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Instability of the engineered dark state in two-band fermions
under number-conserving dissipative dynamics
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Correlated quantum many-body states can be created and controlled by the dissipative protocols. Among
these, particle number-conserving protocols are particularly appealing due to their ability to stabilize topolog-
ically nontrivial phases. Is there any fundamental limitation to their performance? We address this question
by examining a general class of models involving a two-band fermion system subjected to dissipation de-
signed to transfer fermions from the upper band to the lower band. By construction, these models have a
guaranteed steady state—a dark state—with a completely filled lower band and an empty upper band. In
the limit of weak dissipation, we derive equations governing the long-wavelength and long-time dynamics
of the fermion densities and analyze them numerically. These equations belong to the Fisher-Kolmogorov-
Petrovsky-Piskunov reaction-diffusion universality class. Our analysis reveals that the engineered dark state
is generically unstable, giving way to a new steady state with a finite density of particles in the upper band.
We also estimate the minimum system sizes required to observe this instability in finite systems. Our results
suggest that number-conserving dissipative protocols may not be a reliable universal tool for stabilizing dark
states.
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I. INTRODUCTION

Open quantum many-body systems with dissipative dy-
namics is a topic of surging interest [1–6]. The unique feature
of this field lies in the possibility of using dissipative protocols
for stabilizing correlated stationary states of matter that are
inaccessible within equilibrium settings [7–12]. Over the past
few decades, numerous dissipation-induced states of matter
and associated nonequilibrium phase transitions have been
identified and intensely studied [13–49].

Dissipative protocols are typically described by the
evolution of the density matrix ρ governed by the
Gorini-Kossakovski-Sudarshan-Lindblad (GKSL) master
equation [50,51]. The most widely studied dissipative
protocols are designed in a particle nonconserving way, so
that the engineered steady state contains fewer particles
than the initial state. Technically, this corresponds to jump
operators in the GKSL equation that are linear in particle
creation and annihilation operators, which significantly
simplifies the analysis of such dynamics [1,5,52,53].

The dissipative evolution with U (1) particle conservation
has lately gained a lot of attention [6], mainly due to its ability
to stabilize topologically nontrivial steady states characterized
by topological gauge field responses. However, the descrip-
tion of particle kinetics and relaxation under such dissipation
is significantly complicated due to the jump operators that
are bilinears in particle creation and annihilation operators,
making the resulting models strongly interacting. The same
challenge emerges in systems with projective measurements
[42,43,47].

Recently, significant progress has been made in under-
standing U (1)-conserving protocols. A model of two-band
fermions with dissipation aimed at stabilizing a topological
state by emptying one band and populating the other was
proposed [32]. Further analysis [54] revealed that the density
in each band follows the Fisher-Kolmogorov-Petrovsky-
Piskunov (FKPP) equation [55,56], which describes various
dynamical processes, from the propagation of combustion
fronts to bacterial spreading [57–61]. The FKPP equa-
tion indicates diffusive spreading of density at intermediate
length/time scales and ballistic front propagation at long
scales. Consequently, the dark state (DS) with a completely
empty upper band is unstable, leading to a new steady state
with nonzero density in the upper band (Fig. 1).

This leads to a fundamental question: Is the engineered
dark state, characterized by a completely empty upper band,
stable in a generic two-band fermionic model with particle-
number-conserving dissipation? In this paper, we address this
question for a class of models introduced in Ref. [62], which
generalizes the original model by Tonielli et al. [32]. These
two-band fermionic models are designed to have a DS with
a completely empty upper band. However, we demonstrate
that, generally, under weak dissipation rates, this engineered
DS is unstable. The system evolves towards new steady state
with a nonzero population in the upper band, and thus, the
scenario depicted on the right side of Fig. 1 is realized.
We derive equations governing the evolution of the particle
densities in each band, which generalize the FKPP equation.
We also establish the physical meaning of all processes that
contribute to these equations and identify their analogs in
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FIG. 1. Possible directions of initial state evolution in the two-
band fermionic dissipative system. Contrary to naive expectations,
the evolution follows the right path, resulting in a stationary state
with a finite population in the upper band.

semiconductor theory. Our results suggest a potential failure
of particle number-conserving dissipative protocols as a uni-
versal tool for stabilization of DS.

The outline of the paper is as follows. We start from the
model formulation in terms of the GKSL master equation and
Keldysh field theory in Sec. II. In Sec. III we review the self-
consistent Born approximation for the single-particle Green’s
function and the ladder approximation for the two-particle
irreducible density-density correlation function (the so-called
diffuson). After this, the main results of this work are de-
scribed: different contributions to the diffuson’s self-energy
(Sec. IV) and the generalized FKPP equations which gov-
ern the dynamics of the particle density (Sec. V). We end
the paper with discussions and summary in Secs. VI and
VII, respectively. Details of lengthy calculations are given in
Appendixes.

II. MODEL

A. GKSL equation

We consider the dissipative dynamics of two-band
fermions governed by the GKSL master equation [62],

dρ

dt
=

∫
x

(
i[ρ, H0] +

∑
j={a,α}

γ j (2LjρL†
j − {L†

j L j, ρ})

)
, (1)

where a = u, d and α =↑,↓. The jump operators are given
as local-in-space bilinears in terms of fermionic operators:

Lu,α = ψ†
α (x)lu(x), Ld,α = ψα (x)l†

d (x). (2)

The unitary part of the dynamics is governed by the transla-
tionally invariant Hamiltonian density

H0 =
∑
αβ

ψ†
α (x)ĥαβψβ (x), ĥ(p) = ξpUpσzU

†
p . (3)

FIG. 2. Schematic representation of the fermion spectrum and
the action of the jump operators Lu,α and Ld,α . A single jump operator
can either change the state of a particle within one band or transfer a
particle from the upper band to the lower one.

Here ξp is an auxiliary nonnegative function of the momentum
p = |p| and σz = diag{1,−1} is the standard Pauli matrix.
Up is an arbitrary momentum dependent 2 × 2 unitary ma-
trix which can be used to rotate fermionic operators from
the spin to band basis cp = {cp,u, cp,d}T = U †

p ψp and, thus,
to make the single particle Hamiltonian diagonal, ξpσz. The
jump operators involve another set of the fermionic operators:
lp,a = vpcp,a, where vp is an auxiliary complex function of
momentum with |vp| �= 0. Parameters γa,α > 0 determine the
rate of dissipation in the model [63]. At half-filling, Eq. (1)
has a steady state solution, the DS, ρ = |D〉〈D|, in which the
d band is fully occupied, while the u band is empty: c†

p,d|D〉 =
cp,u|D〉 = 0. This is ensured as Lu/d,α cannot transfer particles
from the d band to the u band (see Fig. 2).

