for a mem-
brane in the flat phase [10], the renormalization of in-plane
phonons is intimately related with that of flexural phonons,
cf. Eq. (13). In order to find the spectrum of in-plane phonons
at low momentum, we use the relation ω ∼ k(Y/ρ)1/2 in
which Y is substituted by 1/�R

k (ω). We note that we do
not distinguish between longitudinal and transverse in-plane
phonons. Since, as we will check below, the frequency of
in-plane phonons is parametrically higher than that of flexural
phonons, one needs to employ large-frequency asymptote of
the polarization operator, Eq. (46). Then we find that the
spectrum of the longitudinal and transverse in-plane phonons
(at k � q∗

√
T/κ) is given as

ω
(l,t )
k = sl,tω∗

(
k
√

κ

q∗
√

T

)z′

, z′ = (2 − η/2)

(1 + η/2)
. (68)

Here sl,t are some complex numbers. We note that the re-
gion of validity of Eq. (68) is determined by the inequality
Y �R

k (ω(l,t )
k ) � 1. Also we note that the assumption ω

(l,t )
k �

ωk is satisfied indeed. At k � q∗
√

T/κ the spectrum of the
in-plane phonons is not renormalized, ω

(l,t )
k ∼ k. Since at

such momenta, ω
(l,t )
k ∼ k

√
Y/ρ � ω∗, we use the following

estimate in this region: Y Im�R
k (ω(l,t )

k ) ∼ q∗
√

T /(k
√

κ) � 1.
Thus, attenuation becomes

1

τk
	 ρ

(
ω

(l,t )
k

)2

ρω
(l,t )
k

(
q∗

√
T

k
√

κ

)
	 ω∗. (69)

We emphasize that in contrast with the case of flexural
phonons, the scaling of frequency with momentum in Eq. (68)
is different from that one could envision on the basis of static
renormalization of elastic moduli (13).

We expect validity of the result (68) for the dynamical ex-
ponent of the in-plane phonons for membranes of an arbitrary
dimension D � 2. For D = 4 − ε our prediction contradicts
to the result of Ref. [42]. We believe that the origin for such a
discrepancy is that the static renormalization of elastic moduli
(13) was used in Ref. [42] to derive the spectrum of in-plane
phonons.

D. Flexural phonon attenuation beyond the universal regime

In the above discussion we consider the universal region
of small frequency and momenta, k � q∗ and ω � ω∗. Al-
though, such a situation realizes typically in experiments, it is

worthwhile to discuss the behavior of the imaginary part of the
self-energy at large wave vectors, q∗ � k � qT = q∗/

√
g and

frequencies, ω∗ � |ω| � T (regions II and III in Fig. 2). The
estimates given in Appendix I result in the following behavior:

Im�R
k (ω)∼ T 2Y 2

κ
3

⎧⎪⎪⎨⎪⎪⎩
Dk2+η

ωqη
∗

, IIa : ω � ω∗ � Dk2,

Dk2

ω
, IIIa : ω � Dk2 � ω∗,

ω
Dk2 , IIb and IIIb : ω � Dk2, q∗ � k.

(70)

Interestingly, near the mass shell, the imaginary part of the
self-energy is enhanced by a factor k/q∗ � 1 (see Fig. 2),

Im�R
k (ω) ∼ T 2Y 2

κ
3

k

q∗
, |ω − Dk2| � ω∗. (71)

Estimating the attenuation coefficient of the flexural
phonon with the momentum q∗ � k � qT as 1/τk =
Im�R

k (ω(0)
k )/(ρω

(0)
k ), we find that ω

(0)
k τk ∼ (k/q∗)3 � 1.

Therefore, there is almost no attenuation of the spectrum of
flexural phonons with high momenta q∗ � k � qT .

E. Benchmarking against experiments

In this paper we present detailed microscopic theory of
phonon attenuation in two-dimensional flexible materials. We
mention that the phonon spectrum in graphene has recently
been measured by the method of the high-resolution electron
energy loss spectroscopy [47]. We note that experimental data
demonstrate some broadening of phonon spectrum. However,
in order to perform detailed benchmarking of our theory, more
detailed experimental data of the spectrum around the � point
is needed.

F. Implications for mechanical nanoresonators

It is instructive to estimate numerical magnitudes of impor-
tant parameters in our theory. Having in mind graphene as an
example of two-dimensional crystalline membrane, we find
that the Ginzburg length is 1/q∗ ≈ 1 nm and ω∗ ≈ 200 GHz.
For L � 1/q∗, the frequency of typical out-of-plane defor-
mation can be estimated as ωk∼1/L ≈ 3 MHz for a typical
size L = 1 µm. Also, Eq. (56) allows us to estimate typical
amplitude of the flexural deformations as h ∼ 10 nm for the
same L = 1 µm.

Recently, the measurement of time-dependent out-of-plane
fluctuations in graphene has been performed by means of
scanning tunneling spectroscopy [52]. In agreement with our
theory, the long-time dynamics characterized by the pair
correlation function 〈[h(x, t ) − h(x, 0)]2〉 was found to be
subdiffusive. However, the corresponding exponent was es-
timated to be equal 0.3 in contrast to our prediction 2ζ/z 	
0.75. Several possible reasons for such a discrepancy might
be proposed. At first, the data in the experiment of Ref. [52]
contain two types of fluctuations: fast small-amplitude fluctu-
ations and slow large-amplitude excursions. While the former
can be assumed to be the thermal fluctuations studied in our
paper, the latter were related with spontaneous changing of
local curvature. Such local buckling is not taken into account
in our theory. Second, the scanning tunneling microscopy
tip can induce a local tension that affects the dynamics of
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thermal fluctuations. Third, the experimental data presented in
Ref. [52] were collected from multiple graphene membranes.
It is known [26] that a quenched random curvature is impor-
tant for graphene samples. Different graphene flakes in the
experiment of Ref. [52] could have a different realization of
a quenched random curvature (due to some disorder). There-
fore, one needs to study the dynamics of flexural phonons in
the presence of disorder. We leave more detailed investigation
of the effects discussed above for future work.

