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Instanton analysis for the spin quantum Hall symmetry class:
Nonperturbative corrections to physical observables and generalized multifractal spectrum
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Recently, there has been renewed interest in studies of criticality in the spin quantum Hall effect, realized in
the Altland-Zirnbauer symmetry class C of disordered, noninteracting fermions in two spatial dimensions. In
our study, we develop a nonperturbative analysis of the replica two-dimensional nonlinear sigma model in class
C. We explicitly construct the instanton solution with a unit topological charge. By treating fluctuations around
the instanton at the Gaussian level, we calculate the instanton correction to the disorder-averaged logarithm of
the partition function. We compute nonperturbative corrections to the anomalous dimensions of pure power-law
scaling local operators, which determine the spectrum of generalized multifractality. We also calculate instanton
corrections to the renormalized longitudinal and Hall spin conductivities and determine the topology of the phase
diagram for class C. Our results demonstrate that the spin quantum Hall effect is indeed a close cousin of the
integer quantum Hall effect.
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I. INTRODUCTION

The prototypical example of a quantum phase transition in
disordered noninteracting fermionic systems is the Anderson
localization/delocalization transition [1]. After more than 60
years of active research on Anderson localization, its physics
and related phenomena are well understood (see Refs. [2,3]
for a review). Perhaps the most intriguing discovery in the
realm of Anderson localization was the discovery of the in-
teger quantum Hall effect (iqHe) [4,5] that realizes Anderson
transitions between topologically nontrivial localized phases.
The understanding of the synergy between topology and quan-
tum interference in the iqHe has stimulated search of other
topological Anderson transitions. It was found [6–11] that
there are exist ten different (Altland-Zirnbauer) symmetry
classes of disordered noninteracting Hamiltonians. In addi-
tion, each spatial dimension admits five out of ten symmetry
classes with nontrivial topology [12–14]. Physics in each of
ten symmetry classes is described by the corresponding effec-
tive long-wave field theory—nonlinear sigma model (NLσM)
(see Ref. [2] for a review). The nontrivial topology is reflected
by the presence of the topological term (either ϑ term or
Wess-Zumino-Witten-Novikov term) in the NLσM action.

In two spatial dimensions the corresponding Anderson
transitions between different topological phases occur at
strong coupling typically. Thus, criticality is not accessible
within effective long-wave description in terms of NLσM.
Nevertheless, the nonperturbative (instanton) analysis of
NLσM in a weak coupling regime allows one to understand
the structure of the phase diagram and explain quantization
of the proper physical observable. A well-known example of
such a situation is the integer quantum Hall effect (iqHe).
The iqHe phase diagram and the quantization of the Hall

conductance has been understood on the basis of existence
of instantons—topologically nontrivial solutions of classical
equations of motion for the NLσM action [15–22].

Recently, the interest in the iqHe has been renewed in
the context of a critical theory for the Anderson transition
between different topological phases (plateau-plateau transi-
tion). For a long time it has been suggested [23–28] that the
Wess-Zumino-Novikov-Witten models are an ultimate confor-
mal critical theory for the Anderson transition in the iqHe.
However, the critical theory predicts not only the localization
length exponent but also anomalous dimensions of various
local operators. Examples of such operators are the disorder
averaged moments of the local density of states (LDoS), ν(x),
which demonstrate pure power-law scaling with the system
size, 〈νq(x)〉∼L−x(q) , at criticality [29–31]. In addition to the
moments of LDoS there are many more pure scaling observ-
ables [32]. The corresponding operators can be expressed in
terms of the disorder averages of specific combinations of
wave functions [33–36]. The corresponding set of generalized
multifractal exponents xλ is unique for each symmetry class
and dimensionality (see Refs. [37,38] for a review). Provided
the local conformal invariance and Abelian fusion rules for
the pure scaling operators hold, the generalized multifractal
exponents xλ were proven to have a parabolic form with a
single free parameter only [39–41]. The validity of this pre-
diction has been debated in numerical simulations [2,40,42].
One more interesting aspect of recent discussions of the iqHe
criticality is the numerical evidence that the magnitude of the
localization length exponent in the iqHe transition varies with
a change of geometry of a random potential [43–47].

The iqHe has a close cousin, the spin quantum Hall effect
(sqHe) that occurs in superconducting class C [48–50]. The
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analog of the integer quantized Hall conductivity is the spin
Hall conductivity that describes the response of the spin cur-
rent to the gradient of the external magnetic field1. The sqHe
has very similar phenomenology as the iqHe, in particular, it
has even integer quantized spin Hall conductivity, Anderson
transitions between different topological phases, description
in terms of the NLσM (see Ref. [2] for a review). Addition-
ally, the sqHe has an advantage: an infinite set of anomalous
dimensions of local operators has been computed analytically
at criticality by mapping to the classical percolation problem
[34,53–57]. Recently, the sqHe criticality has been intensively
tested against description by the conformal field theory. It was
shown [34–36,40,55,58,59] that although the numerical data
for the generalized multifractal exponents xλ reproduce exact
analytical results obtained from mapping to percolation, there
is a clear evidence for a violation of parabolicity. These results
prove a lack of the local conformal invariance at the sqHe
transition in d = 2. There is an alternative point of view on
breaking of the generalized parabolicity and the presence of
local conformal invariance. As it has recently been proposed
[60], it can be explained by a nonperturbative reconstruction
of nonlinear σ -model manifold, when renormalization group
(RG) flow reaches strong coupling limit.

The absence of plausible candidates for the critical theory
of the sqHe transition makes nonperturbative weak coupling
analysis of the corresponding NLσM to be of interest. Sur-
prisingly, the nonperturbative analysis of the NLσM for class
C is absent so far in the literature. In our paper we fill this gap
by developing the instanton analysis of the replica NLσM in
the class C. In particular,

(i) we construct the instanton solution for the replica
NLσM in the class C, cf. Eqs. (15) and (107);

(ii) employing the Pauli-Villars regularization scheme
[61], we calculate the instanton correction to the partition
function, cf. Eq. (64);

(iii) we apply the developed methodology to computa-
tion of nonperturbative corrections to the average LDoS, cf.
Eq. (86), and to the anomalous dimensions of the local deriva-
tiveless eigenoperators (with respect to the renormalization
group), cf. Eq. (96), that determine the spectrum of general-
ized multifractality;

(iv) we calculate instanton corrections to the renormalized
longitudinal and Hall spin conductivities and extract the two-
parameter nonperturbative renormalization group equations,
cf. Eq. (106).

Our results support a general idea that the sqHe is in many
ways very similar to the iqHe.

The outline of the paper is as follows. We start from
the formalism of the replica Pruisken’s NLσM for class
C (Sec. II). In Sec. III we present construction of instan-
tons with topological charge ±1 for class C and analysis
of Gaussian fluctuations around it. The instanton contribu-
tion to the partition function is computed in Sec. IV. Next
we present computation and analysis of instanton corrections
to the anomalous dimensions of pure scaling eigenoperators

1We note that similar relation between the spin current and the
gradient of the magnetic field is realized in thin films of the superfluid
3He-A [51,52].

(Sec. V). In Sec. VI we compute instanton corrections to the
longitudinal and Hall spin conductivities and rewrite them in
terms of two-parameter renormalization group equations. We
end the paper with discussions and conclusions (Sec. VII).
Details of lengthy calculations are given in Appendixes.

II. PRUISKEN’S NLσM FOR CLASS C

A. NLσM action

We use formalism of Finkel’stein’s NLσM for the sym-
metry of class C (see Refs. [62–66] for details) adapted for
noninteracting electrons. We exclude interaction term, reduce
the space of positive and negative Matsubara frequencies
to the retarded-advanced (RA) space, leaving two frequen-
cies only. In this way we obtain the following form of the
Pruisken’s NLσM:

Sσ = − g

16

∫
x

Tr(∇Q)2 + gH

16

∫
x

Tr[ε jkQ∇ jQ∇kQ], (1)

where
∫

x = ∫
d2x and ε jk denotes Levi-Civita symbol with

εxy = −εyx = 1. The field Q is a traceless Hermitian matrix,
defined on Nr×Nr replica, 2×2 retarded-advanced and 2×2
spin spaces. It satisfies a nonlinear constraint and Bogoliubov-
de Gennes (BdG) symmetry constraint:

Q2 = 1, Q = −Q, Q = s2L0QT L0s2,

L0 =
(

0 s0 ⊗ 1̂r

s0 ⊗ 1̂r 0

)
RA

. (2)

Here subscript RA implies matrix acting in the RA space.
The parameter g (gH ) denotes bare dimensionless longitudinal
(transverse) spin conductance, 1̂r stands for the unit marix in
replica space, and s j are standard Pauli matrices. We note
that the last (topological) term in the right-hand side (r.h.s.)
of Eq. (1) has exactly the same form as the one in class A
[17].

Non-linear constraint on Q matrix and BdG symmetry re-
lation define σ -model target manifold: Q ∈ Sp(4Nr )/U(2Nr ).
In the end of all calculation we should take the replica limit:
Nr → 0. In order to resolve nonlinear constraint we can
rewrite Q matrix in terms of nonuniform matrix rotations:

Q = T̃ −1�T̃ , � = σ3 ⊗ s0 ⊗ 1̂r, (3)

where T̃ ∈ Sp(4Nr), σ3 is the corresponding Pauli matrix in
the RA space. The matrix � is so-called metallic saddle-point.
It is convenient to realize the rotation matrices T̃ belonging
to Sp(4Nr) as the 4Nr×4Nr matrices satisfying the following
conditions:

T̃ −1 = T̃ †, (T̃ −1)TL0s2 = s2L0T̃ . (4)

The first relation in Eq. (4) restricts the number of independent
real variables of the matrix T̃ to be equal to (4Nr )2 as given
for U(4Nr) group. The second condition in Eq. (4) reduces
the number of independent real variables down to 2(2Nr )2 +
(2Nr ) as it should be for Sp(4Nr).

B. Nonunitary matrix rotation

The model defined in Sec. II A reduces to the 4×4 matrix
theory in single-replica limit Nr = 1. Even with such size of

165431-2



INSTANTON ANALYSIS FOR THE SPIN QUANTUM HALL … PHYSICAL REVIEW B 110, 165431 (2024)

matrix Q calculations might become too tedious. In order to
avoid this difficulty, we perform nonunitary rotation of the
matrix basis, introducing new matrix Q as

Q = U −1QU, U =

⎛
⎜⎜⎝

1 1 0 0
0 0 −1 1
1 −1 0 0
0 0 1 1

⎞
⎟⎟⎠

RA,S

⊗ 1̂r√
2
.