B. Keldysh action

The GSKL equation can be written as a path integral on the
Keldysh contour [1,5] with the following generating function
[
∫

p,t ≡ ∫
dt

∫
dd p/(2π )d ]:

Z =
∫

D[c, c] eiS0+iSL , S0 =
∫

p,t

∑
s=±

s cp,s(i∂t − ξpσz )cp,s,

SL = i(2π )d
∫

pj ,t
δ(p1−p2 + p3−p4)

∑
s,s′=±

(δss′ − 2δs,−δs′,+)

×
∑
a,α

γa,α

(
cp1,s

[
L(a,α)

p2 p1

]†
cp2,s

)(
cp3,s′L(a,α)

p3 p4
cp4,s′

)
. (4)

Here d is the spatial dimensionality, cp,a = {cp,a,+, cp,a,−}T
and c̄p,a = {c̄p,a,+, c̄p,a,−} are Grassmanian fields on the
forward/backward parts of the Keldysh contour. They cor-
respond to the annihilation cp,a and creation c†

p,a operators,
respectively. The action SL, which represents the dissipative
part of the GSKL equation, involves four fermionic operators
at the same time t , and thus, formally resembles instanta-
neous interactions relaxing fermions’ momentum and energy.
However, we note that this dissipative interaction couples
different branches of the Keldysh contour and requires a
particular equal-time regularization [1,32,54,62]. The four
matrices L(a,α) act in the band space and are given as[

L(u,α)
pq

]
ab = vq[U †

p ]a,αδbu,
[
L(d,α)

pq

]
ab = −v∗

p[Uq]α,bδad.

(5)

We note that SL can be thought of as arising from the
scattering of fermions from bosons, after taking the trace
over the bosonic degrees of freedom [62]. The conservation
of the total number of fermions in the model is reflected in
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FIG. 3. Self-energy diagrams of the Fock- and Hartree-type in
the self-consistent Born approximation. The solid lines denote the
self-consistent Green’s function. The dashed curve indicates the
dissipation-induced interaction.

the strong U (1) symmetry of the action S0 + SL. Translation
invariance, however, is only a weak symmetry of S0 + SL.
For detailed discussion of weak and strong symmetries see
Refs. [1,6,64,65].

III. SELF-CONSISTENT BORN
APPROXIMATION AND DIFFUSION

A. Self-consistent Born approximation

In terms of the Keldysh action S0 + SL existence of the DS
can be seen from the structure of the single-particle Green’s
functions −i〈cq(t1)c̄q(t2)〉 computed in a self-consistent man-
ner from the Dyson equation in the lowest order in the
dissipation rate γa,α (see Fig. 3). These Green’s functions are
diagonal in the u/d-space and after Keldysh rotation [66] are
given as [32,54,62][
GR/A

q,a (ε)
]−1 =ε − ξqsa±iγ̄a|vq|2, GK

q,a(ε)=2isaImGR
q,a(ε),

(6)

where γ̄a = ∫
p[U †

p γ̂aUp]aa and γ̂a = diag{γa,↑, γa,↓}. The fac-
tor sa = ±1 determines the distribution function (1 − sa)/2 of
the c fermions in the a band. Thus, Eq. (6) describes the DS
with a completely empty u band.

B. Diffuson’s ladder

However, Green’s functions (6) do not characterize the
spreading of the particle density through the system. The latter
is characterized by the density-density correlation function,
i.e., by the two-particle irreducible average

〈〈cq−,b,β (ω−)c̄q+,a,α (ω+)·cp+,a′,α′ (ε+)c̄p−,b′,β ′ (ε−)〉〉, (7)

with p± = p±Q/2, q = q±Q/2, ω± = ω±�/2, ε± =
ε±�/2. In the previous work [62] we calculated it
in the ladder approximation, that is, we calculated the
diffuson’s diagram (see Fig. 4). Obtained expression is

FIG. 4. The sum of ladder diagrams, a diffuson.

D(0)
a (Q,�, q, ω, p, ε)[�(+)

a ]
αα′

[�(−)
a ]

β ′β
δa=a′=b=b′ , where

D(0)
a (Q,�, q, ω, p, ε)

=
2vp+v∗

p−

1 − fa(Q,�)
[U †

q+
γ̂ (a)Uq− ]aaGR

q+,a(ω+)GA
q−,a(ω−)

× GR
p+,a(ε+)GA

p−,a(ε−). (8)

Here we introduced the function

fa(Q,�) =
∫

k

2ivk+v∗
k−[U †

k+ γ̂ (a)Uk−]aa

� − sa(ξk+ − ξk− ) + iγ̄a(|vk+|2 + |vk−|2)

(9)

and two projectors on retarded and advanced spaces

�(+)
a =

(
1 sa
0 0

)
, �(−)

a =
(

0 −sa
0 1

)
. (10)

Here su = −sd = 1. Such two-particle correlation function
computed in the ladder approximation has a canonical-type
diffusion pole for Q,�→0:

1

1 − fa(Q,�)
� 2γ̄ 2

a /
∫

k[U †
k γ̂ (a)Uk]aa|vk|−2

D(a)
jl Q jQl − i�

. (11)

The matrix of diffusion coefficients has different contribu-
tions due to curvature of the spectrum ξk and the function vk .
Additionally, the non-Abelian vector potential in the momen-
tum space (Berry connection), A j = iU †

k ∂k jUk, contributes
to D(a)

jl [62]. In the limit γ̄a�1 the matrix of diffusion
coefficients reads

D(a)
jl = δ jl

∫
p[U †

p γ̂aUp]aa|vp|−4(∇pξp)2

2γ̄ad
∫

k[U †
k γ̂aUk]aa|vk|−2

+ O(1). (12)

In the ladder approximation there is intraband diffusion only;
the interband excitations do not diffuse [54,62]. Due to their
resemblance to analogous excitations in disordered electronic
systems [66], we refer to these diffusive particle-hole modes
as “diffusons.”

IV. DIFFUSON’S SELF-ENERGY

A. Insertion of self-energy into the diffuson
and resummation of the ladder series

Although the GSKL dynamics (1) conserves the total
number of particles, the number of fermions in each band
separately is not conserved. Therefore, the diffusion poles in
two-point correlation functions are not protected beyond the
ladder approximation. Therefore, we consider the diffuson’s
self-energy. Let us denote the sum of inserted diagrams as
ξ (a)(Q,�, k, ε, k′, ε′). One insertion between two diffusons
will result in an additional multiplier:
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FIG. 5. General scheme of inserting the total self-energy �(a) into a a diffuson’s ladder with subsequent resummation of the ladder series.

∫
ε,k,ε′,k′

D(0)
a (Q,�, q, ω, k, ε)[�(+)

a ]αδ′
[�(−)

a ]γ
′βξ (a)(Q,�, k, ε, k′, ε′)[�(+)

a ]δ
′δ[�(−)

a ]γ γ ′

× D(0)
a (Q,�, k′, ε′, p, ε)[�(+)

a ]δα
′
[�(−)

a ]β
′γ = D(0)

a (Q,�, q, ω, p, ε)[�(+)
a ]αα′

[�(−)
a ]β

′β 2

1 − fa(Q,�)

×
∫

ε,k,ε′,k′
vk+v∗

k−[U †
k′

+
γ̂ (a)Uk′

− ]aaGR
k+,a(ε+)GA

k−,a(ε−)GR
k′

+,a(ε′
+)GA

k′
−,a(ε′

−)ξ (a)(Q,�, k, ε, k′, ε′). (13)

For brevity, let us introduce the notation

�(a)(Q,�) =
∫

ε,k,ε′,k′
vk+v∗

k−[U †
k′

+
γ̂ (a)Uk′

− ]aaGR
k+,a(ε+)GA

k−,a(ε−)GR
k′

+,a(ε′
+)GA

k′
−,a(ε′

−)ξ (a)(Q,�, k, ε, k′, ε′). (14)

Therefore, the ladder series with self-energy insertions Da = D(0)
a + D(0)

a ξ (a)D(0)
a + D(0)

a ξ (a)D(0)
a ξ (a)D(0)

a + ... results in
resummation (see Fig. 5)

Da(Q,�, p, ε, q, ω)

D(0)
a (Q,�, p, ε, q, ω)

=
+∞∑
n=0

[
2�(a)(Q,�)

1 − fa(Q,�)

]n

= 1 − fa(Q,�)

1 − fa(Q,�) − 2�(a)(Q,�)
. (15)

Here we see that self-energy turns into an additional term
in the diffusive denominator, therefore

D(a)
jl Q jQl − i� → D(a)

jl Q jQl − i� + �(a)(0, 0),

�(a)(0, 0) = − 4γ̄ 2
a �(a)(0, 0)∫

k[U †
k γ̂ (a)Uk]aa|vk|−2

. (16)

In what follows, we will compute the contributions to the
diffuson’s self-energy �(a)(0, 0) which are of lowest order
either in γ̄a or in the deviation of fermion density from the
one in the DS.