G. The effect of a nonzero tension

The theory presented in this work was developed for free-
standing materials in the absence of tension, σ ≡ 0. However,
if membrane is lying on a substrate with a hole, then the
substrate imposes a stress on a part of the membrane above the
hole. Therefore, the membrane experiences a nonzero tension
σ .

As in the well-known Refs. [7,10,57], small tension, σ �
σ∗ = κq2

∗, (i) suppresses the renormalization of the bending
rigidity at wave vectors k < qσ , where qσ = q∗(σ/σ∗)1/(2−η)

and (ii) transforms the spectrum of flexural phonons into a
soundlike one, ω

(σ )
k = k

√
σ/ρ. Therefore, there is no surprise

that tension affects the attenuation of flexural phonons. In
particular, one can derive the following estimate [58]:

Im�R
k

[
ω

(σ )
k

] ∼ κσ k4, k � qσ , (72)

where κσ = κ(q∗/qσ )η. Therefore, the decay rate of the flex-
ural phonon at k � qσ becomes

1/τ
(σ )
k = Im�R

k

[
ω

(σ )
k

]
/
[
ρω

(σ )
k

] ∼ (k/qσ )2ω
(σ )
k � ω

(σ )
k .

(73)

Therefore, a nonzero tension results in parametric narrowing
of the spectral line for the flexural phonon. Interestingly,
the width of spectral line becomes temperature dependent
in the presence of a nonzero tension, 1/τ

(σ )
k ∼ T α , where

α = η/(2 − η) 	 0.67 [58].
Finally, we note that there are other mechanisms for decay

of the out-of-plane displacement dynamics in nanoelectrome-
chanical resonators [59]. Their discussion is beyond the scope
of the present work.

H. Summary

To summarize we studied the attenuation of the phonons
in free-standing 2D crystalline membranes. We explored
high-temperature regime (relevant for experiments) in which
flexural phonons can be treated classically, T � ωk . We found
that in the universal regime, k � q∗, the broadening of the
flexural phonon spectral line is of the order of the spectrum
itself while at q∗ � k � qT the broadening is parametrically
suppressed (see Fig. 8). Focusing on the universal regime, we
established the exact expression for the dynamical exponents
z, see Eq. (62), and z′, see Eq. (68), for flexural and in-plane
phonons, respectively. We applied our theory to computation
of the time-dependent pair correlation function of membrane’s
height and found its subdiffusive behavior at long times in
qualitative accordance with the experiments. Finally, we dis-
cussed some future research directions.

FIG. 8. Sketch of the dependence of the phonon spectral function
on the momentum and frequency. For convenient normalization, we
plot ImGR

k (ω)Im�R
k (ω) [Eqs. (18) and (68)]. We emphasize that

change of the spectrum of flexural phonons occurs at k ∼ q∗ while
for the in-plane phonons it happens at k ∼ q∗

√
T/κ.
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APPENDIX A: THE EFFECT OF DYNAMICAL PART OF
INTERACTION BETWEEN FLEXURAL PHONONS

MEDIATED BY IN-PLANE ONES

In this Appendix we present an estimate for contribution of
dynamical part of bare interaction between flexural phonons
to Im�R

k (ω).
The self-energy correction in the first order of perturbation

theory is given by [see Ref. [25], Eq. (B6)]:

Im�
(m),R
k (ω) = T ω

∫
d�

2π

∫
d2q

(2π )2

(k · q − q2)2

q4
(q · k)2

× ImR(mmmm),R
q (�)

�

ImGR
k+q(� + ω)

ω + �
, (A1)

where

R(mmmm)
q (i�) = ρ

(2μ + λ)�2

(2μ + λ)q2 + ρ�2
. (A2)

This is one of the four additional interaction terms, but all of
them have the same scaling properties. For conciseness, we
will only evaluate this term.

As in the main text, we focus on the region k � q∗. In
this domain, ωk = Dk2 � clk = εk, where cl = √

(2μ+λ)/ρ
denotes the speed of longitudinal sound mode. We are mostly
interested in ω ∼ ωk, since the decay rate is determined by the
frequency on the mass shell. First, we find the imaginary part
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of the retarded interaction:

ImR(mmmm),R
q (�) = π (2μ + λ)�

2

∑
s=±

δ(� + sεq). (A3)

The imaginary part of the retarded Green’s function becomes

ImGR
q (ω) = π

2ρω

∑
s=±

δ(ω + sωq). (A4)

We then substitute Eqs. (A3) and (A4) into Eq. (A1) and
integrate over �,

Im�
(m),R
k (ω) = c2

l T ω

32π

∫
d2q

(k · q − q2)2

q4

(q · k)2

ω2
k+q

×
∑
s=±

[δ(sεq + ω + ωk+q)

+ δ(sεq + ω − ωk+q)]. (A5)

We proceed by introducing new variables k = kn, q = kr,
z = ω/ωk and by making the expressions dimensionless. We
also introduce the parameter αk = εk/ωk � 1. In terms of
those variables, we obtain

Im�
(m),R
k (ω) = T

κ

ρωkω

32π

∫
d2r

[(r · n) − r2]2

r4

α2
k (r · n)2

|r + n|4
×

∑
s=±1

[δ(sαkr+z+|r+n|2)

+ δ(sαkr+z − |r+n|2)]. (A6)

At large αk and z ∼ 1, the argument of δ function is zero
either at r ∼ αk � 1 or r ∼ 1/αk � 1. In both cases, we can
approximate |r+n|2 ∼ r2+1.

