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We develop the microscopic theory for the attenuation of out-of-plane phonons in stressed flexible two-
dimensional crystalline materials. We demonstrate that the presence of nonzero tension strongly reduces
the relative magnitude of the attenuation and, consequently, results in parametrical narrowing of the phonon
spectral line due to stress-controlled suppression of the retardation effects in the dynamically screened inter
phonon interaction. We predict the specific power-law dependence of the spectral-line width on
temperature and tension. We speculate that suppression of the phonon attenuation by nonzero tension
might be responsible for high quality factors of mechanical nanoresonators based on flexural two-
dimensional materials.
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Following the discovery of graphene [1–3] and other
atomically thin materials [4], flexible two-dimensional
(2D) materials [5] have become at the focus of intense
theoretical and experimental research. These 2D crystalline
materials (2DCM) possess rich elastic physics due to an
existence of out-of-plane deformations. Interplay of flexu-
ral strain and strong nonlinearities result in distinctive elas-
tic properties—known as anomalous elasticity: nontrivial
scaling of elastic modules with a system size controlled by
universal exponent η, crumpling transition with increasing
temperature, T and disorder, nonlinear Hooke’s law, nega-
tive Poisson ratios, etc. [6–21].
These unusual phenomena predicted first for biological

membranes are currently actively discussed in context of
2DCM [22–41]. As one of the most promising directions of
research, 2DCM are explored as nanoelectromechanical
systems (NEMS) with unexpectedly huge quality factors
(102–104), increasing on decreasing T [42–47].
Huge quality factors of out-of-plane oscillations in

2DCM are very promising in view of fundamental analysis
of interplay between optomechanics [48] and plasmonics
[49]. By charging the electronic 2DCM with a static gate
bias and applying an additional alternating electric field to
the same or a different gate, it is possible to create tunable
(by gate or stress) extra-high-quality plasmonic oscillators
without damping by conventional momentum relaxation.
This is a very appealing way to solve a long-standing
fundamental problem for plasmonics.
Microscopically, an intrinsic momentum-dependent

spectral line quality factor, Qk, of flexural 2DCM is
intimately related with the attenuation of flexural phonons
due to their interaction mediated by in-plane phonons,

while extrinsic sources are ineffective [50]. The key
purpose of our Letter is to develop a microscopic theory
of intrinsic flexural phonon attenuation due to nonlinear
dynamically screened coupling between in-plane and out-
of-plane phonons [51]. We will demonstrate that tension, σ,
suppresses screening retardation effects, which are respon-
sible for attenuation, thus drastically reducing the attenu-
ation and hence resulting in a enhancement of the quality
factor: Qk ∝ σ3 for large σ.
This study is motivated both by above-mentioned experi-

mental observation of huge quality factors in various 2DCM
on perforated SiO2 substrate: graphene [42–44], MoS2
[45,52], WSe2 [53], and MoTe2 [52] (see Refs. [46,47]
for a review), and by very recent direct experimental proof of
the presence of attenuation in the phonon spectrum in
graphene on a substrate [54]. In spite of clear request for
the analytic theory of phonon attenuation in 2DCM, we are
aware of a single theoretical work addressing the attenuation
of flexural phonons in a free standing membrane with
unphysical dimensionality D ¼ 4 − ϵ with ϵ ≪ 1 used to
control the theory [55].
We start with important comment on experimental

situation. Contact between a membrane and a substrate
imposes a stress on the membrane. Thus an existence of a
nonzero tension σ acting on 2DCM is inevitable in a
geometry of the experiment of Ref. [54] and in NEMS. We
focus on an experimentally relevant range of T in which
characteristics frequencies of flexural phonons are much
smaller than T. We demonstrate that the presence of the
tension strongly affects the flexural phonon attenuation
and, consequently, the broadening of the phonon spectral
line. The point is that σ enhances parametrically the real
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part of the spectrum of flexural phonons also affecting the
screened interaction between them. It is the latter that
determines the phonon attenuation. The ratio of the real and
imaginary parts of the spectrum of flexural phonons
enhances parametrically in the presence of the nonzero
σ. The predicted dependence of Qk on T, σ, and wave
vector, k, is shown in Fig. 1 and Table I. We discuss how
our results might be related with high quality factors
observed in out-of-plane dynamics of NEMS based on
flexural 2DCM. We use units with kB ¼ ℏ ¼ 1.
Model—The free energy describing thermal fluctuations