B. Impact ionization

Focusing on the limit γ̄a→0, we compute below all contri-
butions to the diffuson self-energy �(a)(0, 0) in the second
order in γ̄a. We start from contributions depicted in Fig. 6

R R

A A

=

=

+ + + +

+ + + +

+ + +

FIG. 6. The first contribution to the self-energy �
(a)
I corresponds

to the process of impact ionization and is obtained from the insertion
into the diffusion ladder of sections of the second order in the dissi-
pation rate. Red lines denote the Green’s function from the other (ā)
band. Diagrams that could have made a contribution, but are canceled
out with each other or turned out to be equal to zero (at �, Q→0),
are shown in pale color.

that can be inserted between diffusive ladders in the same
band. There are ten possible diagrams, the sum of which
we denote �

(a)
I . Fortunately, there are drastic simplifications

at Q = � = 0 for �
(a)
I (0, 0): diagrams shown in pale color

cancel each other or vanish. The remaining four diagrams for
�

(a)
I (0, 0)≡1/τa yield (see Appendixes A and B)

1

τa
= −π (2π )d

∫
pi

δ(p1 − p2 + p3 − p4)�γ (p1, p2, p3, p4)

×
[
U †

p1
γ̂aUp1

]
aa

∣∣(vp4
U †

p3
γ̂aUp2

− vp2
U †

p3
γ̂aUp4

)
āa

∣∣2∫
k[U †

k γ̂aUk]aa|vk|−2
,

(17)

where a broadened Dirac δ function is introduced

�γ (p1, p2, p3, p4) = 1

π
Im

[
ξp1

− ξp2
− ξp3

− ξp4

− i
(
γ a|vp1

|2 + γ a|vp2
|2 + γ a|vp3

|2 + γ a|vp4
|2)]−1

. (18)

We emphasize that 1/τa � 0. If one neglects the single-particle
decay rate γ̄a|vq|2, cf. Eq. (6), in Eq. (18), the function

�γ (p1, p2, p3, p4)
γ̄→0−→ δ

(
ξp1

− ξp2
− ξp3

− ξp4

)
. (19)

Thus the result (17) resembles Fermi’s Golden rule type ex-
pression. Its physical origin can be explained as follows. The
diagrams from Fig. 6, which give a nonzero contribution to
1/τa, can be expressed in terms of the contribution, �

R,(2)
p,a (ε),

of the second order in γ̄a to the single particle retarded self-
energy (see Fig. 7) as follows:

1

τa
� −

2
∫

p1

[
U †

p1
γ̂aUp1

]
aa|vp1

|−2Im�
R,(2)
p1,a

(
saξp1

)
∫

k[U †
k γ̂aUk]aa|vk|−2

. (20)
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GR
up1

GR
up2

GA
dp3

GR
up4

GR
up1

GR
up1

GR
up2

GA
dp3

GR
up4

GR
up1

FIG. 7. Diagrams describing the process of impact ionization,
presented in the form of a second-order contribution to the self-
energy of the single-particle Green’s function, �

R,(2)
p,a (ε), and the

corresponding many-particle process.

Figure 7 represents the process in which a fermion with
momentum p1 in the u band loses its energy by decaying
into a three-particle state with two fermions with momenta
p2 and p4 in u band and one hole with momentum p3
in the d band (similar process occurs for a hole in the d
band). Thus the number of particles in the u band is in-
creased. In semiconductors, such process is known as impact
ionization [67].

The Fermi’s Golden rule type of Eq. (17) (with �γ sub-
stituted by Dirac δ function) suggests that the rate of impact
ionization process has a threshold in Im�

R,(2)
p1,a (saξp1

) for the
momentum p1, see Eq. (20), due to the need to simultane-
ously satisfy the momentum and energy conservation laws
expressed by the Dirac δ functions [67]. For example, for the
model of Ref. [32] with ξp = p2 + m2 the threshold is given
as |p1|�

√
3m. We note that the diffuson’s self-energy 1/τa,

Eq. (17), involves Im�
R,(2)
p1,a (saξp1

) integrated over momentum
p1, Eq. (20), such that the threshold would not be crucial for
1/τa. In fact, due to broadening of the Green’s function in
the self-consistent Born approximation, cf. Eq. (6), Eq. (17)
involves the Lorentzian-type expression �γ , see Eq. (18), that
smears the hard threshold.

In GKSL Eq. (1), the process of impact ionization appears
because one of the fermion operators involved in Lj is not an
eigen-operator, but a linear combination of such. This leads to
additional “interference” or mixed contributions when terms
like L†

j L j are considered. Replacing the fermions in our model
with bosons results in the different sign for the second process
in Fig. 7. Consequently, 1/τa in Eq. (17) becomes positive.
Also the relative sign between the two terms in brackets in
Eq. (17) changes. Additionally, the last two diagrams in Fig. 6
no longer cancel each other.

C. Dissipative drag

The next type of the diffuson self-energy of the second
order in γ̄a allows combining diffusons from the different
bands into a single ladder (see Fig. 8). Denoting the sum of
diagrams in Fig. 8 as ϒaā(Q,�) we find that ϒaā(0, 0) =
(γ̄ā/γ̄a)�(ā)

I (0, 0) (see Appendix C). Summing the diffuson

R R

A A

=

R R

A A

R R

A A

= + + +

+ + +

FIG. 8. The contribution to the self-energy �
(a)
II , which corre-

sponds to the dissipative drag, and which is obtained from the
insertion of the ā diffuson into the a diffuson’s ladder. Red lines
denote the Green’s function from the other (ā) band. Diagrams ϒaā

are used to connect diffusons in different bands. Diagrams that could
have made a contribution, but turned out to be equal to zero, are
shown in pale color.

ladder with interchanged a and ā diffusons

D(0)
a + D(0)

a ϒaāD(0)
ā ϒāaD(0)

a + D(0)
a

(
ϒaāD(0)

ā ϒāaD(0)
a

)2 + . . .