Then the integral over the angle can be evaluated sepa-
rately:∫ 2π

0
dϕ

(r · n − r2)2

r4

(r · n)2

|r+n|4 	
{

3π
4 , r � 1,
π
r2 , r � 1.

(A7)

We then integrate over r using asymptotics (A7) and obtain
for z > 0:

Im�
(m),R
k (ω) = T

32κ

ρωkω

[
2 + 3

4
(|z − 1| + z + 1)

]
. (A8)

We can see that the correction is small in virtue of the
small parameter T/κ � 1. The same parameter controls other
corrections occurring from dynamics of the in-plane phonons.

APPENDIX B: EVALUATION OF THE STATIC LIMIT OF
THE DIAGRAM IN FIG. 4

In this Appendix we demonstrate how the static limit of
the diagram shown in Fig. 4 transforms into Eq. (26) at high
temperatures. The aforementioned diagram is given by

�
(2)
k (0) = −4

∑
q,Q,�,ω

S(q, Q)Gk+q(iω)Gk+Q(i�)

× Gk+q+Q(iω + i�)Nq(iω)NQ(i�), (B1)

where for convenience we introduced

S(q, Q) = [(k+Q)×q]2

q2

[(k+q)×Q]2

Q2

[k×q]2

q2

[k×Q]2

Q2
. (B2)

At first, we transform the sum over bosonic Matsubara fre-
quencies ω into the integral along the real axis

�
(2)
k (0) = − 4

∑
q,Q,�

S(q, Q)NQ(i�)Gk+Q(i�)
∫

dω

2π

× coth

(
ω

2T

){
Gk+q+Q(ω+i�)

× Im
[
NR

q (ω)GR
k+q(ω)

]
+ Nq(ω − i�)Gk+q(ω − i�)ImGR

k+q+Q(ω)
}
.

(B3)

Next, similarly, we transform the sum over bosonic Matsubara
frequencies � into the integral over real axis,

�
(2)
k (0) = − 4

∑
q,Q

S(q, Q)
∫

d�dω

(2π )2
coth

(
�

2T

)
coth

( ω

2T

)
× {

Im
[
NR

Q (�)GR
k+Q(�)GR

k+q+Q(ω+�)
]

× Im
[
NR

q (ω)GR
k+q(ω)

] + ImGR
k+q+Q(ω)

× Im
[
NR

Q (�)GR
k+Q(�)NA

q (ω − �)GA
k+q(ω − �)

]}
.

(B4)

In the high-temperature regime (T � |�|, |ω|) the hyperbolic
cotangent can be replaced by the first term in its Taylor series.
Then, using Kramers-Kronig relations, we perform integrals
over ω and �, and, thus, we derive (26).

APPENDIX C: FORMULATION OF DYNAMICAL
PERTURBATION THEORY

In this Appendix we demonstrate how the perturbation
theory around the Green’s function (27) can be formulated in
a regular fashion.

The “bare” Green’s function is related to the Green’s func-
tion defined in Eq. (27) by the Dyson equation with static
self-energy,

Gk(iω) = [
G−1

k (iω) + �k(0)
]−1

. (C1)

We can also rewrite this equation in terms of the infinite series

Gk(iω) = Gk(iω) − Gk(iω)�k(0)Gk(iω) + . . . . (C2)

To compute the dynamical self-energy corrections, we
need to insert the series from Eq. (C2) into the series
for �k(iω) − �k(0) (see Fig. 9). Calculation of the imagi-
nary part, Im[�R

k (ω) − �R
k (0)], is more convenient because

Im�R
k (0) = 0.

The first term in the right-hand side of Eq. (C2) forms
a sequence of self-energy diagrams, where all the “bare”
Green’s functions are substituted by the one from Eq. (27).
These contributions are termed as the main terms. The next
terms in the right-hand side of Eq. (C2) produce additional set
of diagrams (extra terms).

The above statements can be illustrated by diagrams in
Fig. 9. In Fig. 9(a), the diagram of the first order in dynam-
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(a)

(b)

FIG. 9. (Top) First-order of interaction self-energy correction,
(middle) second-order main term, and (bottom) second-order extra
term. Wiggly lines denote screened interaction (20), and solid lines
denote Green’s functions (27).

ically screened interaction is shown. There is a solid line in
the “bare” Green’s function G. Substituting it with the second
term in the right-hand side of (C2), we produce the second di-
agram in Fig. 9(b). We note that the extra diagram is formally
of infinite order in dynamically screened interaction, since it
involves the exact static self-energy. In the same way diagrams
of the second order in the dynamically screened interaction
produces extra diagrams with the exact static self-energy.

Now we argue that extra terms do not spoil the scaling
of the main self-energy corrections in the universal regime
q � q∗. Indeed, the static self-energy, �k(0) = κk4−ηqη

∗ , has
the same k dependence as the dynamical self-energy at the
mass shell, ω = ωk . Similarly to the main terms, the frequency
integrals in extra terms are still dominated by the frequencies
corresponding to the mass-shell conditions. Therefore, extra
terms produce the same scaling between frequency and mo-
mentum as the main ones.

The same argument allows us to work with screened
Green’s functions (27) (instead of the “bare” ones) in the
polarization operator (29).