in the flat phase of a 2D membrane can be written as F ¼R
d2x½ϰð△rÞ2=2þ σð∇rÞ2=2� þ F el [7,8]. Here ϰ is a bare

bending rigidity while σ is an external tension. We use a
d ¼ dc þ 2 dimensional vector r to parametrize a point on
the membrane in d-dimensional space. The 2D vector x
parametrizes the point on the membrane with respect to
some fixed plane. The elastic crystalline energy, F el ¼R
d2x½μtrû2 þ λðtrûÞ2=2�, is expressed via the 2 × 2 strain

tensor û with components uαβ ¼ ð∂αr∂βr − δαβÞ=2. Here λ
and μ are the Lamé parameters of 2DCM. F (with dc ¼ 1)

describes 2DCM with D6h (graphene) and D3h (transition
metal dichalcogenide monolayers) point groups.
Following [9], we will use a standard expansion in 1=dc
to efficiently describe anharmonic effects. To study phonon
dynamics we employ the imaginary time (τ) action S ¼R 1=T
0 dτ½R d2xρð∂τrÞ2=2þ F �, where ρ denotes the mem-
brane’s mass density. To exploit the flatness of the memb-
rane, we use the parametrization of the coordinates with
in-plane (u ¼ fux; uyg) and out-of-plane (h¼fh1;…;hdcg)
displacements: r1 ¼ ξxþ ux, r2 ¼ ξyþ uy, and raþ2 ¼ ha
with a ¼ 1;…; dc. Here 0 < ξ2 < 1 is the stretching factor
which determines the ratio between projective and full area
of the membrane. Following [6], we integrate out in-plane
fluctuations u in harmonic approximation, and obtain the
effective action for the flexural, out-of-plane phonons:
Seff ¼ Sξ þ S0 þ Sint [56]. Here S0 ¼

P
ωnk½ρω2

n þ σk2 þ
ϰk4�jhk;ωn

j2=2 describes noninteracting flexural phonons.
We use the following notation

P
ωn;k

¼T
P

ωn

R
d2k=ð2πÞ2

for integration over momentum k and summation over
bosonic Matsubara frequencies ωn ¼ 2πTn, n∈Z. The
quartic term [6]

Sint ¼
Y
8

X
Ωm;q≠0

����X
ωn;k

k2⊥hkþq;ωnþΩm
h−k;−ωn

����2; ð1Þ

where k⊥ ¼ ½k × q�=q, describes the interaction of the
flexural modes with transferred momentum q and frequ-
ency Ωm ¼ 2πTm, m∈Z. Sint emerges after integra-
tion over the in-plane phonons u. The bare strength of
interaction is determined by the Young’s modulus
Y ¼ 4μðμþ λÞ=ð2μþ λÞ.
Anomalous elasticity—The action S0 determines the bare

spectrum of flexural phonons, ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσk2 þ ϰk4Þ=ρ

p
. In

the statics it is well established that the perturbation theory
in powers of RPA-type screened interaction (see below)
produces infrared logarithmic divergences that can be
summed up by means of the renormalization group.
Then, in the absence of the tension, σ ¼ 0, a power law
renormalization of the bending rigidity and Young’s modu-
lus emerges at low momenta [7,9],

ϰk ¼ ϰðkL�Þ−η; Yk ¼ YðkL�Þ−2þ2η; kL� ≪ 1: ð2Þ

FIG. 1. The color density plot for dependence of the spectral
line quality factor Qk on temperature T and tension σ for wave
vectors k ≪ 1=l ¼ ffiffiffiffiffiffiffiffiffi

Y=ϰ
p

, where ϰ and Y are bending rigidity
and Young’s modulus, respectively. The “asterisk” and “circle”
signs indicate the parameters corresponding to graphene and
MoS2 under realistic conditions (see discussions section),
respectively.

TABLE I. The results for the real (ωk) and imaginary (γkωk) parts of the flexural phonon spectrum in different
regions of T and σ (see Fig. 1). We use Tk ∼ ϰ½ðσ=YÞðklÞη−2�2=η, where l ¼ ffiffiffiffiffiffiffiffiffi

ϰ=Y
p

, and Tσ ∼ σϰ=Y. The
corresponding scales for the tension are σk ∼ YðklÞ2−ηðT=ϰÞη=2 and σ� ∼ YT=ϰ.

