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We investigate the elastic behavior of two-dimensional crystalline membrane embedded into real space
taking into account the presence an arbitrary number of flexural phonon modes dc (the number of out-of-plane
deformation field components). The bending rigidity exponent η is extracted by numerical simulation via Fourier
Monte Carlo technique of the system behavior in the universal regime. This universal quantity governs the
correlation function of out-of-plane deformations at long wavelengths and defines the behavior of renormalized
bending rigidity at small momentum κ ∼ 1/qη. The resulting numerical estimates of the exponent for various dc

are compared with the numbers obtained from the approximate analytical techniques.
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Membranes are two-dimensional (2D) surfaces that, de-
pending on external conditions, can be found in different
states on the phase diagram. The discovery of graphene [1–3]
and other atomically thick materials [4] led to renewed inter-
est to 2D crystalline membranes and the emergence of new
field of flexible 2D materials [5]. In the case of crystalline
membranes, when analyzing their behavior, the presence of
nonzero resistance to shear cannot be neglected, which leads
to the appearance of effective long-range interaction between
out-of-plane deformations. Such an effective interaction, in
fact, mediated by the coupling between in-plane and out-
of-plane (flexural) deformations, is stiffening the membrane,
renormalizing the bending rigidity, and allowing the sta-
bilization of the flat low-temperature phase, within which
long-wave fluctuations define a new class of universality [6].
A 2D crystalline membrane in this low-temperature flat phase
demonstrates peculiar elastic properties dubbed as anomalous
elasticity. These unusual elastic effects include crumpling
transition controlled by temperature and disorder, power-law
scaling of elastic modules with the system size, and conse-
quently, the nonlinear Hooke’s law, negative Poisson ratios,
negative thermal expansion coefficient, etc. [6–21]. Currently,
there has been significant progress in our theoretical under-
standing of the anomalous elasticity of crystalline membranes
[22–44].

The key property of the low-temperature flat phase is the
power-law dependence of the renormalized bending rigidity
characterized by the value of the so-called bending rigid-
ity exponent, η. The latter determines the behavior of the
correlation function of out-of-plane deformations (OPD) at
small momenta. Due to symmetry constraints [10,12], the
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remaining exponents can be related with η using simple scal-
ing relations. For this reason, the accurate calculation of the
magnitude of η and verification of the consistency of results
obtained by different approaches is an extremely important
issue.

Unfortunately, an exact analytical treatment of the bend-
ing rigidity exponent is not possible. For this reason various
approximate analytical methods for its calculation have been
proposed [6–9,12,14,42,45]. The earliest perturbative calcu-
lations gave a naive result: η = 1 [7]. The recent four-loop
ε-expansion analysis gives the following values of η: 0.8872
[42] and 0.8670 [46], within the three- and four-loop ap-
proximation, respectively. These estimates can be improved
by applying various resummation techniques for asymptotic
series. In particular, the simplest Padé approximation already
gives a value of 0.806 [46]. Apart from that, the calculations
were also carried out within the nonperturbative renormaliza-
tion group. For example, in Ref. [45], the authors extracted
the following estimate: η = 0.849.

An alternative is the lattice numerical calculations based
on the Monte Carlo method. There are various techniques
[47–52]. One can work in both real and momentum spaces.
The authors believe that one of the most effective methods
is the Fourier Monte Carlo (FMC) approach. This tech-
nique was presented in Ref. [51] for the compressible spin
models and proved to be effective in other physical prob-
lems [53,54]. The interested reader can refer to the work
[55], which gives a detailed description of the formalism.
The great advantage of this method is that the acceptance
rates during the simulations can be adjusted for each wave
vector separately. This allows one to reduce the impact
of critical slowing down (in contrast with the real space
approach1), thereby increasing the accuracy of the final

1See discussion of results in Ref. [51].
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TABLE I. Numerical estimates of bending rigidity exponents
η obtained by means of different theoretical approaches and nu-
merical calculations. In the table the following notations are used:
MC: Monte Carlo simulation; MC IP and MC OP stand for
Monte Carlo simulations with monitoring mean squared fluctua-
tions of in-plane and out-of-plane phonons, respectively; SCSA:
self-consistent screening approximation; ExSCSA: extended self-
consistent screening-approximation; Sp. cor.: space correlator;
NPRG: nonperturbative renormalization-group approach; Mol. dyn.:
molecular dynamics; FMC: Monte Carlo simulations in Fourier
space; ε exp.: 3l: three-loop ε-expansion calculation; ε exp.: 4l:
four-loop ε-expansion calculation; [2/2] Padé: result obtained by
means of resummation of four-loop ε series by means of [2/2] Padé
approximant.