APPENDIX D: COMPUTATION OF ASYMPTOTIC
EXPRESSION FOR THE POLARIZATION OPERATOR (33)

In this Appendix we present a derivation of Eqs. (30) and
(31). Using Eq. (A4) for the imaginary part of the retarded

Green’s function, we obtain from Eq. (29),

Im�R
q (�) = πT �

12q2η
∗

∫
d2k

(2π )2

[k × q]4

q4

1

κk4−η

1

κ|k + q|4−η

×
∑
s=±1

[δ(s�+ωk − ωk+q) + δ(s�+ωk+ωk+q)].

(D1)

In order to calculate this integral, it is convenient to intro-
duce new variable y = |k+q|. We note that the Jacobian of
this transformation is∣∣∣∣∂ (k, ϕ)

∂ (k, y)

∣∣∣∣ = 2y

kq sin ϕ
. (D2)

The factor of 2 emerges because the integrand is an even
function of the angle, and our substitution is single valued
only in one half-plane. In terms of new variables integral takes
the form

Im �R
q (�) = T

24π

�

κ
2q2η

∗ q

∫
ydydk

kη sin3 ϕ

y4−η

×
∑
s=±

[δ(s� + ωk − ωy) + δ(s� + ωk + ωy)].

(D3)

We then proceed by making the integral dimensionless by
introducing variables z = �/ωq, x = k/q, a = y/q. We also
rewrite sin3 ϕ in terms of new variables. Then we obtain

Im �R
q (�) = T

24π

z

κ
2q2η

∗ q2−2η

∫ ∞

0
dx

∫ |x+1|

|x−1|
da

xη

a3−η

∑
s=±

× [δ(sz+x2−η/2 − a2−η/2)

+ δ(sz+x2−η/2+a2−η/2)]

×
[

1 −
(

x

2
+ 1

2x
− a2

2x

)2
]3/2

. (D4)

The integral in this form can be evaluated in different limits.
For z → 0, we find

Im �R
q (�) = T

24π

z

κ
2q2η

∗ q2−2η

∫ ∞

0
dx

∫ |x+1|

|x−1|

xη

a3−η

×
[

1 −
(

x

2
+ 1

2x
− a2

2x

)2
]3/2

× [δ(x2−η/2 − a2−η/2)]. (D5)

This integral can be computed exactly. This way we obtain
[P (0)

2 (z) is defined according to Eq. (33)]

P (0)
2 (z) 	 C(0)

η z,

C(0)
η = 22−3η/2�2(2 − η/2)�(3/2+η/2)�(3/2 − 5η/4)

(1 − η/4)�(1+η/2)�(1 − η)�(4 − 5η/4)
.

(D6)

In the opposite limit z � 1 the integral is somewhat more
complicated. In this case we will return to the representation
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of the integral in terms of the momentum and the angle

Im �R
q (�) = T

24π

z

κ
2q2η

∗ q2−2η

∫ ∞

0
dxxη+1

∫ π

0
dϕ sin4 ϕ

× δ[z − x2−η/2 − (x2 + 1 + 2x cos ϕ)1−η/4]

(x2 + 1 + 2x cos ϕ)2−η/2
.

(D7)

The other delta functions were excluded because they give
subdominant contributions to asymptotics. It can be seen that
due to the δ function, integration over x sets x2−η/2 ≈ z/2.
Hence, we find

Im �R
q (�) = T

24π (4 − η)

z

κ
2q2η

∗ q2−2η

×
∫ π

0
dϕ

(z/2)
3η

4−η

(z/2)2
sin4 ϕ. (D8)

Integrating over ϕ, we obtain

P (0)
2 (z) 	 C(∞)

η z−(1−η)/(1−η/4),

C(∞)
η = 2η+(1−η)/(1−η/4)√π�2(2 − η/2)�(3/2 + η/2)

(4 − η)�(1 + η/2)�(1 − η)
.

(D9)

In order to find the real part of the polarization operator,
P (0)

1 (z), we will use the Kramers-Kronig relation,

P (0)
1 (z) = 1 + 2z2

π
p.v.

∫ ∞

0

dy

y

P (0)
2 (y)

y2 − z2
. (D10)

Let us introduce p2(y) = P (0)
2 (y)/y, then we find

P (0)
1 (z) = 1 + z

π

∫ ∞

0

dy

y
[p2(y + z) − p2(y − z)]. (D11)

At z → 0 we can expand the right-hand side of the above
equation in z and find

P (0)
1 (z) 	 1 + 2z2

π

∫ ∞

0

dy

y

[
p′

2(y) + z2

6
p′′′

2 (y)

]
. (D12)

We note that for η = 0 the integral
∫∞

0 dy p′
2(y)/y = 0. For

η �= 0 it is nonzero, and

P (0)
1 (z) 	 1 + 2z2

π

∫ ∞

0

dy

y

[
P (0)

2 (y)/y
]′
. (D13)

At z � 1 we shall use the following relation:

P (0)
1 (z) =

∫ ∞

0

dy

πy

[
P (0)

2 (y + z) + P (0)
2 (y − z)

]
=
∫ ∞

0

dy

πy
P (0)

2 (y + z) −
∫ z

0

dy

πy
P (0)

2 (z − y)

+
∫ ∞

z

dy

πy
P (0)

2 (y − z). (D14)

Now we estimate the integrals using the asymptotic (D9) of
P (0)

2 (y) at y � 1,∫ ∞

0

dy

y
P (0)

2 (y + z) 	 C(∞)
η

∫ ∞

δ

dy

y(y + z)γ

	 C(∞)
η z−γ

[
ln

z

δ
− γE − ψ (γ )

]
,∫ z

δ

dy

y
P (0)

2 (z − y) 	 C(∞)
η

∫ z

δ

dy

y(z − y)γ

	 C(∞)
η z−γ

[
ln

z

δ
− H (−γ )

]
,∫ ∞

z

dy

y
P (0)

2 (y − z) 	 C(∞)
η

∫ ∞

z

dy

y(y − z)γ

	 C(∞)
η z−γ π

sin(πγ )
, (D15)

where we note that γ = (1 − η)/(1 − η/4) < 1. Also H (n) =∑n
i=1 1/i denotes the harmonic number. Therefore, we obtain

at z � 1

P (0)
1 (z) ∝ z− 1−η

1−η/4 . (D16)

We note that due to the presence of ln z contributions in
Eq. (D15) it is not possible to determine the exact prefactor
in the asymptotic expression for P (0)

1 (z). Nevertheless, our
approach guarantees to give us the correct power-law behavior
of P (0)

1 (z) at z � 1.