ωk γkωk

σ ≪ σk (Tk ≪ T) k2
ffiffiffiffiffiffiffiffiffiffi
ϰk=ρ

p ðϰk=ρÞ12k2
σk ≪ σ ≪ σ� (Tσ ≪ T ≪ Tk) k

ffiffiffiffiffiffiffiffi
σ=ρ

p ðσ=ρÞ12k3l2ðY=σÞ1þαðT=ϰÞα
σ� ≪ σ (T ≪ Tσ) k

ffiffiffiffiffiffiffiffi
σ=ρ

p ðσ=ρÞ12k3l2ðY=σÞ3ðT=ϰÞ2
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Here L� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πϰ2=ð3dcYTÞ

p
is the so-called Ginzburg

length. The magnitude of the universal exponent η ¼
2=dc þ ð73 − 68ζð3ÞÞ=ð27d2cÞ þ � � � is known for dc ≫ 1
from analytics [31]. In the case of dc ¼ 1 numerics yields
η ≃ 0.795� 0.01 [57]. The static renormalization affects
dynamical properties making the true spectrum of flexural
phonons less soft, ωk ∼ ðϰ=ρÞ1=2k2ðkL�Þ−η=2 [7].
In a stressed membrane, σ > 0, there exists an additional

length scale Lσ . For σ < σ� ¼ ϰL−2� that scale is given as
Lσ ¼ L�ðσ�=σÞ1=ð2−ηÞ while Lσ ¼ L�ðσ�=σÞ1=2 for σ ⩾ σ�.
Provided σ < σ�, the power-law renormalizations (2) hold
for the interval L−1

σ ≪ k ≪ L−1� only. For region of small
momenta, kLσ ≪ 1, the renormalization of the bending
rigidity and Young’s modulus become freezed to their
magnitudes at k ¼ L−1

σ , [58]

ϰσ ¼ ϰðLσ=L�Þη; Yσ ¼ YðLσ=L�Þ2−2η: ð3Þ
However, these static renormalizations does not affect the

spectrum of flexural phonons, ωk ≃ ωðσÞ
k ¼ k

ffiffiffiffiffiffiffiffi
σ=ρ

p
, at low

momenta, kLσ ≪ 1 [10,12,29]. It is this regime of low
momenta we will below focus on.
Screened dynamical interaction—Similar to the static

case the strong bare interaction between flexural phonons
has to be screened. The retarded RPA-type screened
interaction becomes NR

q ðΩÞ ¼ ðY=2Þ=½1þ 3YΠR
q ðΩÞ=2�

instead of Y=2 [see Fig. 2(a)]. We note that RPA is fully
justified for dc ≫ 1. The retarded polarization operator can
be expressed in a standard way in terms of two bare Green’s
functions. At q ≪ L−1

σ we find the scaling form,

ΠR
q ðΩÞ¼

2Tdc
3

Z
dωd2k
ð2πÞ3 k

4⊥

(
GR

kþqðωþΩÞImGR
k ðωÞ
ω

þGA
k ðωÞ

ImGR
kþqðωþΩÞ
ωþΩ

)
≃
TP

�
Ω=ωðσÞ

q

�
32πϰ2σL−2

σ
; ð4Þ

i.e., depending on the frequency Ω from the dimensionless

combination Ω=ωðσÞ
q only. Here we employed the classical

limit of the boson equilibrium distribution function since
we focus on the high temperature regime, T ≫ ωq; jΩj. The
bare Green’s functions at k≲ L−1

σ are given as
GR=A

k ðωÞ ¼ 1=½σk2 þ ϰσk4 − ρðω� i0Þ2�. For Ω ⩾ 0, the

function PðΩ=ωðσÞ
q Þ is given by the integral representation

(see Supplemental Material [60])

PðΩ=ωðσÞ
q Þ ¼

Z
1

0

dxX
�
Ω

ffiffiffi
x

p
=
�
ωðσÞ
q ð2 − xÞ

��
; ð5Þ

XðzÞ¼ 1−2z2þ4

3
z4þ4

3
zj1− z2j3=2

�
i; jzj⩽ 1

−1; jzj> 1:
ð6Þ

The real and imaginary part of the function PðzÞ are even
and odd functions, respectively [see Fig. 3(a)]. We note that
PðzÞ ≃ 1=2 − ð2=ð3z2ÞÞ½ln z − iπ=2� at 1 ≪ z ≪ 1=

ffiffiffiffiffiffiffiffi
qLσ

p
.