Method Ref. η Method Ref. η

MC [47] 0.60(10) NPRG [45] 0.849
MC OP [48] 0.72(4) Mol. dyn. [49] 0.85
MC IP [48] 0.750(5) SCSA [14] 0.821
Sp. cor. [56] 0.78(02) ε exp.: 3l [42] 0.8872
Sp. cor. [57] 0.62 ε exp.: 4l [46] 0.8670
FMC [52] 0.795(10) [2/2] Padé [46] 0.806
ExSCSA [58] 0.78922(5)

numerical estimates. In Refs. [51,52], the authors have pre-
viously analyzed the critical behavior of membranes for the
single-component case within this technique and extracted the
following value for η: 0.795(10). In this paper, we address
the FMC approach to obtain the results for the multicompo-
nent case. In Table I, we summarize numerical values of η

obtained for a single-component flexural phonon by various
approaches.

If we assume further that the out-of-plane deformation field
can be multicomponent (arbitrary number of flexural phonon
modes), then the quantity 1/dc can be used as expansion
parameter when constructing a perturbation theory. In particu-
lar, the 1/dc expansion within first-order approximation gives
the following series for the exponent: η = 2/dc + O(1/d2

c )
[9,10]. It is clear that one should not expect any proper nu-
merical estimates for such a short series when dc ≈ 1. Another
widespread calculation technique is self-consistent screening
approximation (SCSA), which instead sums up a certain sub-
set of perturbation theory diagrams; in pioneering work in this
direction, a value of 0.821 for dc = 1 was extracted [14]. The
general formula within this approximation reads as follows
[14]

η = 4

dc + √
16 − 2dc + d2

c

. (1)

This nonanalytical expression is still approximate, and the
issue of 1/dc corrections to it is important. Quite recently, the
authors in Ref. [34] managed to extend the results obtained
previously in Ref. [9], by calculating the next order of pertur-
bation theory. They found the following truncated series:

η = 2

dc
+ 73 − 68ζ (3)

27

1

d2
c

+ O
(

1

d3
c

)
. (2)

In the case of a one-component field, such an expansion
gives poor estimates that do not in any way compare with

the results of lattice calculations. Paradoxically, the formally
incorrect SCSA gives a much closer value of η that differs by
no more than 10% from the results of the MC simulations.

In this Letter we explore the behavior of Green’s function
of out-of-plane deformations at long wavelengths with respect
to a given reference plane governed by the bending rigidity
exponent η. Using the Fourier Monte Carlo technique, we
present the results of a generalization of this method to the
case when the number of flexural phonons differs from unity
(dc > 1). These estimates make it possible to check the con-
vergence of the approximate analytical results that were found
previously within the 1/dc-expansion method, as well as the
SCSA approximation itself.

Model. We consider a continuous elastic model of a
two-dimensional crystalline membrane with D6h or D3h

point group embedded in (2 + dc)-dimensional space. Us-
ing the Monge representation, the out-of-plane deformations
(heights) with respect to a given two-dimensional reference
plane with coordinates x = (x1, x2) can be parameterized
by the vector function hx, where dc-component structure of
height function corresponds to the presence of multiple flexu-
ral (out-of-plane) phonon modes. The main physical meaning
is contained in the case dc = 1. As was said above, by al-
lowing the height function to be a vector, we test the results
of alternative perturbative approaches whose numerical es-
timates of observables have to be asymptotically correct in
dc → ∞ limit.