(5)

Here the subscript RA, S implies matrix acting in the com-
bined RA and spin spaces. We use peculiarities of symplectic
group to change the antisymmetric matrix, which defines BdG
symmetry relation in such a way that it acts in the spin space
only:

Q = −Q̄, Q̄ = s2QT s2. (6)

Also we note that the rotation (5) changes the definition of
the metallic saddle point:

� → � = 1̂RA ⊗ s3 ⊗ 1̂r. (7)

It is easy to check, that the transformation (5) does not change
the form of the action (1). After the transformation (5) we
cannot distinguish RA and replica spaces, therefore, it is
convenient to introduce new notation: n = 2Nr for dimension
of the combined RA/replica space. After the above trans-
formation, the NLσM reduces to the 2 × 2 matrix theory in
single-replica limit, n = 1.

III. INSTANTONS WITH TOPOLOGICAL
CHARGES C = ± 1

A. Construction of the instanton solution

In order to obtain the saddle-point solutions with nontrivial
topology we use Bogomolny inequality:

Tr(∇xQ ± iQ∇yQ)2 � 0. (8)

It can be rewritten equivalently as

1

16

∫
x

Tr (∇Q)2 � π |C[Q]|. (9)

Here we introduce the topological charge

C[Q] = 1

16π i

∫
x

Trε jkQ∇ jQ∇kQ. (10)

Therefore, stable matrix field configurations, which minimize
the action should satisfy the self-duality equation:

∇xQ ± iQ∇yQ = 0. (11)

We note that Eq. (11) is invariant under transformation (5).
Therefore, we construct solution of this equation in the rotated
basis as follows. At first, we set the number of replicas in the
rotated basis equal to unity, n = 1. Then, similar to class A
[19], we use Belavin-Polyakov instanton to solve Eq. (11) by
the matrix

�
(n=1)
inst =

(
|e1|2 − e2

0 2e0e1

2e0e∗
1 −(|e1|2 − e2

0

)
)

, (12)

where

e0 = λ√
|z − z0|2 + λ2

, e1 = z − z0√
|z − z0|2 + λ2

. (13)

Here z = x + iy stands for the complex coordinate, the com-
plex z0 denotes a position of the instanton’s center and λ

stands for its scale size. Generalization of solution (12) to the
case of n > 1 is constructed in the form that explicitly violates
the replica symmetry:

�
(n>1)
inst =

⎛
⎜⎜⎜⎝

�
(n=1)
inst 0 . . . 0
0 s3 . . . 0
. . . . . . . . . . . .

0 0 . . . s3

⎞
⎟⎟⎟⎠

r

. (14)

Here the lower index r denotes that the matrix is written
in the replica space. Topological charge (10) for this solu-
tion is equal to one: C[�(n>1)

inst ] = 1. Solution with negative
topological charge can be obtained by complex conjugation
of solution (14). Therefore, full instanton manifold can be
written in terms of the unitary rotations T0 and R̃ about the
metallic saddle point �:

Qinst = T −1
0 �

(n>1)
inst T0 = T −1

0 R̃−1�R̃T0,

R̃ =
(

R0 0

0 1̂

)
r

=

⎛
⎜⎜⎜⎝

e∗
1 0 e0 0

0 1̂r 0 0
−e0 0 e1 0

0 0 0 1̂r

⎞
⎟⎟⎟⎠

S,r

.
(15)

Here T0 ∈ Sp(2n) stands for an arbitrary global unitary rota-
tion, which describes the orientation of the instanton in the
coset space Sp(2n)/U(n). One can check that Qinst satisfies
BdG symmetry relation (6). The classical action for the in-
stanton solution (15) is finite:

Scl = −πg + iπgH . (16)

We note that the classical action Scl is independent of z0, λ,
and T0, i.e., they can be identified as zero modes. In contrast
to the case of class A, it is convenient to split gH on even
integer part and fractional part:

gH = 2k + ϑ/π, k ∈ Z, −π < ϑ � π. (17)

We note that a change of ϑ from −π to π corresponds to
change of gH on 2 rather than on 1 as in the class A.

B. Fluctuations near the instanton solution

In order to construct perturbation theory around the in-
stanton solution we use exponential parametrization of the Q
matrix:

Q = R̃−1VR̃, V = e−W/2�eW/2. (18)

The matrix W has to satisfy the following constraints:
{W,�} = 0, W † = −W , and W = −W . Consequently, the
matrix W can be parametrized by n×n complex symmetric
matrix ŵ,

W =
(

0 ŵ

−ŵ∗ 0

)
sp

, ŵT = ŵ. (19)

The presence of instanton can be interpreted as appearance
of the non-Abelian vector potential, Aj = R̃∇ j R̃−1, in the
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NLσM action, e.g.,

− g

16

∫
x

Tr(∇Q)2 = − g

16

∫
x

Tr(∇ jV − [V, Aj])
2. (20)

Using symmetries of the fields ŵ and ŵ∗ we can expand action
(20) to the second order in ŵ, ŵ∗:

δSσ = −g

8

∫
dxμ2(r)

[
w11O(2)w∗11 +

n∑
α=2

wααO(0)w∗αα

+ 2
∑

1<α<β�n

wαβO(0)w∗αβ + 2
n∑

α=2

w1αO(1)w∗1α

]
,

(21)

where r2 = x2 + y2 and the Greek indices denote matrix
structure in the replica space. Here we define the operators

O(a) = − (r2 + λ2)2

4λ2

[
∇ j + ia

r2 + λ2
ε jkxk

]2

− a

2
, (22)

and the measure

μ(r) = 2λ

r2 + λ2
. (23)

We note that the set of operators O(a) and the measure μ(r)
are exactly the same as the ones that arise in analysis of
fluctuations around the instanton in class A [19].

The natural appearance of the measure μ2(r) indicates that
it is convenient to employ inverse stereographic projection
from the flat space onto the sphere with a radius λ. Therefore,
we should introduce new coordinates, the spherical angles:

cos φ = r2 − λ2

r2 + λ2
= η, θ = arctan

(y

x

)
. (24)

In terms of the spherical coordinates, the quantities e1 and e0

can be written as

e0 =
√

1 − η

2
, e1 =

√
1 + η

2
eiθ , (25)

while the operators O(a) become

O(a) = − ∂

∂η

[
(1 − η2)

∂

∂η

]
− 1

1 − η2

∂2

∂θ2
+ ia

1 − η

∂

∂θ

+ a2

4

1 + η

1 − η
− a

2
. (26)

Eigensystem for operators (26) can be found in a standard
way as the solution of Schrödinger-type equation

O(a)�(a)(η, θ ) = E (a)�(a)(η, θ ). (27)

Here the eigenfunctions are normalized with respect to the
measure dηdθ . The eigenfunctions are expressed in terms of
Jacobi polynomials:

Pα,β
n (η) = (−1)n

2nn!

(1 − η)−α

(1 + η)β
dn

dηn

(1 − η)n+α

(1 + η)−n−β
. (28)

as [19]

�
(a)
J,M = C(a)

J,Me−iMθ (1−η)
a
2 (1−η2)

M
2 PM+a,M

J−M−sa
(η), (29)

TABLE I. Number of fields for operators O(a).

Operator Number of fields wαβ Degeneracy

O(0) (n2 − n)/2 1
O(1) (n − 1) 2
O(2) 1 3

where sa = 0, 1, 1 for a = 0, 1, 2, respectively. The eigen-
states are enumerated by the angular momentum J =
0, 1, 2, . . . for a = 0 and J = 1, 2, 3, . . . for a = 1, 2. The
corresponding momentum projections satisfy −J − a(a −
1)/2 � M � J − sa. The normalization constants read [67]

C(a)
J,M =

√
�(J+M+1+a(a−1)/2)�(J−M+1−sa)

2M+1+a(a−1)/2
√

π�(J )

×

⎧⎪⎪⎨
⎪⎪⎩

√
2J+1
J+1 , a = 0,

1, a = 1,
√

2J+1√
J (J+1)

, a = 2.

(30)

The eigenenergies are given as

E (a)
J = (J − sa)(J + 1 − sa + a). (31)

We emphasize that the eigenenergy vanishes for the smallest
allowed angular momentum, E (a)

J=sa
= 0.

C. Analysis of the zero modes

There are several zero-energy modes for the operators O(a).
From Table I we can compute the number of the zero modes
to be equal to n2 + 3n + 2.

We also note, that one can rewrite eigenfunctions corre-
sponding to the modes with zero eigenenergies in terms of e0

and e1:

�
(0)
0,0 = 1

2
√

π
, �

(1)
1,−1 = 1√

2π
e1, �

(1)
1,0 = 1√

2π
e0,

�
(2)
1,−2 =

√
3

4π
e2

1, �
(2)
1,−1 =

√
3

2π
e0e1, �

(2)
1,0 =

√
3

4π
e2

0.

(32)

Now we show that each zero mode is related with corre-
sponding instanton degree of freedom (collective coordinate).
For this purpose we introduce small deviations of instanton
degrees of freedom: ξ j = {λ, x0, y0} and generators t , which
can be defined as an expansion of global rotation matrices T0

near the identity matrix:

T0 = 1 + it . (33)

In this way we find

Q(ξ j + δξ j ) = R̃−1(ξ j )(� + [�, B])R̃(ξ j ),

B = iR̃(ξ j )t R̃−1(ξ j ) − δξ j R̃(ξ j )
(
∂ξ j R̃

−1(ξ j )
)
.

(34)

Comparing the above equations with Eq. (18), we relate fluc-
tuation matrix ŵ and the zero modes as

w = 2
(
iR̃t R̃−1 − δξiR̃

(
∂ξi R̃

−1
))

12. (35)
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FIG. 1. The symmetry-breaking pattern in terms of generators
(33) for an arbitrary matrix T0 ∈ Sp(2n). The off-diagonal elements
corresponding to T ′ ∈ Sp(2n)/U(n) are shown by pink color. The di-
agonal elements corresponding to T ∈ U(1) ∪ U(n)/[U(1) × U(n −
1)] are shown in blue and violet colors.