(For asymptotics at larger magnitudes of z see Ref. [60]).
In the limit of small momenta, qLσ ≪ 1, and of not too

large frequencies, jΩj=ωq ≪
ffiffiffiffiffiffiffiffiffiffi
σ�=σ

p
, the screening domi-

nates, YσΠR
q ðΩÞ ≫ 1. Therefore, the screened interaction

acquires the universal form determined by the inverse pola-
rization operator NR

q ðΩÞ ≃ 1=½3ΠR
q ðΩÞ�. Since ΠR

q ðΩÞ ∼ dc,
the screened interaction becomes also weak, ∼1=dc, with
respect to the number of out-of-plane modes.
Flexural phonon attenuation at σ ≪ σ�—The existence

of ImΠR
q ðΩÞ ≠ 0 results in the appearance of the imaginary

part of the self energy for the exact Green’s function of flex-
ural phonons, ½GR

k ðωÞ�−1 ¼ ½GR
k ðωÞ�−1 − ΣR

k ðωÞ. The latter
is responsible for flexural phonon’s attenuation. At k ≪ kσ,
the lowest order self energy correction [see Fig. 2(b)]
acquires the scaling form,

ΣR
k ðωÞ¼−4T

Z
dΩd2q
ð2πÞ3 k4⊥

�
GR

kþqðωþΩÞImNR
q ðΩÞ
Ω

þNA
q ðΩÞ

ImGR
kþqðωþΩÞ
ωþΩ

�
≃
2πϰσk4

dc
F
	
ω

ωk



: ð7Þ

Since ΣR ∝ k4, its real part is completely negligible in
comparison with the bare spectrum at kLσ ≪ 1. Albeit
being small, ImΣR

k ðωÞ determines the attenuation of the
flexural phonons. Next, we obtain (z ¼ ω=ωk, r ¼ q=k)

ImF ðzÞ ¼ 4z
3π2

Z
d2r
r5

½n × r�4
jnþ rj2

X
s¼�

Φ
	
zsþ jnþ rj

r



; ð8Þ

(a) (b)

FIG. 2. (a) The RPA-type screened dynamical interaction. The
wavy line denotes the bare interaction proportional to the Young’s
modulus. The solid line with arrow stands for the bare Green’s
function GkðωÞ. (b) The lowest order self-energy correction.

(a) (b)

FIG. 3. (a) The real (red dashed curve) and imaginary (blue
solid) parts of PðΩ=ωðσÞ

q Þ, see Eqs. (5) and (6). (b) The
dependence of the imaginary part of the self-energy on frequency
for ω ≪ ωk=

ffiffiffiffiffiffiffiffi
kLσ

p
. Solid blue and dashed red curves are for the

function F and F̃ , see Eqs. (8) and (9), respectively.
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where ΦðxÞ ¼ ImPðxÞ=½xjPðxÞj2� and n is an auxiliary 2D
unit vector. We note that Eq. (8) is applicable for z ≪ffiffiffiffiffiffiffiffiffiffi
σ�=σ

p
only since for larger magnitudes of z one cannot

use the universal form of the screened interaction (see
Ref. [60]). Using Eqs. (5) and (6), we find that ImF ðzÞ ≃
0.5z for z ≪ 1 and ImF ðzÞ ≃ 1 at z ≫ 1 (see Ref. [60]).
The overall behavior of ImF ðω=ωkÞ is shown in Fig. 3(b).
Since the real part of the self energy is proportional to k4 it
is completely negligible in comparison with σk2.
Next, defining the attenuation coefficient as γk ¼

ImΣR
k ðωkÞ=ðρω2

kÞ, we find γk ≃ ð3.2=dcÞðkLσÞ2 ≪ 1. We
note that this result holds at σ ≫ σk ¼ σ�ðkL�Þ2−η, other-
wise Lσ becomes larger than 1=k for σ → 0. In such a
regime, the effect of tension becomes negligible and one
finds γk ∼ 1 [61]. Although above we presented the result
for ImΣR

k ðωÞ in the lowest order in 1=dc, they are in
fact completely general. The point is that the exact
Green’s function satisfies the Ward-Takahashi identity,
limω;k→0½GR

k ðωÞ�−1 ¼ σk2 [10,12,29]. It forbids corrections
to the self-energy of the type k2fðω=ωkÞ. Therefore, the
functional form for the self-energy correction given by
Eq. (7) is quite general and holds for all dc ⩾ 1.
Flexural phonon attenuation at σ ≫ σ�—In that case,

there is no power law renormalizations of ϰ and Y since
Lσ < L�. In addition, the screening of interaction is weak,
so that ImNR

q ðΩÞ ≃ −3ðY=2Þ2ImΠR
q ðΩÞ. We note that in

this regime Eq. (7) reduces essentially to the Fermi golden
rule expression for decay of the flexural phonon into three
ones. Using Eq. (7), we find