APPENDIX E: COMPUTATION OF ASYMPTOTIC
EXPRESSION FOR THE SELF-ENERGY (39)

In this Appendix we present derivation of asymptotic
expressions for the functions F (1)

1 (z) and F (1)
2 (z). We use

the approach similar to Appendix D. At first, we intro-
duce new variables z = ω/ωk, x = q/k, a = y/k, where y =
|k+q|. Then after integration over � in Eq. (28), we find

Im �
(1),R
k (ω) = ρωωk

6Aηπ2

∫
x2−2ηdxda sin3 ϕ

a3−η

×
∑
s=±

X (0)

(
z + sa2−η/2

x2−η/2

)
1

(z + sa2−η/2)
,

(E1)

where X (0)(y) = P (0)
2 (y)/[|P (0)

1 (y)|2+|P (0)
2 (y)|2]. Below we

are not interested in numerical factors for reasons discussed
in Appendix C. Therefore, prefactors from now on will be
omitted.

The integral in the form of Eq. (E1) can be evaluated in
different limits. For z � 1 we neglect z under the integral
signs and obtain

Im �
(1),R
k (ω)= ρωωk

3Aηπ2

∫
x2−2ηdxda sin3 ϕ

a5−3η/2
X (0)

2

[(
a

x

)2−η/2]
.

(E2)

This integral converges. Therefore, for small z the imaginary
part of the self-energy behaves according to Eq. (40).

125432-12



ATTENUATION OF FLEXURAL PHONONS IN … PHYSICAL REVIEW B 110, 125432 (2024)

In order to analyze the limit z � 1, we neglect a in com-
parison with z wherever it is possible. Then we obtain

Im �
(1),R
k (ω) = ρωωk

3Aηπ2

∫ ∞

0
dx

x2−2η

z
X (0)

(
z

x2−η/2

)

×
∫ x+1

|x−1|

da

a3−η

[
1 −

(
a2 − 1 − x2

2x

)2
]3/2

.

(E3)

To obtain the asymptotics of the above expression, we evalu-
ate the integral over a in two domains, x � 1 and x � 1,∫ x+1

|x−1|

da

a3−η

[
1 −

(
a2 − 1 − x2

2x

)2
]3/2

≈
{

3πx
8 , x � 1,
3π

8x3−η , x � 1.

(E4)

Since we are only interested in the power dependence of the
imaginary part of the self-energy on frequency, z, we will
integrate the asymptotic expression (E4) within the limits of
the applicability of the approximation. Thus, we neglect the
difference of the function from its asymptotics in a paramet-
rically small region where this function has no singularities.
Then we find

Im �
(1),R
k (ω) = ρωωk

3Aηπ2

[∫ ∼1

0
dx

x3−2η

z
X (0)

(
z

x2−η/2

)

+
∫ ∞

∼1
dx

1

zx1+η
X (0)

(
z

x2−η/2

)]
. (E5)

Next, we use asymptotics of the polarization operator, cf.
Eqs. (35) and (38), to obtain

Im �
(1),R
k (ω) ∼ ρωωk

zγ

z

[∫ ∼1

0
dx x +

∫ ∞

∼1

dx

x3+η/2

]
∼ ρωωk(ω/ωk )γ−1. (E6)

In order to find the real part of the self-energy and to derive
Eq. (43), one can employ the similar analysis as presented in
Appendix D.

APPENDIX F: COMPUTATION OF ASYMPTOTICS FOR
THE EXACT POLARIZATION OPERATOR (44)

In this Appendix we present arguments for the scaling form
(44) of the exact polarization operator and compute its asymp-
totic expressions. Let us consider the polarization operator
computed as a bubble of the two exact Green’s function, cf.
Eq. (29):

Im�(b),R
q (�) = 2T �

3

∫
dω

2π

∫
d2k

(2π )2

[k × q]4

q4

ImGR
k (ω)

ω

× ImGR
k+q(ω + �)

ω + �
. (F1)

For simplicity, we denote

ImGR
k (ω)

ω
= 1

ρω3
k

A
(

ω

ωk

)
, (F2)

where

A(z) = F2(z)

[z2 + F1(z) − 1]2 + z2F2
2 (z)

. (F3)

In order to make the integral dimensionless, we introduce new
variables: y = q+k, z = �/ωq, τ = ω/ωq, k = xq, y = aq,
where a = (1+x2+2x cos ϕ)1/2. In terms of new variables the
integral can be rewritten as

Im�(b),R
q = 2T z

3(2π )3
κ

2q2η
∗ q2−2η

∫
dτ

∫
dxdϕ sin4(ϕ)

x1−3η/2a6−3η/2

× A
(

τ

x2−η/2

)
A
(

z + τ

a2−η/2

)
. (F4)

First, we consider the case z → ∞. In that limit we find

Im�(b),R
q = 2T z

3(2π )3
κ

2q2η
∗ q2−2η

∫
dxdϕ sin4(ϕ)x1+η

a6−3η/2

× A(1)

(
z

a2−η/2

)∫
dτ

x2−η/2
A(1)