Here the subscripts 12 correspond to the spin space structure
in the rotated basis. Explicit expressions for matrices and
symmetry relations for ŵ allows us to obtain the following
results:

w11 = −4e0e∗
1

(
it11

11 − δλ

2λ

)
+2e2

0

(
δz∗

λ
−it∗11

12

)
+2ie∗2

1 t11
12 ,

w1α = wα1 = 2i
(
e∗

1t1α
12 − e0t∗1α

11

)
,

wαβ = 2itαβ

12 , β � α > 1. (36)

If one considers a similar task for the trivial topological
sector (C[Q] = 0), i.e., one makes an expansion around the
metallic saddle point �, one obtains

wαβ = 2itαβ

12 . (37)

These are trivial zero modes corresponding to N0 = n2 + n
real parameters. The number of zero modes for the instanton
solution can be split as follows:

n2 + 3n + 2 = n2 + n︸ ︷︷ ︸
trivial

+ 2n + 2︸ ︷︷ ︸
instanton

= N0

+ 2n − 2 + 1︸ ︷︷ ︸
instanton rotations

+ 3︸︷︷︸
ξi

. (38)

In the last line of the above equation we separate the num-
ber of zero modes corresponding to the instanton parameters
ξi = {z0, λ} from the number of zero modes correspond-
ing to generators of instanton rotations t . The above zero
mode structure corresponds to the symmetry-breaking pat-
tern shown in Fig. 1. The instanton breaks U (n) down to
U (n−1) explicitly. Therefore, we can present the zero modes
corresponding to rotations T0 around the instanton as a
product T0 = TT ′, where T ′ ∈ Sp(2n)/U(n) and T ∈ U(1) ∪
U(n)/[U(1) × U(n − 1)] describes the additional rotational
zero modes.

IV. CALCULATION OF THE PARTITION FUNCTION

In order to calculate the partition function we use the
fact, that total partition function can be written as sum over

contributions from all topological sectors:

Z =
∞∑

C=−∞
ZC, (39)

where C is the integer-valued topological charge, see Eq. (10).
For a reason to be explained shortly, it is more convenient to
work with the quantity F = [1/(2n)] lnZ . Analogously to the
statistical mechanics, F can be referred as the free energy. In
the replica limit, n → 0, F determines the disorder-averaged
logarithm of the partition function. Due to exponential small-
ness of configurations with |C| > 1, we can expand the
logarithm of the partition function in a series:

lnZ ≈ lnZ0 + Z+1

Z0
+ Z−1

Z0
+ . . . (40)

Therefore, our main goal for this section is computation of the
instanton corrections to lnZ , which we call the normalized
partition function in all calculations below.

Calculation of the partition function can be separated into
two parts. The first one is calculation of the contribution of
massive modes in Gaussian approximation. The second part
is integration over the zero modes, that should be carried out
exactly due to divergence of the corresponding determinants
in the Gaussian approximation.

Also, we notice that we are interested in calculation of the
normalized partition function, which is defined as

Zinst

Z0
=

∫
D[w,w∗] exp (Scl + δSσ )∫

D[w,w∗] exp (δS0)
, (41)

where Zinst = Z+1 = Z∗
−1 and δS0 has the same form as δSσ

(21) with all operators O(a) replaced by O(0).

A. Determinants for the massive modes

In this section we exclude all calculations related to the
zero modes, concentrating on obtaining the determinant due to
integration over the massive modes. Therefore, schematically
we rewrite Eq. (41) as:

Zinst

Z0
=

∫
zm

Azm[λ, z0, g, ϑ]eScl+D. (42)

Here
∫

zm denotes the integral over the manifold of the zero
modes, Azm is a functional associated with the contribution of
the zero modes, which will be defined below, and D is the
contribution of the massive modes. In this section our aim is
to compute D in the Gaussian approximation.

It is convenient to introduce Green’s functions for the op-
erators O(a) in a standard way:

Ga(η, θ ; η′, θ ′; ω) =
∑
JM

|JM〉(a)(a)〈JM|
E (a)

J + ω
. (43)

Then we can calculate integral over w fields explic-
itly, using expansion in terms of the eigenfunctions of
operators O(a):

wαβ (η, θ ) = 2
√

2√
g

∑
J,M

uαβ
JM�

(a)∗
J,M . (44)
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Performing Gaussian integration over complex coefficients
uαβ

J,M we obtain

D = (n − 1)
(

Tr ln 1
2G1(0) − Tr ln 1

2G0(0)
) + Tr ln G2(0)

− Tr ln G0(0) = −(n − 1)D(1) − D(2). (45)

Appearance of factors 1/2 under Tr ln after integration over
uαβ

JM is due to last two terms in Eq. (21). It reflects symmetry
relations between matrix elements of fluctuation matrices W ,
cf. Eq. (18).

The traces in Eq. (45) can be readily written in terms of the
eigenvalues of the operators O(a). However, these sums are
divergent. This fact reflects the infrared divergencies which
are well known to appear in the course of the perturbative
background field renormalization of the NLσM action. Usu-
ally, such divergences are treated by means of the dimensional
regularization scheme. However, since the instanton solution
exists strictly in two spatial dimensions we cannot use dimen-
sional regularization scheme. Fortunately, there exists other
regularization scheme, Pauli-Villars method [61], which can
be employed in two dimensions. We note that it was used
for computation of nonperturbative corrections in Yang-Mills
theory due to Belavin-Polyakov-Schwarz-Tyupkin instanton
[68]. Later this methodology has been adapted to the studies of
instanton effects in the iqHe [19,22,67]. Below we will sketch
the derivation of the results for the regularized determinants.
More details can be found in Ref. [67].

The idea of the Pauli-Villars method is to introduce K + 1
copies of the quantum theory δSσ . In each copy the operators
O(a) are supplemented by the mass term M2

f , f = 0, . . . , K ,
i.e. O(a) → O(a) + M2

f . It is assumed that M0 = 0 while

M f � 1 for f = 1, . . . , K . The additional K copies of the
theory are served to cancel all the divergencies except the
logarithmic one. In order to extract the logarithmically diver-
gent contribution some of the additional copies are assumed
to contribute to the logarithm of the determinant, D, as if they
result from the integration over Grassmanian variables, i.e.,
contributing with the opposite sign in front of Tr ln in Eq. (45).
In other words, one has to use the following substitution in
Eq. (45),

Tr ln r−1
b Ga(0) →

K∑
f =0

ε f Tr ln r−1
b Ga

(
M2

f

)
. (46)

Here rb = 1, 2 [see Eq. (45)], ε0 = 1, and ε f = ±1 for f =
1, . . . , K . The particular sign of each ε f is chosen to be able
to cancel all divergencies except the logarithmic one. Then the
regularized versions of the functions D(1,2) become

D(a)
reg = lim

�→∞

[
��

(
1 + a

2
, ra

)
− ��

(
1

2
, ra

)]
, (47)

where r1 = 2 and r2 = 1, and

��(p, r) =
�∑

J=p+1

2J ln[r(J2 − p2)]

+
K∑

f =1

ε f

�∑
J=p

2J ln
[
r
(
J2 − p2 + M2

f

)]
. (48)

Evaluating the function ��(p, r) under assumptions that
� � M f � 1, we find (see Ref. [67] for details)

��(p, r) = −2p ln r + 4
�∑

J=1

J ln J + 2p2 − 2
2p∑

J=1

(J − p) ln J − 2p2 ln � + 2 ln r
�∑

J=p+1

J +
K∑

f =1

ε f

[
2�(� + 1) ln � − �2

+ ln e�

3
+ 2 ln r

�∑
J=p+1

J − 1 − 6p

3
lnM f − 2M2

f lnM f + 2M2
f ln � − 2p2 ln �

]
. (49)

Now we choose K = 5 and set ε1 = ε2 = 1 and ε3 = ε4 =
ε5 = −1. The masses satisfy the following two equations:

K∑
f =1

ε f M2
f = 0,

K∑
f =1

ε f M2
f lnM f = 0. (50)

Then, the above expression for the function ��(p, r) simpli-
fies drastically,

��(p, r) = −2p ln r+1−6p

3
lnM+2p2−2

2p∑
J=1

(J−p) ln J

+ 4
�∑

J=1

J ln J−2�(�+1) ln �+�2− ln e�

3
,

(51)

where we introduced the so-called Pauli-Villars mass

lnM = −
K∑

f =1

ε f lnM f . (52)

Next, using the result (51), we can compute the regularized de-
terminants D(a)

reg. Interestingly, they can be expressed in terms
of regularized determinants for the similar problem in class A,
see Ref. [67],

D(1)
reg = D(1)

reg, A − ln 2, D(2)
reg = D(2)

reg, A,

D(1)
reg, A = − lnM + 3

2 − 2 ln 2,

D(2)
reg = −2 lnM + 4 − ln 2 − 3 ln 3. (53)

Hence we obtain the final result for the regularized de-
terminant, coming from the integration over the massive
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modes

D = (n + 1) lnMeγ−1/2 − 3(n − 1)

2
+ (3n − 2) ln 2 − 4

+ 3 ln 3 − (n + 1)(γ − 1/2). (54)

Here for the purposes that will be clear further, we added
and subtracted a constant (n + 1)(γ − 1/2), where γ ≈ 0.577
stands for Euler constant. We emphasize that the Pauli-Villars
mass M controls divergencies in the fluctuation determinant
D. As we discussed above such divergences arise similar to
divergencies in the course of the perturbative renormalization
of the action due to elimination of the fast fluctuations on the
top of slow background field configuration.

B. Jacobian for the zero modes

Detailed calculation of the Jacobian for collective modes
can be found in Ref. [19]. In this section we present resulting
expression and explain peculiarities arising in the case of class
C. In order to derive the zero-mode Jacobian we use explicit
expressions for coefficients uαβ

J,M in terms of the instanton
degrees of freedom (36):

u11
1,−1 = −

√
4πg

3

(
it11

11 − δλ

2λ

)
, u11

1,−2 =
√

2πg

3
it11

12 ,

u11
1,0 =

√
2πg

3

(
δz∗

λ
− it∗11

12

)
, u1α

1,−1 = √
πgit1α

12 ,

u1α
1,0 = −√

πgit∗1α
11 , uαβ

0,0 =
√

2πgitαβ

12 , β � α > 1.