= D(0)
a

/[
1 − ϒaāD(0)

ā ϒāaD(0)
a

]
, (21)

we find another contribution to the a-diffuson self-energy,
�

(a)
II � − [τaτā(D(ā)

jl Q jQl − i�)]−1 (see Appendix C). The di-
agrams in Fig. 8 resemble corrections to a Coulomb drag
between two species of fermions (in that case, the dashed
line denotes Coulomb interaction) [68], with the important
difference that our dissipative interaction does not conserve
the isospin associated with the u/d band index. Therefore, we
termed the discussed above contribution �

(a)
II as a dissipative

drag contribution.
Although �

(a)
II is formally of the fourth order in γ̄a,

since it contains the diffusive pole in the denominator,
effectively, it acts as if it is of the second order in γ̄a. To
demonstrate it we combine the above results for the self-
energies due to the impact ionization process and dissipative
drag into the following system of equations for the diffusons
in u/d bands,(

D(a)
jl Q jQl − i� − 1

|τa|
)

Da(Q,�) + 1

|τā|Dā(Q,�)

= 2γ̄ 2
a

[∫
k

[U †
k γ̂ (a)Uk]aa

|vk|2
]−1

. (22)

As one can see, both the impact ionization process and dissi-
pative drag provide the contribution of the same order, 1/|τa|
and 1/|τā|, respectively.

D. Nonradiative recombination

In previous calculations of the diffuson self-energy, we
used the Green’s functions (6), corresponding to the DS. There
is another type of self-energy corrections related to consid-
ering fermion density deviations δna from the DS. Nonzero
δna modifies the single particle self-energy, �p(ε), already
at the level of the Hartree-Fock diagrams (see Fig. 3). Using
such modified (by δna) single particle Green’s function in the
self-energy for calculation of the diffusive ladder, we find that
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the diffusion pole is modified by appearance of the self-energy
�

(a)
III . To the lowest order in density deviations and γ̄a, we find

�
(a)
III (0, 0) = −βsaδnā, (23)

with β = βu + βd, where (see Appendix D)

βa =
2γ a

∫
p[U †

p γ̂uUp]aa[U †
p γ̂dUp]aa|vp|−2∫

k[U †
k γ̂uUk]uu|vk|−2

∫
q[U †

q γ̂dUq]dd|vq|−2
. (24)

We note that the self-energy �
(a)
III of the diffuson in the a band

is proportional to the density deviation in the other ā band.
Such a process is known in semiconductors as band-to-band
nonradiative recombination [69]. There is no contribution to
�(a) proportional to δna in the first order in γ̄a. Such contri-
bution arises in the second order in γ̄a only and corresponds
to the Auger recombination [69], the inverse process to the
impact ionization [70].

V. FKPP-EQUATION

Combining Eq. (23) for the nonradiative recombination
with Eq. (22) for the diffuson in the presence of the impact
ionization and dissipative drag, we can cast the above results
as equations for the density deviation δna(x, t ) from the DS
(with nd = n and nu = 0):(

∂t − D(u)
jl ∇ j∇l − 1

|τu| − βδnd

)
δnu + δnd

|τd| = 0,

(
∂t − D(d)

jl ∇ j∇l − 1

|τd| + βδnu

)
δnd + δnu

|τu| = 0.

(25)

We note that the diagonal components of the inverse of the
matrix operator in the right-hand side of Eq. (25) reproduces
the diffuson with the self-energy �(a) discussed above. It is
convenient to introduce the total density deviation δn = δnu +
δnd and the imbalance δm = δnu − δnd. Then Eq. (25) can be
rewritten as(

∂t − D(+)
jl ∇ j∇l − 1

τ+

)
δm + β

2
(δm)2 =D(−)

jl ∇ j∇lδn+ δn

τ−

+ β

2
(δn)2, (∂t − D(+)

jl ∇ j∇l )δn = D(−)
jl ∇ j∇lδm, (26)

where D(±)
jl = (D(u)

jl ±D(d)
jl )/2 and τ−1

± = |τu|−1±|τd|−1. Ac-
cording to Eq. (26), the total density deviation is governed
by a pure diffusive equation that is the consequence of the
conservation of the total number of fermions. At half-filling,
one finds

∫
x δn(x, t ) = 0. Contrary to δn, the imbalance

is governed by the FKPP equation describing typically a
reaction-diffusion type dynamics [55–61].

Let us discuss possible homogeneous stationary solutions
of Eq. (26) at half-filling. In this case, the total particle
density vanishes, δn = 0. For the imbalance, we find an un-
stable solution, δm = 0, corresponding to the engineered DS.
There is also a stable solution δm∗ = 2/(βτ+), appearing at
the first order in γ̄a, such that the density |δna| = δm∗/2�n.
The imbalance at the stable stationary state can be estimated
from above as follows.

With the inequality for an arbitrary unitary matrix Uq,

min{γ̂a} �
[
U †

p1
γ̂aUp1

]
aa

� max{γ̂a}, (27)

and the inequality

|Aud|2 + |Adu|2 = trA†A − |Auu|2 − |Add|2 � trA†A, (28)

we find

δm∗ � max{γ̂u} max{γ̂d}[max2{γ̂u} + max2{γ̂d}]
min{γ̂u} min{γ̂d}[min{γ̂u} + min{γ̂d}]

×
∫

pi

δ(p1 − p2 + p3 − p4)δ
(
ξp1

− ξp2
− ξp3

− ξp4

)
× tr

[
v∗

p4
U †

p2
− v∗

p2
U †

p4

][
vp4

Up2
− vp2

Up4

]
. (29)

Here the trace in the last line can be written in a manifestly
positive form

∑
a,α|[vp4

Up2
− vp2

Up4
]α,a|2, which in turn can

be bounded as follows:∑
a,α

∣∣[vp4
Up2

− vp2
Up4

]
α,a

∣∣2

�
∑
a,α

(∣∣vp4

[
Up2

]
α,a

∣∣ + ∣∣vp2

[
Up4

]
α,a

∣∣)�4
(∣∣vp4

∣∣2 + ∣∣vp2

∣∣2)
.

(30)

From this, we finally derive the estimate

δm∗ � 4π

n

max{γ̂u} max{γ̂d}[max2{γ̂u} + max2{γ̂d}]
min{γ̂u} min{γ̂d}[min{γ̂u} + min{γ̂d}]

×
∫

pi

δ
(
ξp2−p3+p4

− ξp2
− ξp3

− ξp4

)(∣∣vp4

∣∣ + ∣∣vp2

∣∣)2
.

(31)

The spatial and temporal dynamics of δnu and δnd, as
governed by Eq. (26), closely resemble those of the stan-
dard FKPP equation [71,72]: at early times, the densities
spread diffusively, and at longer timescales, a ballistic front
emerges (see Fig. 9). However, unlike the one-component
FKPP equation—which, after suitable rescaling, becomes
entirely universal with no adjustable parameters—the two-
component system described by Eq. (26) depends crucially
on the relation between the diffusion coefficients, D(−)/D(+),
and the impact ionization times, τ+/τ−. To illustrate how these
parameters influence the dynamics, we solved Eq. (26) nu-
merically on a one-dimensional interval (−L, L) with periodic
boundary conditions. The initial configuration consisted of
two spatially separated peaks in the local density deviations
from half-filling, arranged so that the total integrated deviation
is zero. Specifically, we placed an excess of particles in the
upper band near x = L/4, while an equivalent number of holes
in the lower band was localized near x = −L/4.