ΣR
k ðωÞ ¼

	
3

32



2
	
Lσ

L�



4 ϰk4

πdc
F̃
	
ω

ωk



; ð9Þ

where ImF̃ ðzÞ is given by Eq. (8) but withΦðxÞ substituted
by Φ̃ðxÞ ¼ ImPðxÞ=x. ImF̃ has linear asymptote at z ≪ 1,
ImF̃ ðzÞ ≃ 0.2z and tends to the plateau, ImF̃ ðzÞ ≃ 1=2, at
1 ≪ z ≪ 1=

ffiffiffiffiffiffiffiffi
qLσ

p
[60]. The full dependence of ImF̃ on z

is shown in Fig. 3(b). The above results imply that for
σ ≫ σ�, the attenuation coefficient can be estimated as
γk ∼ ðY=σÞ3ðT=ϰÞ2ðklÞ2, where l ¼ ffiffiffiffiffiffiffiffiffi

ϰ=Y
p

.
Spectral line quality factor—It is convenient to introduce

the spectral line quality factor Qk as inverse of the
attenuation coefficient, Qk ¼ 1=γk. The Qk factor charac-
terizes the quality of the resonance in phonon spectral
function at ω ¼ ωk. The results for the attenuation coef-
ficient discussed above (see Table I) suggests the following
behavior of Qk for physical crystalline membrane (with
dc ¼ 1),

Qk∼

8>>><
>>>:

1; σ≪ σk or Tk ≪T;

ðσ=YÞ1þαðϰ=TÞα
ðklÞ2 ;

σk ≪ σ≪ σ�
or Tσ ≪T≪Tk;

ðklÞ−2ðσ=YÞ3ðϰ=TÞ2; σ�≪ σ or T≪Tσ;

ð10Þ

where two temperature scales Tk ∼ ϰ½ðσ=YÞðklÞη−2�2=η and
Tσ ¼ ϰσ=Y correspond to σ and σ�, respectively. We
emphasize that Eq. (10) predicts dramatic enhancement
of the σ dependence of the quality factor when σ increases
above σ�. Sharp rise of the quality factor with tension,
Qk ∝ σ3, at σ ≫ σ�, is due to the stress-controlled sup-
pression of the dynamically screened interaction. However,
such increase of Qk is partially compensated by a factor
1=ϰ. The unexpected appearance of ϰ for the regime
σ ≫ σ�, where spectrum seems to be fully determined
by σ, is connected with peculiar ultra-violet divergence of
the dynamical polarization operator computed with linearly

approximated spectrum ωðσÞ
q [60]. The temperature and

tension dependencies of Qk are controlled by the universal
exponent α ¼ η=ð2 − ηÞ ≃ 0.67. The overall behavior of
the Qk factor with respect to σ and T is sketched in Fig. 1.
As naturally expected, the Qk factor increases with
decrease of temperature. Interestingly, a nonzero tension
induces not only dependence on the tension but also
significant temperature dependence of Qk. Figure 1 dem-
onstrates that Qk increases with increase of σ. Thus the
tension can serve as a tool to sharpen the phonon
spectral line.
Discussions—Let us now estimate the spectral line

quality factorQk. The characteristic tension σ� for graphene
is equal approximately 0.1 N=m. Taking build-in tension of
a membrane to be σ ¼ 10−2 N=m (it corresponds to relative
deformation ∼10−4), we find Lσ ≃ 10 nm. We choose the
momentum k ≃ 0.01 nm−1 which corresponds approxi-
mately to 5 × 10−4 fraction of the distance between Γ
and K points in graphene. We note that such a magnitude is
on the lower boarder of current resolution of electron
energy loss spectroscopy technique [62]. Then we obtain
the estimate Qk ∼ 102 (“asterisk” sign in Fig. 1), that
implies extremely narrow phonon spectral line. Similarly,
one can estimateQk ∼ 10 for MoS2 (“circle” sign in Fig. 1)
and other 2DCM listed in the introduction [60]. This
implies that graphene is the best material for fabrication
of NEMS.
It is tempting to apply our results for explanation of high