(55)

The above expressions can be rewritten in terms of Jacobi
matrices with block structure in replica space:

(
Re u11

1,−1, Im u11
1,−1

) =
⎛
⎝
√

πg
3λ2 0

0 −
√

4πg
3

⎞
⎠(

δλ

t11
11

)
, (56)

(
Re u11

1,−2, Im u11
1,−2, Re u10

1,1, Im u10
1,1

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −
√

2πg
3 0 0√

2πg
3 0 0 0

0 −
√

2πg
3

√
2πg
3λ2 0

−
√

2πg
3 0 0 −

√
2πg
3λ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

Re t11
12

Im t11
12

x0

y0

⎞
⎟⎟⎟⎟⎠,

(57)

(
Re u1α

1,−1, Im u1α
1,−1, Re u1α

1,0, Im u1α
1,0

)

=

⎛
⎜⎜⎜⎝

0 −√
πg 0 0√

πg 0 0 0

0 0 0 −√
πg

0 0 −√
πg 0

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎜⎝

Re t1α
12

Im t1α
12

Re t1α
11

Im t1α
11

⎞
⎟⎟⎟⎟⎠,

(58)

(
Re uαβ

0,0, Im uαβ

0,0

) =
(

0 −√
2πg

√
2πg 0

)(
Re tαβ

12

Im tαβ

12

)
, (59)

with β � α > 1. Using these explicit expressions for the
blocks of the full Jacobi matrix, we derive the following
Jacobian for collective modes:

|Jinst| = 2g

3λ
· 4g

9λ2
· g2n−2 · (2g)n(n−1)/2. (60)

Here we present the result as a product of four factors, which
correspond to block matrices (56)–(59). Jacobian for the triv-
ial topological sector can be derived in similar way, using
Eq. (37):

|J0| = (2g)n(n+1)/2. (61)

Therefore, resulting answer for the contribution from the zero
modes acquires the following form:

∫
zm

Azm = 8gn+1

27 · 2n

∫
dr0dλ

λ3

∫
D[T ′]

∫
D[T]∫

D[T ′]
, (62)

where global rotations T ′ ∈ Sp(2n)/U(n) corresponding to
the zero modes in the absence of the instanton, while T ∈
U(1) ∪ U(n)/[U(1)×U(n − 1)] are additional rotational zero
mode induced by the presence of the instanton (see Fig. 1).

C. Partition function

Using Eq. (42), we calculate the instanton correction to the
partition function. Since T ′ and T describe the zero modes,
integration over them is reduced to the volume of the corre-
sponding manifolds, which were computed, for example, in
Refs. [69,70]:∫

D[T] = vol[U(1)]vol

[
U(n)

U(1)×U(n−1)

]
= 2πn

�(n)
. (63)

After all substitutions we find the following one-instanton
contribution to the partition function

Zinst

Z0
= n(n + 1)

2
Gn

∫
dr0dλ

λ3
(πg)n+1e−πg(M)+iϑ ,

Gn = 22n+3

πe2

e−n−(n+1)γ

�(n + 2)
. (64)

Here we introduce one-loop renormalized spin conductance in
Pauli-Villars regularization scheme (see Appendix A),

g(M) = g − β0 lnMeγ−1/2, β0 = n + 1

π
. (65)

In the replica limit, n → 0, the correction Zinst/Z0 is propor-
tional to n.

The result (64) is derived within the Gaussian theory for the
fluctuations around the instanton solutions. Therefore, g in the
prefactor of the exponent under the integral sign in Eq. (64)
remains unrenormalized. It is natural to expect [71–74] that
treatment of fluctuations beyond the Gaussian approximation
will result in substitution of g by g(M) in the preexponential
factor also. However, such a calculation is beyond the scope
of the present paper.

165431-7



M. V. PARFENOV AND I. S. BURMISTROV PHYSICAL REVIEW B 110, 165431 (2024)

In order the result (64) for Zinst/Z0 becomes operative,
one has to relate the Pauli-Villars mass M with the instanton
size λ. Fortunately, the form of Eq. (65) suggests the form
of such a relation. A key observation is that the correction to
the conductance in the flat space due to elimination of fast
fluctuations with spatial scales between the ultraviolet length
scale � and the running scale λ has exactly the same form
as Eq. (65) but with λ/� under the logarithm instead of M.
Therefore, one concludes that M = ζλ/� where ζ is some
constant. Within a particular scheme, this constant can be
fixed to the magnitude ζ = e/2 (see Appendix E). Therefore,
the correction Zinst/Z0 depends on a particular value of ζ , i.e.,
on a method of transformation from the theory of fluctuations
on the sphere and in the flat space. This known to occur in the
class A also [67].

V. INSTANTON CORRECTIONS FOR PURE
SCALING EIGENOPERATORS

As was outlined in Sec. I, there is an infinite set of local
operators demonstrating pure scaling at sqHe criticality. In
this section, we will compute instanton corrections to the
anomalous dimensions of gradientless local operators Kλ[Q].
Each such operator is an eigenoperator with respect to the
renormalization group and, consequently, the corresponding
physical observable demonstrates a pure scaling behavior at
criticality characterized by a critical exponent xλ, Kλ[Q] ∼
L−xλ where L is the system size. The operators Kλ[Q] can be
enumerated by a tuple λ = (λ1, . . . , λs) of integer numbers,
λ1 � λ2 � . . . λs > 0, which are the highest weight of cor-
responding irreducible representation of Sp(2n)/U(n) [32].
Each operator Kλ[Q] involves |λ| = λ1 + · · · + λs operators
Q. The simplest example of such pure scaling observables are
the disorder-averaged moments of the LDoS, 〈νq〉. They cor-
respond to the operators Kλ[Q] with λ = (q) (see for details
Ref. [33]).

An operator O averaged over the NLσM can be written as
a sum over topological sectors,

〈O〉 ≈ 〈O〉0

(
1 − Zinst + Z∗

inst

Z0

)
+ 〈O〉+1 + 〈O〉−1 + . . .

(66)

For computation of averages at nontrivial topological sectors,
we employ the saddle-point approximation near the instan-
ton solution, taking into account Gaussian fluctuations in
the action only. As above, we restrict our considerations by
the contribution from the topological sector with C = ±1.
We note that one has to take into account that in fact there
are many instanton solutions with a given topological charge
parametrized by the zero-mode manifold of λ, z0, and T.
Therefore, one has to sum contributions to 〈O〉±1 from all
such instanton solutions (for more detailed discussion see
Ref. [67]). The weight of each contribution is fixed by the
expression (64) for Zinst/Z0. Then, we find

〈O〉±1 � n(n+1)

2
Gn

∫
dr0dλ

λ3
〈O〉T(πg)n+1e−πg(M)±iϑ ,

(67)

where we introduce

〈O〉T =
∫
D[T]O[Qinst]

vol T
, (68)

We remind that here T ∈ U(1) ∪ U(n)/[U(1)×U(n−1)]. As
it was shown in Ref. [67], for computation of anomalous
dimensions for pure-scaling operators without derivatives, it is
enough to restrict instanton zero-modes manifold to only such
rotational zero modes, which commute with �, i.e., to the
diagonal blocks in Fig. 1. They are precisely T rotations. We
took explicitly into account that the operator O evaluated on
the instanton solution mights depend on the unitary rotations
T. We note that below we will work with operators expressed
in terms of the original Q matrices.

A. LDoS

The disorder-averaged LDoS 〈ν〉 corresponds to the pure
scaling operator K(1)[Q], which involves a single Q matrix. It
can be written explicitly as [66]

K(1)[Q] = 1
4

[
trQαα

RR − trQαα
AA

]
, (69)

where tr is trace over spin space and α is a fixed replica
index. We note that the average LDoS is determined as 〈ν〉 =
ν0〈K(1)[Q]〉 where ν0 is the bare value of the LDoS. As well-
known [2] the disorder-averaged LDoS depends on the energy
as a power-law at sqHe criticality. To simplify calculations we
will study the scaling of 〈ν〉 at zero energy with the system
size L. Then, lowest order perturbative treatment results in the
following expression:

〈ν〉 = νpert (L) = ν0

(
1 +

γ
(0)
(1)

g
ln

L

�

)
, γ

(0)
(1) = −1 + n

π
.

(70)

It is convenient to use parametrization of instanton solution
in terms of deviation from a metallic saddle point �:

Qinst = � + U −1T−1ρTU,

T ∈ U(n)

U(1)×U(n−1)
∪ U(1). (71)

Here, we remind, the rotation matrix U is defined in Eq. (5).
The matrix ρ has only four nonzero matrix elements:

ρ11
00 = −ρ11

−1−1 = −2e2
0, ρ11

0−1 = (
ρ11

−10

)∗ = 2e0e1. (72)

We write down expansion for the operator K(1) computed on
the instanton solution (71) and averaged over T rotations:

〈K(1)[Qinst]〉T = 1

4
tr
[
�αα

RR − �αα
AA

]
+ 1

4

∑
p1=±

p1
〈
tr[U −1T−1ρTU ]αα

p1 p1

〉
T
. (73)

We note that the matrix T acts as a 2n × 2n block-diagonal
matrix in a spin space, see Fig. 1. Therefore, we can write
T = T+(1 + s3)/2 + T−(1 − s3)/2, where T+ is n × n matrix
belonging to T ∈ U(1) ∪ U(n)/[U(1)×U(n−1)], while T− =
(T−1

+ )T .
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For averaging in Eq. (73) over T rotations we use the
following relations (see Refs. [75] and [22]):

〈(T−1)α1
+ T1b

+ 〉T = δαβ

n
, (74)

〈(T−1)α1
+ T1β

+ (T−1)γ 1
+ T1δ

+ 〉T = [δβγ δαδ + δαβδγ δ]

n + n2
. (75)

After averaging, we should contract the similar contribution
from the trivial topological sector proportional to normalized
partition function. Then we obtain

〈K(1)[Qinst]〉T = − (n + 1)

2
Gn

∫
dλ

λ
(πg)n+1

× e−πg(M)+iϑ
∫

dr0
μ(r0)

λ
. (76)

Here μ(r0) is the measure, induced by instanton, see Eq. (23).
The term in the second line of Eq. (76) has an ultraviolet
divergence due to integration over the instanton position r0.
To treat this divergence we are forced to take into account
Gaussian fluctuations around the instanton in the preexpo-
nential factor. After performing straightforward calculations
(see Appendix D), we find the following expression for the
instanton correction to the disorder-averaged LDoS,

δνinst = ν0(〈K(1)[Qinst]〉T + 〈K(1)[Q∗
inst]〉T) � πγ

(0)
(1) Gn

×
∫

dλ

λ
(πg)n+1e−πg(M) cos ϑ

∫
dr0

μ(r0)

λ

× ν0

(
1 +

γ
(0)
(1)

g
lnM

)
. (77)

We note that the last line of Eq. (77) coincides with the
perturbative renormalization of the LDoS in the flat space,
cf. Eq. (70). The Pauli-Villars masses in Eq. (77) can be
translated into the expression for the flat space by a trick with
a spatial varying mass method [21]. Physical idea behind this
method is that the instanton solution centered at the spatial
point r0 acts for the Gaussian fluctuations of Q(r = 0) as a
slow-varying background field with a spatial scale 1/μ(r0).
Taking this into account, we write

δνinst = ν0(〈K(1)[Qinst]〉T+〈K(1)[Q∗
inst]〉T) � πγ

(0)
(1) Gn

×
∫

dλ

λ
(πg)n+1e−πg(ζλ) cos ϑ

∫
dr0

μ(r0)

λ
νpert

× [1/μ(r0)]. (78)

Here we also substituted the Pauli-Villars mass M by ζλ/�

in the argument of g in the exponent. To be precise, we define
[cf. Eq. (65)]

g(λ) = g − β0 ln(eγ−1/2λ/�). (79)

The decay of νpert (1/μ) at small μ (at long length scales)
makes the integral over r0 in the last line of Eq. (78) conver-
gent (see Fig. 2). Performing integration over r0 in Eq. (78)

FIG. 2. Schematic plot of r0 integrands in Eqs. (78) and (91).