We first consider the case of identical diffusion constants
D(u) = D(d) (i.e., D(−)/D(+) = 0), but with very different im-
pact ionization rates, 1/|τu|�1/|τd|. Under this condition, the
density in the lower band decays very rapidly in regions where
upper-band particles are present (and thus δnd quickly grows
in magnitude). Figure 9(a) confirms this fast “inflation” of a
second peak in δnd at x = L/4, which develops much more
quickly than the initial peak at x = −L/4. After this rapid
initial phase, both peaks evolve into ballistically propagat-
ing fronts traveling at the same velocity. Next, we include
strong anisotropy in the diffusion coefficients, D(−)/D(+)∼1,
which strongly affects the “inflation” stage [Fig. 9(b)]. In
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FIG. 9. Numerical solution of the FKPP equations (25) in d = 1 on a finite interval x ∈ (−L, L) with L = 100 and periodic boundary
conditions, for several values of D(−)/D(+) and τ+/τ−. Here the distance x is measured in units of

√
τ+D(+), the time t is in units of τ+, and

the density deviations are in units of 2/βτ+. In all cases, the initial condition is δnu/d(x, 0) = ±0.1 exp{−2L sin2(π (x ∓ L/4)/2L)}. (a)–(d)
The density deviations for the following parameters {D(−)/D(+), τ+/τ−} = {0, 0.99}, {0.99, 0.99}, {0.99, −0.99}, {0.99, 0} (from left to
right), with each row corresponding to one of the densities, i.e., δnu, |δnd|, δn = δnu + δnd, or δm = δnu − δnd (from top to bottom).

this regime, the lower-band density fluctuation barely diffuses
on its own [as evidenced by the negligible spreading of the
initial peak at x = −L/4 in the second row in Fig. 9(b)].
Once the local densities in both bands become comparable,
however, the dissipative drag again drives a ballistic front.
Because down-band particles are slow, the total density devia-
tion δn = δnu + δnu at the front is positive (the front contains
more up-band particles than down-band holes), leaving be-
hind a negative deviation at the original position of the δnd
peak at x = −L/4. When τ+/τ− is close to −1 (but still
with D(−)/D(+)∼1), the spatial dynamics of the down-band
holes becomes very slow, leading to a reduced front veloc-
ity compared to the previous scenario [Fig. 9(c)]. Finally, in
the case of identical impact ionization times, |τu| = |τd|, the
late-time evolution is fairly symmetric across the two bands—
even if their diffusion constants differ significantly—resulting
in nearly identical fronts in both δnu and δnd, as shown
in Fig. 9(d).

We also note that the two-component FKPP equation (25)
shares certain similarities with other well-studied reaction-
diffusion universality classes, such as two-component
Fitzhugh–Nagumo systems [73,74]. However, to the best of
our knowledge, the complete classification of all possible
dynamical regimes and traveling wave solutions of Eq. (25)
remains an unsolved mathematical problem. It would be in-
teresting to see how the late-time and long-distance dynamics
predicted by Eq. (25) emerges in a direct numerical solution
of the GKSL master equation (1) for our model.

VI. DISCUSSIONS

The most significant outcome of Eq. (26) is the instability
of the engineered DS with a completely empty upper band,
δm = δn = 0. This instability is caused by the negative rate
1/τa, which has a clear physical origin in the process of im-
pact ionization, generating fermions in the u band and holes in
the d band. The FKPP Eq. (26) predicts another stable steady
state with nonzero δna = ±δm∗/2, suggesting that the models
under consideration have a dark space rather than a unique
DS. It would be interesting to test this result against recent
proofs of the uniqueness of a DS for GSKL equation on a lat-
tice [48,49]. We also note that various sufficient conditions for
the emergence of multiple dark states have been discussed in
the literature (see, for example, Refs. [64,65]), often empha-
sizing the role of strong symmetries and conserved quantities.
While a strong U (1) symmetry is indeed a fundamental fea-
ture of our model, we stress that our instability mechanism
(as described in Sec. IV B and illustrated in Fig. 7) has a more
subtle origin. Specifically, it arises from the interference or
“mixed” processes in Eq. (1), involving terms of the form L†L.
Since our results are derived in regime of weak dissipation,
γ̄a�1, we cannot exclude the possibility that the engineered
DS is stabilized with increasing γ̄a, allowing for a potential
phase transition between two different steady states.

In the weak dissipation regime, γ̄a�1, one can avoid the
instability of the dark state if 1/τa vanishes identically. This
requires complete destructive interference of the two pro-
cesses shown in Fig. 7. The off-shell condition for this to
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happen is very restrictive: Up = vpU and |vp| = 1, where U
is an arbitrary constant unitary matrix. As an example of
on-shell complete destructive interference, we can mention a
d = 1 version of the model of Ref. [32] with γa,α = γ . In this
case, one has to compute corrections of the third order in γ̄a
to the diffuson’s self-energy. However, already for γa,1 �= γa,2

this complete destructive interference disappears, and there
is a nonzero 1/τa in the second order in γ̄a. Additionally,
a finite magnitude of 1/τa can be obtained in models with
a momentum-independent rotation matrix Up and arbitrary
momentum-dependent vp.

Another possible way to avoid the instability inherent in
Eq. (17) is the limiting case where the energy conservation
condition cannot be fulfilled (e.g., for ξp = const). In this
scenario, one must account for the dissipation-induced broad-
ening of the δ-function in Eq. (17) beyond Fermi’s Golden
rule [see Eq. (A2)]. This results in 1/τa ∝ γ̄ 3

a , so that further
analysis of other O(γ̄ 3

a ) contributions is required, which we
did not attempt here. In the other extreme case without any
Hamiltonian evolution (ξp ≡ 0), the system is always at strong
coupling. This is evident by simply rescaling the time variable
in Eq. (1) as t→t/ min{γ̄a}, eliminating a small parameter.
This is inconsistent with our initial assumption that the devi-
ation from the DS parametrically small. Thus, more involved
analysis is needed than that presented above.

It is also important to emphasize that our results obtained
in the continuous limit may not necessarily hold for small
finite-size systems. The point lies in the discreteness of the
spectrum ξp in a system of a finite size L. As well known
[75–84], the computation of decay and broadening for discrete
levels is a complicated problem. Our computations of rates for
the impact ionization process and dissipative drag were based
essentially on the Fermi’s Golden rule approximation. They
are both related to a decay of a fermion, e.g., from the u band,
into the three particle state; see Fig. 7. The corresponding
three-particle level spacing can be estimated as

1

�3(ξp)
= L3d

∫
pj

δ
(
ξp − ξp1

− ξp2
− ξp3

)
. (32)

For the process to be efficient and its rate to be described
by the Fermi’s Golden rule, the magnitude of the energy
broadening in Eq. (20) has to be larger than the three particle
level spacing [77],∣∣Im�R,(2)

p,u (ξp)
∣∣ � �3(ξp). (33)

The above inequality limits the system sizes for which Fermi’s
Golden rule is applicable from below, L� max Lξp . For a
gapped spectrum ξp, both Im�

R,(2)
p,u (ξp) and 1/�3(ξp) vanish

provided that ξp is below the threshold value, and thus, the
length Lξp tends to infinity for such ξp. As we discussed in
Sec. IV B the hard thresholds related with the Dirac δ func-
tions due to energy conservation are relaxed in virtue of the
Green’s function broadening within the self-consistent Born
approximation. Still it makes the length Lξp finite but large as
γ̄a→0. Therefore, to test the applicability of our predictions
to a numerical simulation or physical experiment one has to
carefully estimate the system sizes needed.