Having integrated the in-plane deformations, in the ab-
sence of external stress, the effective energy functional of this
model depending only on out-of-plane deformations can be
written as follows [7,15,18,19]:

Feff[h] = κ0

2

∫
dx(�h)2 + Y0

2

∫
dx[P⊥

i j Ki j]
2, (3)

where Y0 = 4μ0(μ0+λ0)/(2μ0+λ0) is the bare magnitude of
the Young modulus of 2D crystal and κ0 is the bare bending
rigidity. Here λ0 and μ0 are the bare Lamé constants. Also
we introduced transverse projector P⊥

i j = δi j − ∂i∂ j/�, and
auxiliary quadratic quantity Ki j = ∂ih∂ jh/2. From a field-
theoretical point of view, we have an action with an unusual
quadratic part that no longer depends on the square, but on
the fourth power of momentum, as well as a nonlocal quartic
term that describes the effective long-range interaction of
out-of-plane deformations induced by their in-plane coun-
terparts. This nonlocality makes the MC simulations within
real space rather complicated. To overcome this difficulties,
one can rewrite the effective energy functional (or action) in
momentum space. For this purpose, the continuous Fourier
amplitudes of height function hx can be introduced via the
following relation:

hx =
∫

	

dq
(2π )2

hqeiqx, (4)

where the integration space 	 is restricted by |q| < � =
π/a and |q| > 2π/L. The first constraint corresponds to the
condition up to which the continuum model approximation
remains valid, or this can be called ultraviolet cutoff (the
length a � √

κ0/Y0 is of the order of the lattice spacing). In
turn, cutting from below can be interpreted as infrared cutoff,
where L stands for the size of the membrane. In terms of
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Fourier amplitudes the energy functional can be rewritten now
in the following form:

F̃eff[h] = F̃ (2)
eff [h] + F̃ (4)

eff [h], (5)

where the bending energy is

F̃ (2)
eff [h] = κ0

2

∫
dp

(2π )2
p4(hph−p), (6)

while the second term corresponds to anharmonic nonlocal
part and reads

F̃ (4)
eff [h] = Y0

8

∫
dk

(2π )2

dk′

(2π )2

∫
dq

(2π )2
[k × q̂]2[k′ × q̂]2

× (hkh−k−q)(hk′h−k′+q), (7)

here q̂ = q/|q| is normalized momentum vector.
All the necessary information about the elastic properties

of the membrane is contained in the Green’s function, which
is determined by the following relation:

〈(hk )i(h−k ) j〉 = Ĝi j (q) = δi j Ĝ(q). (8)

In the case when there is no shear resistance (liquid mem-
branes), i.e., the shear modulus μ vanishes, and, as a
consequence, the Young’s modulus is also zeroed, the remain-
ing harmonic part of the action (5) leads to the following
behavior of Green’s function:

Ĝ0(q) = T

κ0q4
. (9)

However, such an approximation is absolutely not suitable for
the case of crystalline membranes, whose elastic properties
are strongly modified the presence of effective long-range
interaction between out-of-plane deformations, which is ex-
pressed in the second term of the action (5). Indeed, without
the second term, the flat phase cannot be stable, which is
clearly seen from the expression for the stretching factor (see
Ref. [25] for a review)

ξ 2 = 1 − 〈Kj j〉 = 1 − dc

2

∫
dq

(2π )2
q2Ĝ0(q)

= 1 − dcT

4πκ0
ln

L

2a
, (10)

zeroing of which indicates the transition to the crumpled
phase. Physically, the appearing of long-range interaction
can be interpreted as stiffening of the membrane at large
scales. On the other hand, following the renormalization
group terminology, the presence of the second term (7) leads
to a renormalization of the bare bending rigidity κ0 and
Young’s modulus, which become momentum dependent [6,9]:
κ ∼ q−η and Y0 ∼ q2−2η, where η is bending rigidity ex-
ponent. This in turn changes the behavior of the Green’s
function, Ĝ(q) ∼ |q|η−4 and also changes the equation of state
ξ 2 − 1 ∼ dcT/κ0η, thus stabilizing the flat phase at low tem-
peratures. Thus, the numerical value of quantity η is key in the
theory.