(see Ref. [67] and Appendix E), we find

δνinst = Gn

∫
dλ

λ
(πg)n+1ν(ζλ)H(1)[g(ζλ)]e−πg(ζλ) cos ϑ,

(80)
where ζ = e/2, and we introduced

ν(λ) = ν0

[
1 +

γ
(0)
(1)

g
ln(eγ−1/2λ/�)

]
. (81)

Also we defined the function

H(1)(g) =
2π2gγ (0)

(1)

β0−γ
(0)
(1)

≡ π2g. (82)

It is worthwhile to mention that the function H(1) is propor-
tional to g. This fact can be understood in a following way. The
integral over r0 in Eq. (76) diverges logarithmically at large
r0. However, the one-loop RG Eq. (79) implies a dynamically
generated localization length ∼ exp(g/β0). This length serves
as a natural infrared cut off for the overwise logarithmically
divergent integral in Eq. (76) thus resulting in a finite contri-
bution proportional to g.

Combining together the perturbative contribution (81) and
instanton correction (80), we find

〈ν〉
ν0

= 1 +
∫ ζL

ζ�

dλ

λ
γ(1)[g(λ), ϑ]. (83)

Here the function

γ(1)(g, ϑ ) =
γ

(0)
(1)

g
+ Gn(πg)n+1H(1)(g)e−πg cos ϑ. (84)

can be interpreted as the anomalous dimension of the disorder-
averaged LDoS, which determine its scaling with the system
size L,

d ln〈ν〉
d ln L

= γ(1)(g, ϑ ). (85)

Taking into account explicit expressions for γ
(0)
(1) and β0, see

Eqs. (70) and (79), we find in the replica limit n → 0,

γ(1)(g, ϑ ) = − 1

πg
− πG0(πg)2e−πg cos ϑ. (86)
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B. Operators with two Q matrices

There exist only two eigenoperators for |λ| = 2. They in-
volve two Q matrices and correspond to two tuples: λ = (2)
and λ = (1,1). While the former corresponds to the second
moment of the LDoS, the later describes more involved cor-
relations of four wave functions of a random Hamiltonian
of class C symmetry [40]. These two eigenoperators can be
constructed explicitly as [66]

Kλ[Q] = 1

16

∑
p1,p2=R/A

(σ3)p1 p1 (σ3)p2 p2P
α1α2;p1 p2
λ . (87)

Here the correlation function Pα1α2;p1 p2
λ is defined as

Pα1α2;p1 p2
λ = tr Qα1α1

p1 p1
(x) tr Qα2α2

p2 p2
(x)

+ μλ tr
[
Qα1α2

p1 p2
(x)Qα2α1

p2 p1
(x)

]
. (88)

The coefficients μλ can be fixed by the condition that the
operator Pα1α2;p1 p2

λ is the eigenoperator with respect to renor-
malization group transformation [66]. In particular, they are
given as μ(2) = −1 and μ(1,1) = 2.

In order to study perturbative and nonperturbative renor-
malization of the pure scaling operators Kλ[Q] it is convenient
to introduce the physical observable zλ = z(0)

λ 〈Kλ[Q]〉 with the
z(0)
λ = 1. The lowest-order perturbative renormalization of the

operators yield

zλ(L) = z(0)
λ

(
1 + γ

(0)
λ

g
ln

L

�

)
, (89)

where the one-loop coefficients are given as [40]

γ
(0)
(2) = −1 + 2n

π
, γ

(0)
(1,1) = −4 + 2n

π
. (90)

We repeat exactly the same steps as for computation of the
instanton corrections to LDoS in the previous section. After
substitution of parametrization (71) into Eq. (88) and with the
help of Eq. (75), we obtain

δz(inst)
λ = z(0)

λ

(〈Kλ[Qinst]〉T+〈Kλ[Q∗
inst]〉T

) � πγ
(0)
λ Gn

×
∫

dλ

λ
(πg)n+1e−πg(ζλ) cos ϑ

∫
dr0

μ(r0)

λ

× zλ(1/μ(r0)). (91)

We note that under the integral over r0 in Eq. (91) we omitted
terms, which do not diverge in the ultraviolet, i.e., at r0 →
∞. Surprisingly, the structure of Eq. (91) repeats exactly the
structure of instanton correction to the DOS. The specifics of
the eigenoperator is hidden into the one-loop coefficient γ

(0)
λ ,

which appears in two places: as an overall factor and in the
expression for zλ(1/μ(r0)).

After integration over r0, we find

δz(inst)
λ = Gn

∫
dλ

λ
(πg)n+1zλ(ζλ)Hλ[g(ζλ)]e−πg(ζλ) cos ϑ,

(92)
where the function

Hλ(g) = 2π2gγ (0)
λ

β0+
∣∣γ (0)

λ

∣∣ . (93)

We note that in the derivation of expression (93) (see Ap-
pendix E) the negative sign of γ

(0)
λ has been important. It is

this negative sign results to decay of the integrand at r0 → ∞,
see Fig. 2. However, one can extend the expression to the
positive γ

(0)
λ as well [67]. The expression (93) holds for both

cases.
Repeating the same steps as in the previous section for

the LDoS, using Eqs. (92) and (89), we find the instanton
correction to the anomalous dimension of the operators K(2)
and K(1,1) as follows:

γλ = d ln zλ

d ln L
= γ

(0)
λ

g
+ 2πγ

(0)
λ

β0 + ∣∣γ (0)
λ

∣∣Gn(πg)n+2e−πg cos ϑ.

(94)

C. Operators with an arbitrary number of Q-matrices

As one can check, Eq. (91) is valid for an arbitrary
pure scaling operator corresponding to the tuple λ (see Ap-
pendix B). Therefore, the result (94) holds also for an arbitrary
eigenoperator. In the replica limit, n → 0, the perturbative
coefficient γ

(0)
λ for λ = (λ1, . . . , λs) is given as [40]

γ
(0)
λ = 1

2π

s∑
j=1

λ j (λ j + c j ), c j = 1 − 4 j. (95)

Then, we find the following result for the anomalous dimen-
sion of the pure scaling operator in the replica limit, n → 0,

γλ = λ(λ + c)

2πg
+ λ(λ + c)

2 + |λ(λ + c)|CC (πg)2e−πg cos ϑ, (96)

where CC = 16e−2−γ and we introduce the vector
c = (c1, . . . , cs). We note that the result (94) holds also
for the eigenoperator K(1) corresponding to the LDoS.
We emphasize that the instanton correction is expressed
via the quadratic Casimir operator λ(λ + c) similar to the
one-loop perturbative correction. Therefore, the result (96)
remains invariant under symmetry transformations, which are
consequence of Weyl-group invariance.

We note that the instanton contribution to the anomalous
dimensions γλ at ϑ = π is of opposite sign with respect to the
one-loop perturbative correction. It implies that the instanton
effects reduce the multifractal behavior at ϑ = π .

VI. CORRECTIONS TO THE SPIN CONDUCTIVITIES

Our next aim is to compute instanton corrections to con-
ductivities with the help of NLσM formalism. The Kubo-type
expressions for longitudinal spin conductivity can be written
as follows (see Appendix C)

g′ = g + g

8n(n + 1)

〈
1

2
Tr[�,Q]2 + (Tr �Q)2 − (Tr 1)2

〉

− g2

64n(n + 1)

∫
dx′〈Tr[�,J (x)][�,J (x′)]〉. (97)

Here we introduce the matrix current J = Q∇Q. We note
that Eq. (97) produces correct perturbative renormalization
for g.
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Similar expression can be derived for the transverse spin
conductivity (see Appendix C),

g′
H = gH+ g2

8n(n+1)

∫
x′

εμν〈Tr[�−Jμ(x)�+Jν (x′)]〉, (98)

where �± = (1 ± �)/2 stands for the projector on the re-
tarded and advanced blocks.

A. Longitudinal spin conductivity

We start from calculation of the instanton corrections to g′.
Here we will proceed in a similar way as in Sec. V. We use the
approximation (66) in our calculations below. An important
remark is in order here. The longitudinal spin conductivity
involves two operators, cf. Eq. (97). These operators individ-
ually are not the eigenoperators of the renormalization group.
This situation is similar to the eigenoperator K(2), cf. Eq. (88),
which is composed from two operators, each of which is not
eigenoperator under the action of the renormalization group.
Nevertheless, the full operator of spin conductivity is the RG
eigenoperator. In other words, within the background field
renormalization method, the renormalized conductivity can be
written as

δg[Q] → Zgδg[Q0] = Zg
(
gdm[Q0] + g j- j[Q0]

)
, (99)

where Q0 = T −1
0 �T0 is a slow field and Zg is a renormal-

ization factor for the conductivity. Here gdm corresponds to
the operator in the first line of Eq. (97) (diamagnetic con-
tribution) while g j- j is the operator in the second line of the
same equation (current-current contribution). Therefore, our
task is simplified and it is enough to compute the instanton
contribution to Zg from the one of the operators. For reasons to
be explained shortly, we compute the instanton contribution to
the current-current part of the spin conductivity, gj- j . It reads

− g2

64n(n + 1)

∫
dx′〈Tr[�,J (x)][�,J (x′)]

〉
→ −Gn

∫
dλ

λ
(πg)n+3e−πg(M) cos ϑ. (100)

Hence we obtain the final expression to the single instanton
correction to the dissipative spin conductance

δginst = −Gn

∫
dλ

λ
(πg)n+3e−πg(ζλ) cos ϑ, (101)

where, we remind, g(ζλ) is the spin conductance renormalized
within the perturbation theory, cf. Eq. (79). As in the previous
section, one can interpret the above correction in terms of the
nonperturbative contribution to the β function (for the finite
number of replica)

βg(g, ϑ ) = − dg

d ln L
= 1 + n

π
+ Gn(πg)n+3e−πg cos ϑ.