To provide a more concrete criterion for how large the
system size has to be, we apply the condition from Eq. (33)

to the impact ionization rates given in Eq. (20), which, in
combination with the bound Eq. (27), leads to

|1/τa| � 2 min{γ̂a}
max{γ̂a}

∫
k |vk|−2

∫
p

�3(ξp)

|vp|2 (34)

for any choice of the unitary matrices Up. For example, for
the model of a topological insulator from Ref. [32], in which
ξp = p2 + m2, vp = √

ξp, and γ̄a≡γ̄ , one finds

1

�3
= L3d S3d

2(2π )3d

[
(ξp − 3m2)

3d−2
2 �(ξp − 3m2) + ad γ̄ n3− 2

d
]
,

(35)

where �(x) denotes the Heaviside step function,
ad = 2(2π )3d−2(3d/S3d )1−2/(3d )/(3d − 2), and S3d =
2π3d/2/�(3d/2) stands for the area of the unit sphere in
3d-dimensional space. The last term in Eq. (35) originates
from the broadening of the Dirac δ function in Eq. (32)
due to imaginary part of the Green’s function within the
self-consistent Born approximation, cf. Eq. (6). Now let us
focus on the dimensions d = 1 and d = 2. After performing
the integration on the r.h.s. of Eq. (34), and using the
continuous-limit result |1/τu| = bd γ̄

2m2 with b1 = π/2
and b2 = 8/3 for γ̄ n/md�1 (see Appendix E), we find the
following estimate for the system size,

nLd � cd

γ̄

( n

md

)2/(3d )
, γ̄ n/md � 1. (36)

Here we introduced the numerical constant cd =
(2π )d [S3d ad bd/4]−1/3. We note that the above inequality
is satisfied already at the length L ∼

√
τ+D(+).

It should also be noted that all parameters in the FKPP
Eq. (25) will acquire higher-order fluctuation-induced correc-
tions, which involve insertions of additional diffusons in the
internal loop integrals. In sufficiently low spatial dimensions,
these corrections could lead to scale-dependent renormaliza-
tions and affect stability of steady states. As known [85–88],
such fluctuation effects can induce absorbing phase transitions
in classical stochastic reaction-diffusion models described by
FKPP-like equations at the mean-field level. This provides
further support for a possible phase transition between two
steady states in our problem. We leave the investigation of
fluctuation corrections for future work.

Finally, we mention that the instability of the dark state can
be affected by the presence of interaction between fermions
and by a quenched disorder in the Hamiltonian part of the
GSKL equation, Eq. (1). In particular, dissipation-induced
diffusion in our model, combined with additional fermion
interactions, is likely to produce a strong scale-dependent
renormalization of the local density of states and conductiv-
ity, analogous to the well-known Altshuler-Aronov effect in
disordered conductors [89]. Formally, interactions introduce
an additional quartic operator in the Keldysh field theory
action, which, unlike the number-conserving dissipation ex-
amined here, does not couple the two branches of the Keldysh
contour [5]. The methods developed in this work allow for
a straightforward inclusion of this modification within per-
turbation theory. However, in the second-order perturbation
theory the dissipation-induced contribution to the impact ion-
ization, 1/τa, will not interfere with the contribution from the
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electron-electron interaction [67]. The reason is that diagrams
in Fig. 6 that do not vanish due to causality in the time domain
(all diagrams except the first two diagrams in the second line
of Fig. 6) involve a single Green’s function from the other
band. This implies that both dashed lines change the band
index on one of their two sides. Since electron-electron in-
teractions do not exhibit this property, one cannot replace one
of dissipation-induced dashed lines with an interaction line.
Therefore, we expect the dissipation-induced and interaction-
induced contributions to the ionization rates to be simply
additive (when both dissipation and interactions are weak). As
a result, our conclusions should remain valid within at least
some range of parameters in the interacting model.

VII. SUMMARY

To summarize, we studied particle-number-conserving dis-
sipative dynamics for a class of two-band fermionic models.
Although the jump operators in these models are engineered
to guarantee the dark state with the completely empty upper
band, we found that this dark state is generically unstable, at
least in a weak dissipation regime. We discovered that this in-
stability originates from impact ionization, a physical process
well known in semiconductors. We derived equations govern-
ing the evolution of densities in each band, resembling FKPP
reaction-diffusion equations. These equations indicate a stable
steady state with a nonzero population in the upper band. Even
though the instability we found is very general, posing severe
limitations on the possibility of stabilizing dark states with
particle-conserving dissipation, we have outlined several fine-
tuned situations that circumvent it. These conditions could
be utilized in designing future implementations of dissipative
protocols.

In the future, we aim to extend our research in two di-
rections: (i) deriving the kinetic equation for the distribution
function which is a 2 × 2 matrix in band space (essentially,
a kind of semiconductor Bloch equation; see, e.g., Ref. [90]),
which will allow us to understand energy resolved interplay
between impact ionization and nonradiative recombination
and how particles in a stable steady state are distributed in
the momentum space and (ii) examining the stability of the
dark state under strong dissipation, fluctuation effects, as well
as the presence of electron-electron interaction. Additionally,
it would be beneficial to test our predictions using numerical
simulations of lattice models.
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APPENDIX A: CALCULATION OF THE SELF-ENERGY

In this section, we calculate the self-energy contribution �
(a)
I , which consists of the diagrams, depicted in Fig. 6.

Let us look at diagrams that give a nonzero contribution (indicated in full color in Fig. 6). Some arrangements of indices on
the diagrams turn out to be zero. To select the right ones, we need to keep an eye on four things: (1) the structure of Keldysh
dissipative action; (2) the matrix representation of the single-particle Green’s functions, Gp,a(ε) = GR

p,a(ε)�(+)
a + GA

p,a(ε)�(−)
a

[see Eq. (10)]; (3) the definitions of the four matrices L(a,α) [see Eq. (5)]; (4) location of the poles of Green’s functions when
integrating over frequencies. After taking into account all the details, there will be only one possible arrangement of indices left
on each diagram, see Fig. 10.

Remembering the definition (14), we get

�
(a)
I (Q,�) =

∫
q,ω,p,ε

vq+v∗
q−

[U †
p+

γ̂ (a)Up−]aaGR
q+,a(ω+)GA

q−,a(ω−)GR
p+,a(ε+)

∫
ε,k,ε′,k′

(2π )d+1δ(ω − ε)δ(q − p)

× {vk′+q+v∗
k |vq+|2[U †

k′+q+
γ̂ (a)Uk+k′]aa[U †

k+k′ γ̂
(a)Uk]aa − |vq++k′ |2|vq+|2[U †

k γ̂ (a)Uk+k′]aa[U †
k+k′ γ̂

(a)Uk]aa}
× GR

k,a(ε)GA
k+k′,a(ε + ε′)GR

q++k′,a(ω+ + ε′) + c.c. (A1)

GR a
(ω

+
)

GR a
(ω

+
)

GA
a (ω−)

GR
a (ε)

GA
a (ε+ε′) GR

a (ε′+ω+)
GR

a (ω+) GR
a (ω+)

GA
a (ω−)

GR
a (ε)

GA
a (ε+ε′)

GR
a (ω++ε′)

FIG. 10. Arrangement of indices on diagrams that make a real contribution to �
(a)
I (0, 0). Complex conjugates are omitted. The arrangement

of matrices L and L on these diagrams is uniquely determined by a = u or a = d.
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GR
a (ω+) GR

a (ε+)

GA
a (ω−) GA

a (ε−)

=
GR

a (ω+) GR
a (ε+)

GA
a (ω−) GA

a (ε−)

= 0

GR
a (ω+) GR

a (ε+)

GA
a (ω−) GA

a (ε−)

GR,A
a (ω+ε) GA,R

a (ε+ε) +
GR

a (ω+) GR
a (ε+)

GA
a (ω−) GA

a (ε−)

G
R

,A
a

(ω
+

ε) GA
,R

a
(ε

+
ε)

= 0

GR
a (ω+) GR

a (ε+)

GA
a (ω−) GA

a (ε−)

GR,A
a (ω+ε)GA,R

a (ε+ε)

+
GR

a (ω+) GR
a (ε+)

GA
a (ω−) GA

a (ε−)

GR,A
a (ω+ε)GA,R

a (ε+ε)

= 0

FIG. 11. A way of canceling the diagrams that do not contribute to the self-energy at zero momentum Q and zero frequency �. The
arrangement of matrices L and L on these diagrams is uniquely determined by a = u or a = d.