Having obtained the basic understanding of the model,
below we present a discrete analog of the action (5), which
is used in specific calculations, as well as some technical
aspects of the formalism used earlier in Ref. [52] for dc = 1
and generalized in our work.

Technical details. We consider a two-dimensional square
lattice � of linear dimension aN × aN with periodic bound-
ary conditions, where a is lattice constant and N is integer
characterizing the number of lattice periods of the sample.
In order to employ the Fourier transform we define vector
product by its value in the first Brillouin zone and continue
it from there by periodicity. We introduce correspondence
between the representations of a microstate of the system by
the set of real field values hx and one given by the collection
of Fourier amplitudes h̃q with the same physical dimension
(hq = a2h̃q) as the discretized field hx:

hx = 1

N2

∑
q∈�̃q

h̃qeiqx, h̃q =
∑
x∈�

hxe−iqx. (11)

These asymmetric conventions allow for easy translation of
continuum formulas. For the simulation, the expression (5)
is rewritten in the following discrete dimensionless form
[52,59]:

F̃eff,d[h̃] =
∑
m =0

{
1

2
�2

s,m|h̃m|2 + 2π

3

p2
8

N2
|Sm|2

}
, (12)

with summation over m = {m1, m2}, where m1,2 = 1, . . . , N ,
and Laplacian operator defined as:

�s(m) = 4
[
sin2

(πm1

N

)
+ sin2

(πm2

N

)]2
. (13)

Here and further, we replace all momenta qi = 2πmi/N by the
sin-based functions, which are connected with representation
of derivatives via Fourier transforms of nearest-neighbor finite
difference operators (see p. 7 in Ref. [52]). In the same way,
the function Sm is introduced

Sm =
∑
n =0

p(n, m)h̃nh̃n+m, (14)

where the summation is performed over n = {n1, n2}, n1,2 =
1, . . . , N , using the auxiliary function p(n, m), which re-
places the square of cross product [k × q̂]2 and reads

p(n, m) =
[
sin

( 2πn1
N

)
cos

( 2πm2
N

) − cos
( 2πn2

N

)
sin

( 2πm1
N

)]2

4
[
sin2

(
πm1

N

) + sin2
(

πm2
N

)] .

(15)

The quantity p8 contains information about interaction
strength measured in dimensionless units. Such a constant

can be roughly estimated as p8 = a
√

3dcY0kBT/16πκ
2
0 =

aq∗/
√

2, where we introduced a Ginzburg wave vector q∗,
which serves as a boundary point, passing through which a
crossover occurs from mean-field behavior (where phonon
interaction can be neglected) to the critical one with a nonzero
exponent η. In particular, for graphene the relevant parameters
are as follows: lattice constant a = 2.46 Å, Y0 � 22 eV Å−2

and κ0 � 1.1 eV. For T = 300 K it gives p8 = 0.41.
Everything starts with an initial distribution for the height

field h̃k, which is chosen in the same way for all compo-
nents. Usually, the following dependency is taken as the initial
one: hi,k ∼ 1/k2, for i = 1, . . . , dc. After initialization, the
first Monte Carlo step is calculated, which can be divided
into two stages: calculating the lattice energy functional, or
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rather its change �F , and applying the Metropolis-Hastings
(MH) algorithm for the energy functional under shift. The
Fourier Monte Carlo (FMC) moves correspond to the follow-
ing change:

h̃q �→ h̃q + a(q0, dc)zδq,q0 + a(−q0, dc)0z̄δq,−q0
, (16)