quality factors of graphene-based NEMS [46,47]. For a
stressed membrane of size L, one could naturally associate

the resonance frequency of its oscillation as ωðσÞ
k∼1=L. Then

the spectral line quality factor Qk∼1=L determines the
quality factor of the resonance. For Lσ ≪ L, we obtain a
large quality factor Qk∼1=L ∼ ðL=LσÞ2 ≫ 1. In addition,
that quality factor has temperature dependence,
Qk∼1=L ∼ T−α. It resembles the 1=T dependence of the
quality factor reported in the experiments [46,47]. The
above estimate for graphene, Q ∼ 102, is achieved for
L ∼ 0.1–1 μm, which is a typical size of NEMS.
As well known [63–71], the computation of broadening

and decay for discrete levels is a tricky business. The
phonon attenuation studied in our Letter can be thought to
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be described like Fermi’s golden rule for a decay of a
flexural phonon with frequency ωk into other three flexural
phonons with the probability amplitude proportional to the
screened interaction NR

q ðΩÞ. The corresponding three-
particle level spacing can be estimated as

1

Δ3

¼
Y3
j¼1

Z
L2d2kj
ð2πÞ2 δðωk − ωk1 − ωk2 − ωk3Þ ¼

ω5
kL

6ρ3

5!ð2πσÞ3 :

ð11Þ

In order for the decay to be efficient and Fermi’s golden
rule to be applicable, the three particle level spacing has
to satisfy Δ3 ≪ γkωk [65]. In the case, L�; Lσ ≪ L, the
latter inequality transforms into the following condi-
tion kL=π ≫ ðL=LσÞ1=4 maxf1; ðL�=LσÞ1=2g. Since kL ¼
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2

p
(where integers n, m ⩾ 1 in the case of zero

boundary conditions for h), the quality factor of the
resonance with n;m ≫ ðL=LσÞ1=4maxf1; ðL�=LσÞ1=2g
can be indeed estimated as Qk∼1=L. In contrast, analysis
of the low-frequency modes with n ∼m ∼ 1 needs further
development. For those modes we expect physics similar to
that of Fermi-Pasta-Ulam-Tsingou problem [72]. We note,
however, that discreteness can only enhance the quality
factor Qk∼1=L. Therefore, our present result can be consid-
ered as a lower bound for Qk∼1=L for low-frequency modes
with n ∼m ∼ 1.
Summary—To summarize, we developed the theory for

the attenuation of out-of-plane phonons in stressed flexible
2D crystalline membranes. We found that the presence of
nonzero tension strongly narrows the spectral line. We
predicted the specific dependence of the flexural-phonon
spectral-line width on temperature and tension. Such
dependence can be used to benchmark our theory in
experiments on phonon spectrum measurements by means
of the high resolution electron energy loss spectroscopy.
We proposed that suppression of phonon attenuation due to
nonzero tension can be responsible for a huge magnitude of
the quality factors of nanoresonators based on flexural 2D
materials.
Existing experimental studies of the quality factor were

focused on its T dependence. Comparing it with theory is
complicated due to T variations in the membrane’s in-built
stress, caused by the details of setup fabrication. We
propose an alternative way for experimentally verifying
our theory: changing an external tension to exceed the in-
built stress at the fixed T. This can be done using at least
two techniques already used in experiments: making a
2DCM-based transistor and changing the gate voltage
[42,73], or placing the membrane into a gas chamber with
controlled pressure [74,75].
Finally, we list possible applications of the developed

theory. Since an electromagnetic wave creates a tension in
the illuminated membrane [76], our findings pave the way

to controlling the phonon quality factor by placing a 2DCM
into an optical cavity [77]. As discussed in the introduction,
our work may give a boost to a field of acousto-plasmonics
[78,79] in 2DCM. Such plasmonic-mechanical oscillators
can be used as electrically and mechanically tunable
radiation emitters and detectors thus opening a wide avenue
for various optomechanical applications. A membrane
under compressed stress can be in one of two mechanically
bistable buckled states and hence creates a double-well
potential for the coupled system of electrons and flexural
phonons. Such bistable states show up in the single electron
transport through a buckled membrane [80] and can be used
for creation of stress-controlled quantum qubit [81]. The
quantum coherence of such a qubit would directly depend
on the quality factor of the flexural phonons.
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