In this formula, the curly braces in the second line contain two terms. The first term can be of any sign and corresponds to a
diagram with two intersecting arcs in Fig. 10. The second term corresponds to the diagram with a fermion bubble in Fig. 10 and
is always negative due to the presence of this bubble.

The result for �
(a)
I (0, 0), cf. Eq. (16), after integration over frequencies and simplification has the form

�
(a)
I (0, 0) = − (2π )d∫

k[U †
k γ̂ (a)Uk]aa|vk|−2

∫
pi

δ(p1 − p2 + p3 − p4)
∣∣(vp4

U †
p3

γ̂aUp2
− vp2

U †
p3

γ̂aUp4

)
āa

∣∣2

× [
U †

p1
γ̂ (a)Up1

]
aa

γ a

∣∣vp1

∣∣2 + γ a

∣∣vp2

∣∣2 + γ a

∣∣vp3

∣∣2 + γ a

∣∣vp4

∣∣2

(ξp1
− ξp2

− ξp3
− ξp4

)2 + (
γ a

∣∣vp1

∣∣2 + γ a

∣∣vp2

∣∣2 + γ a

∣∣vp3

∣∣2 + γ a

∣∣vp4

∣∣2)2 . (A2)

Here we see that the terms coming from the diagrams with arcs and with a bubble in Fig. 10 gathered into a complete square,
and the final expression turned out to be strictly nonpositive, �

(a)
I (0, 0)�0.

Now let us look at how all the other diagrams in Fig. 3(c) in the main text (pale ones) vanish. The contraction mechanism is
shown in Fig. 11. For example, two diagrams with crosses are equal to zero even with nonzero momentum Q and frequency � due
to causality: the poles of the Green’s functions, which participate in integration over frequencies, cannot be placed on opposite
sides of the real axis. The remaining four diagrams are themselves nonzero, but are canceled in pairs after the momentum Q and
frequency � are equated to zero.

Let us denote these second order diagrammatic insertions in Fig. 10 as �
(a)
I,1 (Q,�), �

(a)
I,2 (Q,�), �

(a)
I,3 (Q,�), �

(a)
I,4 (Q,�)

(bubble, square, crossed arch above, crossed arch below, respectively) and write down their values.

�
(a)
I,1 (Q,�) = −sa

∫
q,ω,p,ε

vq+v∗
q−

[U †
p+

γ̂ (a)Up−]aaGR
q+,a(ω+)GA

q−,a(ω−)GR
p+,a(ε+)GA

p−,a(ε−)
∫

ε,k
vp+v∗

p−
|vp+k|2

× [U †
q+ γ̂ (a)Uq+k]aa[U †

q+kγ̂
(a)Uq−]aa

{
GR

p+k,a(ε + ε)GA
q+k,a(ω + ε) + GA

p+k,a(ε + ε)GR
q+k,a(ω + ε)

}
, (A3)

�
(a)
I,2 (Q,�) = sa

∫
q,ω,p,ε

vq+v∗
q−

[U †
p+

γ̂ (a)Up− ]aaGR
q+,a(ω+)GA

q−,a(ω−)GR
p+,a(ε+)GA

p−,a(ε−)
∫

ε,k
vp+v∗

p−
vq−v∗

q+

× [U †
p+kγ̂

(a)Uq+k]aa[U †
q+kγ̂

(a)Up+k]aa
{
GR

p+k,a(ε + ε)GA
q+k,a(ω + ε) + GA

p+k,a(ε + ε)GR
q+k,a(ω + ε)

}
, (A4)

�
(a)
I,3 (Q,�) =

∫
q,ω,p,ε

vq+v∗
q− [U †

p+ γ̂ (a)Up− ]aaGR
q+,a(ω+)GA

q−,a(ω−)GR
p+,a(ε+)GA

p−,a(ε−)
∫

ε,k
vp+v∗

p−vp+kv
∗
q+

× [U †
p+kγ̂

(a)Uq+k]aa[U †
q+kγ̂

(a)Uq− ]aa
{
GR

p+k,a(ε + ε)GA
q+k,a(ω + ε) − GA

p+k,a(ε + ε)GR
q+k,a(ω + ε)

}
, (A5)

�
(a)
I,4 (Q,�) =

∫
q,ω,p,ε

vq+v∗
q−

[U †
p+

γ̂ (a)Up− ]aaGR
q+,a(ω+)GA

q−,a(ω−)GR
p+,a(ε+)GA

p−,a(ε−)
∫

ε,k
vp+v∗

p−
vq−v∗

p+k

× [U †
q+ γ̂ (a)Uq+k]aa[U †

q+kγ̂
(a)Up+k]aa

{
GA

p+k,a(ε + ε)GR
q+k,a(ω + ε) − GR

p+k,a(ε + ε)GA
q+k,a(ω + ε)

}
. (A6)

After integration and change of variables, it is easy to verify that

�
(a)
I,2 (0, 0) = −�

(a)
I,1 (0, 0) = sa

2γ 2
a

∫
q,p,k

|vq|2[U †
p γ̂ (a)Up]aa[U †

p+kγ̂
(a)Uq+k]aa[U †

q+kγ̂
(a)Up+k]aa

× γ a|vq+k|2 + γ a|vp+k|2 + γ a|vp|2 + γ a|vq|2
(ξq+k + ξp+k − ξp + ξq)2 + (γ a|vq+k|2 + γ a|vp+k|2 + γ a|vp|2 + γ a|vq|2)2

, (A7)
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GR
a (ω+) GR

a (ε+)

GA
a (ω−) GA

a (ε−)

GR
a (ω+ε) GA

a (ε+ε)

GR
a (ω+) GR

a (ε+)

GA
a (ω−) GA

a (ε−)

GA
a (ω+ε) GR

a (ε+ε)

FIG. 12. Two possible arrangements of indices on the bubble diagram �
(a)
bub(Q, �). The arrangement of matrices L† and L on these diagrams

is uniquely determined by a = u or a = d.