where z is a random complex vector, which for each random
component has a bounded modulus, a(q, dc) is a phase explo-
ration q-dependent step, and the wave vector q0 ∈ �̃ chosen
at random. For each specific dc, we choose a real-valued
a(q0, dc) by hands so that acceptance rate varies between
30–60 %. Let us provide additional comment here. As the
number of components dc increases, in the case of uniform
and dc-independent choice for function a = a0 the acceptance
rate rapidly drops to zero, which is a manifestation of the
phenomenon of critical slowing down. It is easy to understand
when looking at the individual acceptance rates for moves of
type (16) for different wave vectors q0. One can see that this
behavior is a result of the fact that with a uniform choice of the
shift, the acceptance coefficients for small q0 vectors are close
to 100%, whereas for large momenta, which, however, make
up the vast majority of q vectors, they can fall well below
30%. For this reason, it is necessary to choose different values
of a(q, dc) for different q0, which, however, does not violate
the detailed balance, and, in turn, frees the FMC algorithm
from critical slowing down [52]. Despite this, the calculation
of MC steps itself becomes more difficult as the number of
components of the height vector increases, which, combined
with a decrease in the numerical value of the critical expo-
nent as dc grows, leads to an increase in the relative error of
calculating η.

Thus, having completed the MC step (16), we determine
the magnitude of the energy change and compare −�F with
the logarithm of a uniformly distributed random number R ∈
[0, 1]. If the condition of the Metropolis-Hastings algorithm
works for the resulting change (−�F > ln R), then the energy
functional changes to a new one, and the configuration of the
height field h̃q0 shifts by a(q0, dc)z, and h̃−q0 is shifted by
a(−q0, dc)z.

After thermalization and performing a certain number of
Monte Carlo steps, we find the average value for the Green’s
function for each component of the height vector:

Gi(q) = 〈|hi,q|2〉MC ∼ 1

q4−ηi
, (17)

where each i maps the component (i = 1, 2, . . . , dc). Putting
points from all ln[1/Gi(q)] on same figure, we should fit the
data by the following expression c + (4 − η) ln(q).

Numerical experiments were carried out for different lat-
tice sizes N = 200, 220, . . ., 360 and for different number
of components dc = 1, 3, 5, 7, 9. For completeness, as ex-
ample, we present the behavior of the Green’s function on
a double logarithmic scale in the Fig. 1 in case dc = 5. For
convenience, we plot a linear fit, on the basis of which the
values of the critical exponent η are extracted. Also, we would
like to add a few more words regarding the scaling area that
we used to find the fit. When analyzing the behavior of the
ratio of the inverse Green’s function and the found fit, we
observe that for the very first q modes this ratio demonstrate
divergence with increasing system size. This phenomenon

FIG. 1. The log-log plot of inverse Green’s function
Ĝi(2πm/N )−1 for different lattice sizes N = 200, 220, . . . , 360
with dc = 5. Multicolored markers of different shapes obtained
from the FMC simulations refer to different lattice sizes N . The
points from all ith components are plotted on the figure at once. The
plot also shows three analytical functions on a log-log scale: two
of them correspond to the initial distribution of the height vector h̃
(red and blue dashed lines), and the last one represents linear fit in
the area close to zero (green dashed line), the slope of which is the
calculated η.

was already observed earlier in the works [51] and [60].
Unfortunately, this is not a feature of the case dc = 1, we
observe the same problem for larger dc values. Therefore, to
search for a fit, we excluded the very first modes. This step
significantly increased the accuracy of the numerical estimates
for higher values of dc. Another comment is related to the size
of the scaling region, which, as predicted theoretically by the
expression for the Ginzburg vector q∗, demonstrated a root
dependence on the number of the height field component. By
taking this step, despite the significant increase in fit accuracy,
to increase the reliability of our results, we take the error value
multiplied by factor of 3, since the unsuccessful choice of the
first and last modes for the fit plateau can change the value of
η by few hundredths.

Results and discussion. Our main result for η is shown in
the form of a trend in the Fig. 2, and through the numbers
presented in a separate Table II. In this figure, for comparison,
we depict the results of the 1/dc expansion in both the first
and second orders of perturbation theory (2); in addition, the
trends obtained based on the SCSA formula (1) and ε expan-
sions within three- and four-loop approximations are plotted.
First, Fig. 2 shows quite an important feature: all the methods
begin to converge to each other as dc increases, at least up
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FIG. 2. Dependencies of η on the number of components of
the height vector obtained within the first order (FO) in 1/dc (blue
dashed [upper] line), and within the second order (SO) in 1/dc (2)
[red dashed (bottom) line], by self-consistent screening approxima-
tion (SCSA) (1) (yellow solid line), by three-loop ε expansion (ε3l)
[purple dash-dotted (top) line], by four-loop ε expansion (ε4l) [green
dash-dotted (bottom) line] and by means of FMC approach with
applied errors (gray vertical lines at points corresponding to odd
natural values dc = 1, 3, 5, 7, 9, linearly connected by a dotted line).