(
τ

x2−η/2

)
. (F5)

The integral over τ converges and provides essentially a
constant factor for the integral. Taking into account the fact
that the integral is dominated by a2−η/2 � z and x � 1, we
substitute the asymptotic form of A(x),

A(x) ∼ xγ−5, x � 1. (F6)

In the region x � 1 we can substitute a with x, thus sepa-
rating integral over ϕ. Making these approximations, we find
asymptotics of the imaginary part of the polarization operator
as follows:

Im�(b),R
q ∼ T z

κ
2q2η

∗ q2−2η

∫ z1/(2−η/2)

1

dxx1+η

x6−3η/2

×
(

z

x2−η/2

)γ−5

∼ T

κ
2q2η

∗ q2−2η
z−γ . (F7)

In the limit of small frequencies, z → 0, we find

Im�(b),R
q = 2T z

3(2π )3
κ

2q2η
∗ q2−2η

∫
dτ

∫
dxdϕ sin4(ϕ)

x1−3η/2a6−3η/2

× A(1)

(
τ

x2−η/2

)
A(1)

(
τ

a2−η/2

)
∼ z. (F8)

Therefore, using the exact Green’s functions we reproduce
exactly the same asymptotic expressions for the imaginary
part of the polarization operator as we found in Appendix D.
Furthemore, due to the Kramers-Kronig relations, the scaling
of asymptotic expression for the real part of the polarization
operator is also the same as given in Appendix D. We note that
consideration of more complicated diagrams for the polariza-
tion operator does not change the scaling.

In order to draw any conclusions we also need to check
whether self-energy behaves in the way consistent with the
form of the exact Green’s function. This will be done in
Appendix G.
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APPENDIX G: COMPUTATION OF ASYMPTOTICS FOR
EXACT SELF-ENERGY (15)

In this Appendix we present arguments for the scaling
form (15) of the exact self-energy and compute asymptotic
expressions for the functions F1,2(z).

Following the same analysis as in Appendix F, we rewrite
Eq. (28) as

Im�
(1),R
k (ω) = − 2T ω

3

∫
d�

π

∫
d2q

(2π )2

[k × q]4

|k + q|4
ImGR

q (�)

�(ω + �)

× Im�R
q (� + ω)

|�R
q (� + ω)|2 . (G1)

Here we use the exact polarization operator and exact Green’s
function. We use Eqs. (F2) and (44) to rewrite the above
expression as

Im�
(1),R
k (ω) = − 2ωκ

2q2η
∗

3ρ

∫
d2q

(2π )2

[k × q]4

|k + q|2+2η

×
∫

d�

π

P2
(

ω+�
ωk+q

)
∣∣P(ω+�

ωk+q

)∣∣2(ω + �)

A
(

�
ωq

)
ω3

q
. (G2)

In the limit ω → ∞ we use the fact that integral is dom-
inated by the region ω � |�| ∼ ωq ∼ ωk. Therefore, we can
use the asymptotic expression for the polarization operator,
found in Appendix F,

Im�
(1),R
k (ω) ∼ −2ωκ

2q2η
∗

3ρ

∫
d2q

(2π )2

[k × q]4

|k + q|2+2η

×
(

ω

ωk+q

)γ 1

ωω2
q

∫
dy

π
A(y), (G3)

where y = �/ωq. In virtue of Eq. (F6), the integral over y
converges. Introducing new dimensionless variables q = kr
and k = kn, we obtain

Im�
(1),R
k (ω) ∼ ρωωk

(
ω

ωk

)γ−1 ∫ d2r
(2π )2

[n × r]4

|n + r|4r4−η

×
∫

dy

π
A(y). (G4)

Therefore, we reproduce Eq. (50).
In the opposite limit of small frequencies, ω → 0, we ne-

glect ω under the integral sign in Eq. (G2) and find

Im�
(1),R
k (ω) ∼ ρωωk. (G5)

Now using the Kramers-Kroning relations (42), we find at
z � 1

F1(z) = p.v.

∫ ∞

0

dz

π

2z2F2(x)

x2 − z2
	 C(∞)

1 zγ ,

C(∞)
1 = C(∞)

2 �γ , (G6)

where

�γ = p.v.

∫ ∞

0

dy

π

2yγ

y2 − 1
=
∫ ∞

0

dt

πt
[(1 + t )γ − |1 − t |γ ].

(G7)

Next, applying the Kramers-Kroning relation again, we obtain

F2(z) = p.v.

∫ ∞

0

dz

π

2F1(x)

z2 − x2
	 C∞

1 zγ−1�γ−1. (G8)

In order for Eq. (G8) to be mutually consistent with
Eq. (50), the function �γ has to satisfy the following relation:
�γ �γ−1 = −1. It is indeed the case. Note that �−γ = −�γ .

The ongoing analysis has demonstrated that the inclusion
of self-energy correction in a self-consistent manner yields
identical asymptotic outcomes for both the polarization op-
erator and the self-energy. This convergence indicates that
universal scaling properties of the exact Green function are
reproduced by SCSA-like diagrams. Extending this finding to
encompass all correction diagrams requires recognizing a key
observation: For every SCSA-like diagram, corresponding
non-SCSA-like diagrams exist, characterized by the equiva-
lent number of interaction “wiggly” lines, external momenta,
and frequencies. This equivalence stems from the inherent
limitation that interaction cannot transmit zero momentum.

Considering the power-law behavior of the self-energy
correction in terms of frequency and momentum, instilled
by each SCSA-like diagram, the same behavior should be
replicated by non-SCSA diagrams. Thus, the distinction lies
mainly in numerical factors, with non-SCSA-like diagrams
impacting only these specific coefficients.