(102)

B. Transverse spin conductivity

Our next step is to compute the renormalization of
the transverse spin conductivity. We note that there are
no perturbative corrections to gH . Using Eq. (98) and the

FIG. 3. Sketch of the RG-flow diagram for spin conductivities in
class C, see Eqs. (106).

approximation (66), we find

g2

8n(n + 1)

〈∫
x′

εμν Tr[�−Jμ(x)�+Jν (x′)]
〉

→ −Gn

∫
dλ

λ
(πg)n+3e−πg(M) sin ϑ. (103)

With the help of Eq. (17), we write the instanton correction to
the θ angle, cf. Eq. (17), as

δϑinst = −πGn

∫
dλ

λ
(πg)n+3e−πg(ζλ) sin ϑ. (104)

The corresponding β function takes the following form:

βϑ (g, ϑ ) = −d (ϑ/2π )

d ln L
= Gn

2
(πg)n+3e−πg sin ϑ. (105)

C. Renormalization group equations for spin conductivities

In the replica limit, n → 0, using Eqs. (102) and (105),
the RG equations for spin conductivities acquire the following
form:

dg

d ln L
= − 1

π
− 2

π2g
− DC(πg)3e−πg cos ϑ,

dϑ

d ln L
= −πDC(πg)3e−πg sin ϑ, (106)

where DC = 8e−2−γ /π ≈ 0.2. Here we added the two-loop
perturbative correction to the longitudinal spin conductiv-
ity [76]. Equations (106) describe the flow of longitudinal
conductivity g and the fractional part of the transverse spin
conductivity ϑ , cf. Eq. (17), with increase of the system
size L.

Although the RG Eqs. (106) have been derived in the
weak coupling regime, g � 1, they help to understand the
overall phase diagram of the class C and quantization
of the transverse spin conductance (see Fig. 3). Similar to the
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case of class A, the instantons provide the mechanism for the
scale dependence of the theta-angle ϑ , which is a fractional
part of gH . RG Eqs. (106) predict that ϑ = 0 (gH = 2k) is the
stable fixed line of the RG flow, while ϑ = π (gH = 2k + 1)
is the unstable fixed line. It is the latter that corresponds to
the transition between spin quantum Hall phases with gH =
2k where k ∈ Z. Although the instanton correction to the
renormalization of longitudinal spin conductivity is of antilo-
calization character at ϑ = π , its magnitude is not sufficient
to compensate the perturbative localization corrections. This
situation is not surprising since, as we have already mentioned
above, RG Eqs. (106) are applicable at weak coupling, g � 1.
Based on numerical [77] and analytical [78] studies of the
critical spin conductance at the spin quantum Hall effect we
know that there exists an unstable fixed point at ϑ = π and
g = √

3/2. This fixed point describes the transition between
different topological phases in class C (see Fig. 3).

VII. DISCUSSIONS AND CONCLUSIONS

Before closing the paper, we will discuss some important
aspects of the obtained results.

A. Instanton solution for unrotated Q matrix

Although instanton configuration has been discussed for
the Q matrix, it is interesting to see how it looks like before the
rotation. Performing the inverse transformation, cf. Eq. (5), we
obtain the instanton solution Qinst in the following form (we
set Nr = 1 and r0 = 0)

Qinst =
⎛
⎝ r2s0−λ2s1

r2+λ2
rλeiθ (is2−s3 )

r2+λ2

− rλe−iθ (is2+s3 )
r2+λ2 − r2s0+λ2s1

r2+λ2

⎞
⎠

RA

. (107)

It is crucial that the solution (107) has nontrivial structure in
the spin space. In other words rotations in the spin and RA
spaces are entangled. The naive construction of the instanton
solution for class C would be to place the class A instanton in
the upper diagonal block of matrix Qinst and constructing the
rest in a way consistent with the BdG symmetry. However,
such a procedure results in the instanton solution with the
topological charge 2. Therefore, the structure (107) is not a
trivial generalization of the class A instanton.

B. Manifestation of Weyl symmetry

The anomalous dimensions γλ, cf. Eq. (96), determine
the flow of the physical observables zλ (corresponding to
the eigenoperators Kλ) with the system size L. At criticality,
the dependence becomes a power law,

zλ ∼ L−xλ , xλ = |λ|x(1) + �λ, (108)

where the scaling exponents xλ are given by magnitudes of
−γλ at the critical point. We note that anomalous dimension
�λ describes the scaling of the pure scaling observables nor-
malized to the proper power of the disorder-averaged LDoS,
zλ/〈ν〉|λ|. Important outcome of our result (96) for the in-
stanton contributions to the anomalous dimensions of the
eigenoperators under the action of RG is that they preserve
the Weyl-group symmetry relations. This symmetry relates the

anomalous dimensions of operators, which can be obtained
from each other by the following symmetry operations acting
on the tuple λ = (λ1, . . . , λs): reflection λ j → −c j − λ j and
permutation of some pair: λ j/i → λi/ j + (ci/ j − c j/i )/2. Since
it is known [33] that the existence of the Weyl symmetry is not
limited to the criticality, the Weyl symmetry of our nonpertur-
bative result (96) provides a strong consistency check.

We note also that the instanton correction, Eq. (96), breaks
the generalized parabolicity [anomalous dimension is not a
linear function of the combination λ(λ + c)]. Thus, instanton
analysis signals breaking of the generalized parabolicity al-
ready in weak coupling regime. This fact is consistent with
numerical data and analytical results from mapping to per-
colation at criticality that demonstrate clear evidence of a
violation of generalized parabolicity for the multifractal ex-
ponents xλ [34–36,40,55,58,59,79].

C. Comparison with the integer quantum Hall effect

The instanton effects in the sqHe discussed in this paper is
a counterpart of the similar nonperturbative effects in the iqHe
which has been studied with the help of the same technique,
NLσM [67]. Below, we will highlight the main distinctions
between these two cases.

First, we note the different target manifolds of NLσM.
In the case of the iqHe, the Q matrices lie in the coset
U(2n)/U(n) × U(n), while, as mentioned above, the target
manifold for class C has the form Sp(2n)/U(n). The latter is a
consequence of the presence of the additional BdG symmetry,
cf. Eq. (2). The difference in the target manifolds affects the
mechanism of symmetry breaking due to the instanton (see
Fig. 1). Due to the presence of an additional constraint on
the diagonal blocks of the Q matrix in class C, the volume
of the zero-mode manifold scales as ∼n at n → 0. Hence the
instanton correction to the partition function turns out to be
linear in the replica number, which guarantees the presence of
a nonzero correction to the average logarithm of the partition
function and to the density of states. In contrast, in class A, the
volume of the zero-mode manifold scales ∼n2 in the replica
limit, n → 0 such that all corrections to the average logarithm
of the partition function and to the average density of states
(both perturbative and nonperturbative) vanish.

The second difference is the structure of the RG equa-
tions (106). The nonperturbative corrections to the β functions
for the spin conductivities, (102) and (105), have a stronger
power-law dependence on g in the pre-exponential factor than
it is in class A [19,67] (g2 versus g3). This suggests that in
a weak coupling regime, g � 1, the rate of change of the
ϑ angle in the class C is larger than that in the class A.
Interestingly, the situation remains similar at criticality. There
the rate of RG flow of the ϑ angle is controlled by inverse of
the localization length exponent ν. As known [49,53,80], the
magnitude of ν for the iqHe is almost two times large than
in the case of the sqHe. Also we mention that the relative
magnitude of the instanton correction with respect to the per-
turbative one is the same for both classes. The g3 prefactor of
the instanton correction in the case of class C is compensated
by the large perturbative contribution, ∼g0 (in contrast with
class A, where it is ∼1/g only).
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D. Future directions

Our results pave the way for a future research in the
sqHe. First, it would be interesting to understand the instanton
corrections in the NLσM approach through the lens of the
percolation mapping.

Second, it is known [2,42,57,81,82] that scaling with the
system size of wave functions at the boundary of a system
undergoing bulk Anderson transition is different from the
corresponding scaling in the bulk. Recently, it was shown to
be true for generalized multifractality exponents [79]. Thus
it would be interesting to understand how to treat instanton
configurations in the presence of a boundary and to compute
instanton corrections to the anomalous dimensions of pure
scaling local operators at the boundary.

Thirdly, as known in the theory of iqHe [22,67], the fluc-
tuations of the topological term at the boundary corresponds
to the edge theory of chiral spinless fermions. It would be
interesting to study the edge theory that follows from the
fluctuations of the topological term at the boundary for the
sqHe. Also, it would be challenging to relate the thus derived
edge theory with microscopic theory of the sqHe.

Fourth, in the context of the iqHe the instanton analysis
has been extended to the Finkel’stein NLσM that takes into
account the electron-electron interaction [22]. Recently, the
generalized multifractality for the sqHe has been extended to
the interacting case [66]. It would be interesting to adapt the
instanton analysis for the class C presented in this paper in
such a way to be able include the electron-electron interaction.

Fifth, as known, by breaking the SU(2) spin-rotational
symmetry, the class C transforms into the class D, which hosts
the thermal quantum Hall effect in two dimensions [83]. The
corresponding NLσM looks similar to the NLσM for class C
and involves the topological θ term. It would be interesting to
develop the instanton analysis for the case of class D, in partic-
ular, since in that class there exists other topological objects,
domain walls, describing jumps of the Q matrix between two
disconnected pieces of the NLσM target manifold [84–87].

Sixth, class A can be obtained from the class C by breaking
SU(2) symmetry down to U(1). It would be interesting to
implement such a symmetry breaking into NLσM and to
study transformation of the instanton solution (107) into the
instanton of class A.