to the observed value dc = 9 (although for three loops in ε

this is not so obvious). Moreover, one can see that SCSA and
1/dc within both orders begin to fully coincide in the vicinity
of dc = 7, but for dc = 9 they begin to diverge slightly and,
as a result, SCSA turns out to be higher than first-order and
second-order approximations in 1/dc. As for the ε expansion,
its convergence is not so fast, but also noticeable. On the other
hand, for small values of dc (dc � 3), we can conclude that
only formally incorrect SCSA technique and ε expansion (in
both orders) pass the strength test, relying on our numerical
calculation, within which for small dc we can guarantee a
small error. It would be interesting to see whether the critical
exponent will continue to pursuit closer to SCSA or whether
there will be a turning point when the result begins to press

TABLE II. The results of FMC simulations for η for different
number of components dc. Let us add values of η for dc = 5, 7, 9
computed via first order within 1/dc (FO), second order within 1/dc

(SO), self-consistent screening approximations (SCSA), three-loop ε

expansion (ε3l) and four-loop ε expansion (ε4l). TW stands for this
work.

Ref. dc = 5 dc = 7 dc = 9

η TW 0.349(37) 0.273(27) 0.222(14)
ηFO [9] 0.4 0.286 0.222
ηSO [34] 0.387 0.279 0.218
ηSCSA [14] 0.379 0.283 0.224
ηε3l [42] 0.560 0.448 0.358
ηε4l [46] 0.456 0.318 0.214

closer to the first- and second-order trends in 1/dc. However,
this check is beyond current technical capabilities, since it will
require very high accuracy of calculations during very long
simulations.

Conclusion. In our study we successfully determine the
bending rigidity exponent η for two-dimensional crystalline
membranes embedded in a real space, considering various
numbers of flexural phonon modes. The numerical simula-
tions conducted through Fourier Monte Carlo technique reveal
the universal behavior of the system, offering insights into
the correlation function of out-of-plane deformations and the
renormalized bending rigidity at small momentum scales.
By comparing the numerical estimates with approximate
analytical techniques, the Letter provides a comprehensive
understanding of the elastic behavior of such membranes,
shedding light on their physical properties in different sce-
narios. Based on the results, it can be seen that the 1/dc

expansion begins to work well somewhere around dc ≈ 6. The
SCSA result (1), which has no formal analytical justification
except the limit dc → ∞, gives very reasonable estimate for
numerical value of η for dc � 5. This fact is in agreement
with early work [58] demonstrating that SCSA extended to the
diagrams of next order in interaction provides a good numer-
ical approximation for dc = 1. The corresponding numerical
estimate is also presented in Table I.

As a further development of this work we will apply our
simulations to the model with a random curvature [15,18,19]
in order to detect the finite T transition between clean flat
phase and rippled flat phase predicted in Ref. [35] within 1/dc

expansion and in Ref. [61] by means of two-loop ε expansion
for (4 − ε)-dimensional membrane.

Other direction in which numerical methods used in our
work can be applied is numerical calculation of the differen-
tial and absolute Poisson’s ratios. Although, their values are
predicted by means of perturbation theory at dc � 1 [32,34],
their dependence on dc at small dc is not known.

Another interesting direction for further development
could be the study of the behavior of membranes at nonzero
stress. Recently there has been interest in this problem [60].
In the future, we could apply the approach advocated in the
work to analyze it.

Finally, our numerical scheme could be generalized to the
case of a crystalline membrane with orthorhombic crystal
symmetry. It would be possible to verify the prediction of
Ref. [43] that in this case of reduced symmetry the renormal-
ization of the bending rigidity tensor is still controlled by the
exponent η.
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