APPENDIX H: COMPUTATIONS WITHIN 1/dc EXPANSION

In this Appendix we derive asymptotic results for the
functions P1,2(z) and F1,2(z) within the 1/dc expansion. In
order to employ it, we consider 2D membrane embedded into
dc + 2-dimensional space. Then 1/dc can serve as the control
parameter of the perturbative expansion in the screened in-
teraction [9]. In particular, the bending rigidity exponent η is
known to have the following expansion expansion [31]:

η = 2

dc
+ 73 − 68ζ (3)

27d2
c

+ . . . . (H1)

Consequently, from Eq. (32) we find the following expansion
for the exponent γ :

γ = 1 − 3

2dc
− 25 − 17ζ (3)

9d2
c

+ . . . (H2)

In Appendix F we derived the exact form of the po-
larization operator. For its imaginary part we obtained the
asymptotic expressions (45) and (46). In the limit dc → ∞
we can express P1,2(z) as a series expansion in terms of 1/dc.
For example, for z � 1, we find

P1(z) = B(∞)
1 z−γ =

[
B(∞)

1,0 + 1

dc
B(∞)

1,1 + . . .

]
× 1

z

(
1 + 3

2dc
ln |z| + . . .

)
(H3)

and similar expression for P2(z).
Since 1/dc is a perturbation parameter, we can derive co-

efficients B(∞)
2,0 and B(0)

2,0 by simply considering polarization
operator, consisting of “bare” Green’s functions. Thus, for the
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imaginary part we obtain

Im�(0),R
q (�) = 2dcT �

3

∫
dω

2π

∫
d2k

(2π )2

[k × q]4

q4

ImGR
k (ω)

ω

× ImGR
k+q(ω + �)

ω + �
, (H4)

where the imaginary part of “bare” Green’s function is given
by (A3). Performing integrals over frequency ω and momen-
tum k, we derive

Im�(0),R
q (�) = T

κ
2q2

P (0),0
2

(
�

ωq

)
. (H5)

Here the function P (0),0
2 (z) is odd, and for z > 0 it is given as

P (0),0
2 (z) = dcz

96

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, z < 1

2 ,

1 + (1 − 2z)2(z + 1)

2z3
, 1

2 � z < 1,

(3z + 1)

2z3
, 1 � z.

(H6)

We use Eq. (H6) in order to derive the expansion of the
coefficients B(0)

2 and B(∞)
2 in powers 1/dc. In particular, we

obtain

B(0)
2 = dc

96
+ O(1), B(∞)

2 = dc

64
+ O(1). (H7)

In order to find the expansion for the coefficients B(0)
1

and B(∞)
1 , we need to compute the real part of the retarded

polarization operator at finite frequency. With the help of the
Kramers-Kronig relation, we find

Re�(0),R
q (�) = p.v.

∫ ∞

−∞

dω

π

Im�(0),R
q (ω)

ω − �

= T

κ
2q2

P (0),0
1

(
�

ωq

)
, (H8)

where the even function P (0),0
1 (z) is given explicitly as

P (0),0
1 (z) = dc

192πz2

[
(2z + 1)2(z − 1) ln |1 + 2z| + 8z2

− (2z − 1)2(z + 1) ln |1 − 2z|

+ 6z(1 − z2) ln

∣∣∣∣1 + z

1 − z

∣∣∣∣
]
. (H9)

Expanding P (0),0
1 (z) in series in powers of z, we obtain

P (0),0
1 (0) = dc

16π
+ O(1), B(0)

1 = O(1). (H10)

Next, expanding at z � 1 we derive P(0),0
1 (z) ∼ −dcz−2 ln z.

We see that it is a subleading contribution as one can see from
Eq. (H3). Therefore, in order to find B(∞)

1 , straightforward
usage of the result (H9) is not possible. Instead we apply the
relation (48) and the following asymptotic expression for the
function �γ :

�1−α 	 2

πα
, α � 1. (H11)

Then we derive the following result:

B(∞)
1 = − d2

c

96π
+ O(dc). (H12)

A similar procedure can be employed for the imaginary
part of the self-energy correction. Let us consider the lowest
order (in 1/dc) correction,

Im�
(1),R
k (ω) = 2T ω

3

∫
d�

π

∫
d2q

(2π )2

[k×q]4

q4

Im�(0),R
q (�)∣∣�(0),R

q (�)
∣∣2

× ImGR
k+q(ω + �)

�(ω + �)
. (H13)

Substituting (A4) into (H13) and integrating over frequency,
we obtain

Im�
(1),R
k (ω) = T ω

3ρ

∫
d2q

(2π )2

[k×q]4

q4

×
∑
s=±1

1

ω
(0)2
q+k

(
ω+sω(0)

q+k

) Im�(0),R
q

(
ω+sω(0)

q+k

)∣∣�(0),R
q

(
ω+sω(0)

q+k

)∣∣2 .

(H14)

In the limit ω � ωk we can neglect the external frequency ω

under the integral sign and obtain

Im�
(1),R
k (ω) = 2T ω

3ρ

∫
d2q

(2π )2

[k × q]4

q4ω
(0)3
q+k

Im�(0),R
q

(
ω

(0)
q+k

)∣∣�(0),R
q

(
ω

(0)
q+k

)∣∣2 .