E. Summary

In conclusion, we summarize all results, which are dis-
cussed above. We developed the nonperturbative analysis of
topological Anderson transition in the sqHe. Using NLσM
for the class C we found instanton solution with nontrivial
topological charge equal to ±1, cf. Eqs. (15) and (107). We
identified all collective coordinates (zero modes) of the in-
stanton and integrated over them exactly. We integrated within
Gaussian approximation over fluctuations around the instan-
ton. Thus we derived the instanton correction to the logarithm
of the partition function, cf. Eq. (64). Remarkably, due to the
structure of the NLσM manifold in class C, Sp(2N )/U(N ),
this correction survives in the replica limit (in contrast to the
vanishing correction in class A). In addition, applying the
same methodology, we computed the instanton corrections to
the anomalous dimensions of all pure scaling local operators,

which determine the generalized multifractal spectrum in the
sqHe, cf. Eq. (96). Remarkably, instanton corrections do not
spoil the Weyl-group symmetry relations between anomalous
dimensions of different eigenoperators. We computed also
instanton corrections to the longitudinal and Hall spin conduc-
tivities. Interpreting the derived results as corrections to the
two parameter renormalization group equations, cf. Eq. (106),
we constructed the phase diagram for the sqHe. Finally, we
listed several new directions, which our work opens.
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APPENDIX A: EVALUATION OF LDoS AND THE SPIN
CONDUCTIVITY IN PAULI-VILLARS REGULARIZATION

In this Appendix we present the calculation of LDoS and
the spin conductivity in the trivial topological sector with the
help of the Pauli-Villars regularization scheme for class C. We
benefit from similar calculations for class A [22,67]. We find

νpert (M) = ν

K1(�)

∫
DQ Tr�Q e−S[Q]

= ν − ν

4n

∫
DW TrW 2e−S0[W ]

= ν − ν

2n
〈wαβw∗αβ〉0

= ν

(
1 − 2(1 + n)

g
G0(ηθ ; ηθ )

)
. (A1)

We can rewrite the Green’s function in coinciding points in
terms of new function:

G0(ηθ ; ηθ ) = 1

4π
Y (0), Y (s) =

∞∑
J=Js

2J + (1 − s)2

E (s)
J

, (A2)

where Js = 2 − (s − 2)(s − 1)/2. Next we introduce the
function

Y (�)(p) =
�∑

J=p

2J

J2 − p2
. (A3)

165431-13



M. V. PARFENOV AND I. S. BURMISTROV PHYSICAL REVIEW B 110, 165431 (2024)

Similar to (49), the regularized function Y (�)
reg (p) is given as

follows:

Y (�)
reg (p) =

K∑
f =1

e f

�∑
J=p

2J

J2 − p2 + M2
f

+
�∑

J=p+1

2J

J2 − p2
.

(A4)
We note that

Y (s)
reg = lim

�→∞
Y (�)

reg

(
1 + s

2

)
. (A5)

As in the main text, we assume existence of the cutoff � �
M f . Applying the Euler-Maclaurin formula,

�∑
J=p+1

g(J ) =
∫ �

p+1
g(x)dx + g(�) + g(p + 1)

2
+ g′(x)

12

∣∣∣∣�
p+1

,

(A6)

and after some straightforward calculations we obtain

lim
�→∞

Y (�)
reg (p) = 2 lnM + γ − ψ (1 + 2p), (A7)

where ψ (z) stands for the digamma function. Therefore, the
regularized expressions for Y (s) are given as

Y (0)
reg = 2 lnM + 2γ − 1, Y (1)

reg = 2 lnM + 2γ − 3
2 . (A8)

Using the above results, we find the perturbative correction to
the disorder-averaged LDoS:

νpert (M) ≈ ν

(
1 + γ

(0)
1

g
lnMeγ−1/2

)
. (A9)

Next, we consider the one-loop renormalization of the spin
conductivity in the Pauli-Villars regularization scheme. We
start from considering the diamagnetic part of Eq. (97). Us-
ing exponential parametrization for fluctuations, Eq. (18), we
write

δgdm = g

8
(V1,1 + V2)〈Tr W 2(2 + Tr 1)〉S0 . (A10)

As one can see this expression is analogous to the expression
obtained for the LDoS, cf. Eq. (A9). Therefore we obtain
immediately,

δgdm = − (1 + n)

π
lnMeγ−1/2. (A11)

At the next step, we take into account the current-current
part ( j- j) of the correlation function for the spin conductivity.
There are only three non-zero contributions, which can be
written as

〈Tr ∇μW (x)∇μ′W (x′)〉,
− 2〈Tr[∇μW (x)W (x′)[∇μ′W (x′)]W (x′)]〉,

2
3 〈Tr(∇μW (x)∇μ′W 3(x′))〉. (A12)

All of these expressions can be obtained from expansion of
the following term:∫

dx Tr [E∇Q(x)] =
∫

∂�

ds n ∇· Tr [EQ(x)],

E =
∫

dx′Q(x′)∇Q(x′)�. (A13)

Using the fact that the Q matrix at the boundary is the
constant, Q(x)|∂� = Qb = const., to be consistent with the
quantization of the topological charge, we obtain∫

∂�

ds n ∇· Tr (EQb) = 0, ÷ Tr (EQb) = 0. (A14)

Therefore, there are no full-derivative contributions to the
longitudinal spin conductivity in Pauli-Villars regularization.
Finally, we obtain that only one relevant one-loop correction
to longitudinal spin conductivity g comes from diamagnetic
part, cf. Eq. (A11). It reads

g(M) = g − (1 + n)

π
lnMeγ−1/2. (A15)

APPENDIX B: RENORMALIZATION OF RG
EIGENOPERATORS WITH THREE Q MATRICES

In this Appendix we confirm the fulfillment of Eq. (94)
for the eigenoperators with three Q matrices. Following [66],
we define RG eigenoperators in terms of correlation functions
Pα1α2α3;p1 p2 p3

λ :

Kλ[Q] = 1

64

∑
p j=R/A

(σ3)p1 p1 (σ3)p2 p2 (σ3)p3 p3P
α1α2α3;p1 p2 p3
λ ,

(B1)

where |λ| = 3 and Pα1α2α3;p1 p2 p3
λ can be written in terms of the

Q matrices as follows:

Pαβμ;p1 p2 p3
λ = tr Qαα

p1 p1
tr Qββ

p2 p2
tr Qμμ

p3 p3

+ μ
(λ)
2,1 tr Qαα

p1 p1
tr Qβμ

p2 p3
Qμβ

p3 p2

+ μ
(λ)
3 tr Qαβ

p1 p2
Qβμ

p2 p3
Qμα

p3 p1
. (B2)

Here α, β, μ denote fixed different replica indices. In order to
Kλ[Q] be the RG eigenoperator, the constants μ

(λ)
2,1 and μ

(λ)
3

should take only some specific values:

λ = (3) : μ
(3)
2,1 = −3, μ

(3)
3 = 2,

λ = (2,1) : μ
(2,1)
2,1 = 1, μ

(2,1)
3 = −2,

λ = (1,1,1) : μ
(1,1,1)
2,1 = 6, μ

(1,1,1)
3 = 8. (B3)

Our aim is to compute nonperturbative renormalization of
Kλ[Q]. It can be performed with the help of the saddle-point
approximation (66). Using the parametrization of Q in terms
of a deviation from the trivial saddle point � (71) and taking
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into account fluctuations in the action only, we obtain

〈Kλ〉±1 =
〈
−μ

(λ)
2,1|ρ12|2

2n(n + 1)
+3ρ11

n
−2μ

(λ)
2,1+3μ

(λ)
3 |ρ12|2ρ11

8(n + 2)

+ ρ2
11

(
μ

(λ)
2,1 + 6

)
2n(n + 1)

+ ρ3
11

(
2μ

(λ)
2,1 + μ

(λ)
3 + 4

)
4n(n + 1)(n + 2)

〉
±1

.

(B4)

We note that we averaged over T rotations in Eq. (B4). Techni-
cally, it can be performed with the help of the generalization
of the expression (75) to the case with six unitary matrices,
which can be found, for example, in Ref. [75]. In Eq. (B4) we
use some specific notation for the functions averaged over the
instanton manifold

〈 f 〉±1 = Gn

∫
dλ

λ3
(πg)n+1e−πg(M)+iϑ

∫
dr0 f (r0). (B5)

Next step is to omit contributions, which are finite in the
ultraviolet. Surprisingly, it leads to Eq. (91), where we should
replace only expressions for the one-loop coefficients γ

(0)
λ :

γ
(0)
(3) (g) = −3n

π
, γ

(0)
(2,1)(g) = −4 + 3n

π
, (B6)

γ
(0)
(1,1,1)(g) = −9 + 3n

π
. (B7)

Repeating the spatial-varying mass procedure we obtain
instanton correction to the anomalous dimensions of the
eigenoperators Kλ with |λ| = 3 in the form of Eq. (94).

APPENDIX C: DERIVATION OF KUBO FORMULA
FOR THE SPIN CONDUCTIVITY

Our aim is to derive Kubo-type formulas for spin conduc-
tivities, cf. Eqs. (97) and (98). It can be done in several ways.
Here we present derivation based on Matsubara-Kubo for-
mula, which was obtained in Ref. [66] First, we introduce the
generalization of NLσM to the case of Matsubara frequency
space (Finkel’stein NLσM). The field Q̂ becomes a traceless
Hermitian matrix, defined on Nr×Nr replica, 2Nm×2Nm Mat-
subara and 2×2 spin spaces. It satisfies the same nonlinear
constraint, Q̂2 = 1, and BdG symmetry relation:

Q̂ = −Q̂, Q̂ = s2L̂0Q̂T L̂0s2,

(L̂0)αβ
nm = δεn,−εmδαβs0. (C1)

Here we define fermionic Matsubara frequencies in a standard
way: εn = πT (2n + 1). Therefore, the trivial saddle point of
NLσM, taking into account Matsubara frequency space, has
the following form [66]:

�̂αβ
nm = sgn εnδnmδαβs0. (C2)

In such extended representation, Kubo formula for lon-
gitudinal spin conductivity can be written in terms of two
operators:

σs(iωk ) = − g

8kL2

∫
x

〈
Tr

[
Iα
k s3, Q̂

][
Iα
−ks3, Q̂

]〉 + g2

32kL2

∫
x′

∫
x

〈〈
Tr Iα

k s3Q̂(x)∇Q̂(x) Tr Iα
−ks3Q̂

(
x′)∇Q̂

(
x′)〉〉, (C3)

where (Iγ

k )αβ
nm = δn−m,kδ

αβδαγ s0. Next step is to average these two operators over unitary rotations of Q̂, which commute with
�̂. It can be performed with the help of the expressions similar to Eq. (75), where we should replace all indices on vector index
a → {ar, aS, aM} in replica, spin, and Matsubara spaces. The averaged longitudinal spin conductivity operator consists of three
different averages only: 〈Tr Iα

k s3U−1AU〉U = 0,

〈
Tr Iα

k s3U−1AU Iα
−ks3U−1BU

〉
U = V1,1[(Nm − k)(Tr A Tr B + Tr �̂A Tr �̂B + Tr[AB̄ − �̂A�̂B̄])