(H15)

Then with the help of Eqs. (H6) and (H9) the integral over q
can be evaluated numerically. Hence, for ω � ωk we obtain

Im�
(1),R
k (ω) ≈ 1.57

ρωωk

dc
. (H16)

Using the above asymptotic result, we find

F2(0) = 1.57

dc
+ O

(
1

d2
c

)
. (H17)

In order to determine asymptotics in the opposite limit,
ω � ωk, we neglect ωq+k in comparison with ω under the
integral sign. Then we find

Im�
(1),R
k (ω) = 2T

3ρ

∫
d2q

(2π )2

[k×q]4

q4ω
(0)2
q+k

Im�(0),R
q (ω)∣∣�(0),R

q (ω)
∣∣2 . (H18)

We proceed by substituting Eqs. (H5) and (H8) into the
above expression. It is convenient to introduce new variables
k = kn, q = kr, z = ω/ωk. Then we obtain

Im�
(1),R
k (ω) = 2

3dc
ρω2

k

∫
d2r

(2π )2

[n×r]4

r2|r+n|4

× P (0),0
2

(
z/r2

)[
P (0),0

1 (z/r2)
]2 + [

P (0),0
2 (z/r2)

]2 . (H19)

In the limit z � 1 we can use asymptotic expressions for
P (0),0

2 (z) and P (0),0
1 (z) [see Eqs. (H6) and (H9)] since the
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(a)

(b)

FIG. 10. Diagrams for self-energy in the second order of interac-
tion with nonzero imaginary part.

integral is dominated by r � √
z. Thus, we obtain

Im�
(1),R
k (ω) = 32z

3dcπ2
ρω2

k

∫ ∞

0
rdr

∫ 2π

0

dϕ sin4 ϕ

(r2+1+2r cos ϕ)2 .

(H20)

The integral over angle ϕ can be easily evaluated:∫ 2π

0
dϕ

sin4 ϕ

(r2+1+2r cos ϕ)2
= 3π

4

{
1, r�1,

r−4, r > 1.
(H21)

Finally, we obtain the asymptotic expression

Im�
(1),R
k (ω) 	 8

πdc
ρωωk, ω � ωk. (H22)

Using the above expression, we derive

C(∞)
2 = 8

πdc
+ O

(
1

d2
c

)
. (H23)

In order to find the expansion of C(∞)
1 we use the relation (51).

Then using Eq. (H11), we find

C(∞)
1 = 32

3π2
+ O

(
1

dc

)
. (H24)

APPENDIX I: CALCULATION OF THE IMAGINARY PART
OF THE SELF-ENERGY BEYOND

THE UNIVERSAL REGIME

We have shown that in the region q � q∗ or � � ω∗
screening of the interaction is negligible in virtue of the con-
dition Y �q(�) � 1. Therefore, we could calculate decay rate
for flexural phonons in this regime using perturbation theory.

In the first order in interaction the correction to the self-
energy is real. Thus, in order to calculate the attenuation, we
need to study the second-order corrections. There are two dia-
grams in that order with nonzero imaginary part (see Fig. 10).
In this Appendix we will the present results for the diagram (a)
only since the diagram with crossed lines (b) is of the same or
smaller magnitude.

We start from the following expression:

Im�
(a),R
k (ω) ∼ TY 2ω

∫
d�

∫
d2q

[k × q]4

q4

Im�R
q (�)

�

× ImGR
q+k(ω + �)

ω + �
. (I1)

We first consider the case k � q∗ (regions IIb and III in
Fig. 2). Making the integral dimensionless, we obtain

Im�
(a),R
k (ω) =

(q∗
k

)4
ρωωk f (a)

2 (z), (I2)

where z = ω/ωk and ωk = Dk2. After straightforward calcu-
lations we obtain asymptotics

f (a)
2 (z) ∼

{
const, |z| � 1,

1/z2, |z| � 1.
(I3)

Therefore, in the regime k � q∗, we find

Im�
(a),R
k (ω) ∼

(
ω∗

max{ω,ωk}
)2

ρωωk. (I4)

This form suggests that the obtained correction is small in
virtue of a small parameter q∗/k � 1 that controls the per-
turbation theory.

In the region k � q∗ and ω � ω∗ (region IIa in Fig. 2), we
need to account for renormalization of the bending rigidity.
Thus we obtain

Im�
(a),R
k (ω) ∼ T 2Y 2ω

κ
2

∫
d2q

[k × q]4

|k + q|6
1

ρω2
q

×
∑
s±1

P2

(
ω + sωq

D|k + q|2
)

1

ω + sωq
. (I5)

The integral over momentum is dominated by q ∼ k, and,
therefore, we have to use ωq = Dq2−η/2qη/2

∗ . Evaluating the
integral over q, we find

Im�
(a),R
k (ω) ∼ ρω2

∗

(
k

q∗

)η Dk2

ω
. (I6)

Special care is needed for calculation of the imaginary part
of the self-energy at the mass shell ω = ωk � ω∗. As one can
see, the following contribution:

Im�
(a),R
k (ω) ∼ T 2Y 2ω

κ
2

∫
d2q

[k × q]4

q6

× P2

(
ωk+k − ωk

ωq

)
1

ρω2
q

1

ωk+q − ωk
(I7)

diverges due to singularity at q → 0. To fix this problem, one
has to work with the full RPA screened interaction. Then we
obtain

Im�
(a),R
k (ω) ∼ T ωk

∫
d2q

Y 2Im�R
q (ωk+q − ωk)∣∣1 + 3Y �R

q (ωk+q − ωk)/2
∣∣2

× 1

ρω2
k+q

[k × q]4

q4

1

ωk − ωk+q
. (I8)

The integral over q is now dominated by q ∼ q∗ rather than
q = 0. This justifies the usage of the full form of the RPA
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screened interaction. Using asymptotics for the imaginary part
of the polarization operator, Eq. (46), we obtain final result

Im�
(a),R
k (ω) ∼ ρω2

∗
k

q∗
. (I9)

This result is valid for |ω − Dk2| � ω∗ since in that region
integral over q is also dominated by q ∼ q∗ and the same
approximations have to be employed.
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