+ 2k(Tr �̂−A Tr �̂+B + Tr �̂−A�̂−B̄)] + V2[2(Nm − k) Tr �̂A�̂B

+ 2k(Tr �̂−A Tr �̂+B + Tr �̂−A�̂−B̄)], (C4)

and 〈
Tr Iα

k s3U−1AU Tr Iα
−ks3U−1BU

〉
U = V1,1[(Nm − k) Tr[A(B − B̄) + �̂A�̂(B − B̄)] + 2k Tr �̂−A�̂+(B − B̄)]

+ V2[2(Nm − k) Tr �̂A Tr �̂B + 2k Tr �̂−A�̂+(B − B̄)]. (C5)

where the coefficients Va,b are given as follows:

V1 = 1

n
, V1,1 = 1

n2 − 1
, V2 = − 1

n(n2 − 1)
. (C6)

Here n = 2NrNm and �̂± = (1 ± �̂)/2 denote projectors on the positive and negative Matsubara frequencies. After that,
choosing matrices A and B to be equal to Q̂ in Eq. (C4) and Q̂∇Q̂ in Eq. (C5), we are able to write down the full expressions for
the spin conductivity. For convenience, we divide the derived expression into two parts: diamagnetic (without spatial derivatives)
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and current-current correlation function (with derivatives):

gdm(iωk ) = − g

4k

〈
V1,1

[
(Nm − k)(Tr(�̂Q̂)2 − Tr 1 + (Tr �̂Q̂)2) − k

2
(Tr 1 + Tr(�̂Q̂)2 + (Tr �̂Q̂)2)]

+ V2[2(Nm − k) Tr(�̂Q̂)2 − k

2
(Tr 1 + Tr(�̂Q̂)2 + (Tr �̂Q̂)2)

]
− 4(2Nm − k)

〉
(C7)

and

g j- j (iωk ) = g2

32k

∫
x′
〈V1,1[2(Nm − k)(Tr J (x) · J (x′) + Tr �̂J (x) · �̂J (x′)) + k(Tr J (x) · J (x′) − Tr �̂J (x) · �̂J (x′))]

+ V2[2(Nm − k)(Tr �̂J (x) · Tr �̂J (x′)) + k(Tr J (x) · J (x′) − Tr �̂J (x) · �̂J (x′))]〉, (C8)

respectively. Here we introduce the matrix current J (x) =
Q̂(x)∇Q̂(x). After performing the averaging, we reduce the
Matsubara frequency space to a single frequency and, thus,
set Nm = 1. Our consideration restricts only RA space, there-
fore, we can set k = 1, in other words we consider processes,
which change energy only at the first bosonic Matsubara fre-
quency. A strong consistency check of this reasoning is that
the entire part of Eqs. (C7) and (C8) proportional to Nm − k
vanishes during the background field renormalization proce-
dure. Therefore, for Nm = k = 1, Eqs. (C7) and (C8) reduce
to Eq. (97) after some straightforward algebra.

Kubo formula for the transverse spin conductivity has the
form:

σ t
s (iωk ) = g2

32kL2

∫
x′

∫
x

〈〈
εμν Tr Iα

k s3Q(x)∇μQ(x)

× Tr Iα
−ks3Q(x′)∇νQ(x′)

〉〉
. (C9)

In order to average the above expression, it is enough to
use Eq. (C5) only. After that we set Nm = k = 1 and obtain
Eq. (98).

APPENDIX D: ONE-LOOP CORRECTIONS TO LDoS
ON THE INSTANTON BACKGROUND

In this Appendix we justify the appearance of the renor-
malized observables in preexponential factors for instanton
corrections to the RG eigenoperators. We consider into ac-
count quantum fluctuations near instanton saddle point in the

preexponential factor. Using Eq. (66), we write the following
expression for the renormalized LDoS:

ν ′(M) = ν

2n
〈Tr �Q〉0

(
1 − Zinst + Z∗

inst

Z0

)

+ ν

2n
〈Tr �Q〉+1 + ν

2n
〈Tr �Q〉−1. (D1)

The first term in the right-hand side of the above equa-
tion was calculated previously (see Appendix A). Here we
focus on calculation of the last two terms. Using exponential
parametrization for Q, we find

〈Tr �Q〉+1 = 〈Tr �Q〉+1 ≈ 〈Tr R̃�R̃−1�〉+1

+ 1
2 〈Tr R̃�R̃−1�W 2〉+1. (D2)

We start from the term without fluctuation matrix field W :

〈Tr R̃�R̃−1�〉+1 = 2n
Zinst

Z0
− n(n + 1)Gn

×
∫

dλ

λ
(πg)n+1e−πg(M)+iθ

∫
dr0

μ(r0)

λ
.

(D3)

We note that the first term, proportional to Zinst can be rewrit-
ten as 〈Tr ��〉0Zinst/Z0 and it cancels out with the second
term in brackets in Eq. (D1). The second contribution in
Eq. (D2), which depends on quantum fluctuations, can be
calculated as follows:

1

2
〈Tr R̃�R̃−1�W 2〉+1 = −

(〈(|e1|2 − e2
0

)
w11w∗11〉

+1 +
n∑

α=2

〈(|e1|2 − e2
0 + 1

)
w1αw∗1α

〉
+1

+
n∑

α=2

〈wααw∗αα〉+1 + 2
∑

1<α<β�n

〈
wαβw∗αβ

〉
+1

⎞
⎠. (D4)

The above averages can be rewritten in terms of the Green’s functions at coinciding points:

1

2
〈Tr R̃�R̃−1�W 2〉+1 = −

(〈(|e1|2 − e2
0

)
G2

〉
+1 + n − 1

2

〈(|e1|2 − e2
0 + 1

)
G1

〉
+1 + (n − 1)〈G0〉+1 + (n − 1)(n − 2)

2
〈G0〉+1

)
.

(D5)
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We should subtract from this equation the contribution of the trivial topological sector 1
2 〈Tr ��W 2〉0Zinst/Z0 [the second term

in brackets in Eq. (D1)], after that we obtain:

−
(〈(|e1|2 − e2

0

)
G2

〉
+1 − Zinst

Z0
G0 + n − 1

2

〈(|e1|2 − e2
0 + 1

)
G1

〉
+1 − (n − 1)

Zinst

Z0
G0

)
. (D6)

Using the Pauli-Villars regularization scheme and representation of regularized Green’s functions in terms of Y function, cf.
Eq. (A5), we obtain with logarithmic accuracy, i.e., with neglect of all terms without large Pauli-Villars mass M:

(δν ′(M))+1 = (1 + n)2 lnM
2πg

Gn

∫
dλ

λ
(πg)n+1e−πg(M)+iϑ

∫
dr0

μ(r0)

λ
. (D7)

Taking into account a similar contribution with the negative topological charge, we obtain expression (78) for renormalized
LDoS.

APPENDIX E: CURING THE ULTRAVIOLET
DIVERGENCES BY MEANS OF THE SPATIAL

VARYING MASS METHOD

In this Appendix, we discuss the transformation of Eq. (77)
into Eq. (78). In order to cure the ultraviolet divergences, we
employ the scheme of spatially varying mass adapted from
Ref. [67]. First, we transfer from the curved space in which
the quantum correction to the LDoS is controlled by the Pauli-
Villars mass M to the flat space in which a relevant length
scale, which limits the quantum fluctuations is 1/μ(r0),

ν(M) → ν(M)

(
1 −

γ
(0)
(1)

g
ln[μ(r0)�M]

)

= ν

(
1 +

γ
(0)
(1)

g
ln

eγ−1/2

μ(r0)�

)
≡ ν[1/μ(r0)]. (E1)

This expression we substitute into integral over instanton posi-
tion r0 in Eq. (78). Next we convert the perturbative correction
with spatially dependent mass into the perturbative correction
at the length scale ζλ where ζ = e/2,

ν(ζλ) = 1

4π

∫
dr0 μ2(r0)ν[μ(r0)]

= ν0

(
1 +

γ
(0)
(1)

g
ln λμ0ζeγ−1/2

)
, ζ = e

2
. (E2)

The above expression suggests the following correspondence
between Pauli-Villars mass and the instanton size λ:

M → ζλμ0. (E3)

Next we rewrite Eq. (78) in a more transparent form

δνinst = Gn

∫
dλ

λ
(πg)n+1e−πg(ζλ)A(1) cos ϑ. (E4)

Here we introduce the amplitude Aλ

Aλ = πγ
(0)
λ

∫ L

0
dr0

μ(r0)

λ
zλ[1/μ(r0)] = −2π2γ

(0)
λ zλ[1/μ(0)]

×
∫ μ(L)

μ(0)
d[ln μ(r0)]

zλ[1/μ(r0)]

zλ[1/μ(0)]
, (E5)

where the integral over r0 runs until the system size L.
We assume that Aλ corresponds to the operator with nega-
tive anomalous dimension, γλ < 0. In particular, this is the
case of LDoS. Using definition of the anomalous dimension
γλ, we can rewrite the integrand as follows:

zλ[μ(r0)]

zλ[μ(0)]
= exp

(
−

∫ ln μ(r0 )

ln μ(0)
d[ln μ]γλ

)
. (E6)

We note that the condition γλ < 0 guarantees the convergence
of integral over μ(r0) as μ(L) → 0.

Now it is convenient to change integral variable from ln μ

to g with the help of perturbative RG equation for g, see
Eq. (102). Then we obtain Aλ = zλ[1/μ(0)]Hλ{g[1/μ(0)]},
where we introduce the function

Hλ=−2π2γ
(0)
λ

∫ g[1/μ(L)]

g[1/μ(0)]

dg

βg(g)
exp

(
−
∫ g[1/μ(r0 )]

g[1/μ(0)]

dg′ γλ(g′)
βg(g′)

)
.

(E7)

Using the one-loop results for γλ and βg and integrating over
g′ and g, we obtain the expression (93). The result in the case
of positive anomalous dimensions γλ can be obtained with
the help of a kind of analytic continuation (see Ref. [67] for
details).
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