�
(a)
I,3 (Q,�) = −�

(a)
I,4 (Q,�) = isa

2γ 2
a

∫
q,p,k

vp+kv
∗
q [U †

p γ̂ (a)Up]aa[U †
p+kγ̂

(a)Uq+k]aa[U †
q+kγ̂

(a)Uq]aa

× ξq+k + ξp+k − ξp + ξq

(ξq+k + ξp+k − ξp + ξq)2 + (γ a|vq+k|2 + γ a|vp+k|2 + γ a|vp|2 + γ a|vq|2)2
. (A8)

APPENDIX B: DETAILED CALCULATION OF ONE OF THE CONTRIBUTIONS TO THE SELF-ENERGY

To give a clearer idea of the diagrammatic technique used, we present in this section a detailed calculation for a diagram with
a bubble connected by dissipative lines with the retarded and advanced branches of the diffuson; see Fig. 11. First, we rewrite
the dissipative action (4) as

SL = i(2π )d

2

∫
pj ,t

δ(p1 − p2 + p3 − p4)
∑
a,α

∑
ν,μ=0,1

Pμνγa,αcp1
τμ

[
L(a,α)

p2 p1

]†
cp2

cp3
τνL(a,α)

p3 p4
cp4

. (B1)

Here we introduce 2 × 2 matrix Pμν = {{2, 1}, {−1, 0}}. τ0 and τ1 are the identity matrix and the standard τx Pauli matrix, acting
in the Keldysh space. Let us also recall the matrix structure of the single-particle Green’s functions, Gp,a(ε) = GR

p,a(ε)�(+)
a +

GA
p,a(ε)�(−)

a ; see Eq. (10). These notations allow us to formulate specific selection rules for diagrams, stated at the beginning of
the Appendix A:

(1) the structure of the matrix Pμν prohibits connections of vertices �
(+)
u τμ or τμ�

(−)
d with �

(+)
d τν or τν�

(−)
u via dissipative

lines;
(2) Eq. (10) leads to �

(+)
a τμ�

(−)
a = 0;

(3) Eq. (5) leads to [L(a,α)
pq ]ud = [L(a,α)

pq ]†
du = 0 and [L(a,α)

p1 p2
]†
uu[L(a,α)

p3 p4
]dd = [L(a,α)

p1 p2
]†
dd[L(a,α)

p3 p4
]uu = 0;

(4) the poles of the Green’s functions in the integrals over frequencies must be located on different sides of the integration
contour, otherwise these integrals will give zero.

According to these rules, there are two ways to arrange the indices on the bubble diagram, see Fig. 12.
To be specific, let us set a = u. The sum of inserted diagrams on Fig. 12 equals

ξ
(u)
I,1 (Q,�, q, ω, p, ε)[�(+)

u ]ββ ′
[�(−)

u ]γ γ ′ = −1

4

∫
ε,k

∑
a,α

∑
ν,μ

∑
a′,α′

∑
ν ′,μ′

Pμνγa,αPμ′ν ′
γa′,α′ [�(+)

u τν�
(+)
u ]ββ ′

[�(−)
u τμ′�(−)

u ]γ γ ′

× [
L(a,α)

(q+k)(p+k)

]†

ud

[
L(a,α)

q+ p+

]
uu

[
L(a′,α′ )

q− p−

]†

uu

[
L(a′,α′ )

(q+k)(p+k)

]
du

×
∑

δ

{
GR

q+k,d(ω + ε)GA
p+k,u(ε + ε)[�(−)

u τμ�
(+)
d τν ′]δδ

+ GA
q+k,d(ω + ε)GR

p+k,u(ε + ε)[�(+)
u τμ�

(−)
d τν ′ ]δδ

}
= −[�(+)

u ]ββ ′
[�(−)

u ]γ γ ′
∫

ε,k
vp+v∗

p−
|vp+k|2[U †

q+
γ̂ (u)Uq+k]ud[U †

q+kγ̂
(u)Uq−]du

× {
GR

p+k,u(ε + ε)GA
q+k,d(ω + ε) + GA

p+k,u(ε + ε)GR
q+k,d(ω + ε)

}
. (B2)

Here Dirac δ function with the law of conservation of momentum is removed by integration over the fourth momentum. Using
the definition (14), we find

�
(u)
I,1 (Q,�) =

∫
q,ω,p,ε

vq+v∗
q−

[U †
p+

γ̂ (u)Up− ]uuGR
q+,u(ω+)GA

q−,u(ω−)GR
p+,u(ε+)GA

p−,u(ε−)ξ (u)
I,1 (Q,�, q, ω, p, ε). (B3)
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FIG. 13. Arrangement of indices on diagrams that make a real contribution to ϒaā(0, 0). The arrangement of matrices L and L on these
diagrams is uniquely determined by a = u or a = d.

After the integration over frequencies (ε, ω, ε), this expression takes the form

�
(u)
I,1 (Q,�) = i

∫
q,p,k

vq+v∗
q−

vp+v∗
p−

|vp+k|2[U †
p+

γ̂ (u)Up−]uu[U †
q+

γ̂ (u)Uq+k]ud[U †
q+kγ̂

(u)Uq− ]du

[� − ξq+ + ξq− + iγ u(|vq+|2 + |vq−|2)][� − ξp+ + ξp− + iγ u(|vp+|2 + |vp−|2)]

×
{

1

� + ξq+k + ξp+k − ξp+ + ξq− + i(γ d|vq+k|2 + γ u|vp+k|2 + γ u|vp+|2 + γ u|vq−|2)

− 1

−� + ξq+k + ξp+k − ξp− + ξq+ − i(γ d|vq+k|2 + γ u|vp+k|2 + γ u|vp−|2 + γ u|vq+|2)

}
. (B4)

For zero momentum Q = 0 and zero frequency � = 0, we have

�
(u)
I,1 (0, 0) = − 1

2γ 2
u

∫
q,p,k

|vp+k|2[U †
p γ̂ (u)Up]uu[U †

q γ̂ (u)Uq+k]ud[U †
q+kγ̂

(u)Uq]du

× γ d|vq+k|2 + γ u|vp+k|2 + γ u|vp|2 + γ u|vq|2
(ξq+k + ξp+k − ξp + ξq)2 + (γ d|vq+k|2 + γ u|vp+k|2 + γ u|vp|2 + γ u|vq|2)2

, (B5)

which coincides with Eq. (A7).

APPENDIX C: INSERTION OF AN OPPOSITE BAND DIFFUSON INSIDE THE LADDER

Now let us move on to the self-energy contribution �
(a)
II , which is obtained as a result of combining diffusons from the

different bands into a single ladder (see Fig. 8). First, we need to calculate transition diagrams that are needed to connect two
different diffusons. Let us denote them as ϒaā(Q,�) and consider all possible variants of diagrams with a minimum number of
diffusion lines (namely, two), which have u ends on one side and d ends on the other (see Fig. 13).

Remembering the definition (14) (but now we need to take into account that there are different diffusons on both sides),
we get

ϒaā(Q,�) = − 4γ̄ 2
a∫

k[U †
k γ̂ (a)Uk]aa|vk|−2

∫
q,ω,p,ε

vq+v∗
q−

[U †
p+

γ̂ (ā)Up−]āaGR
q+,a(ω+)GA

q−,a(ω−)GR
p+,ā(ε+)GR

p−,ā(ε−)

×
∫

ε,k
vq+kvp+v∗

p−
[U †

q+
γ̂ (a)Up−k]aa(v∗

p−k[U †
q+kγ̂

(a)Uq− ]aa − v∗
q+k[U †

p−kγ̂
(a)Uq−]aa)

× {
GR

q+k,a(ω + ε)GR
p−k,a(ε − ε) + GA

q+k,a(ω + ε)GA
p−k,a(ε − ε)

}
. (C1)

After integration over frequencies, we obtain

ϒāa(0, 0) = − γ̄a(2π )d

γ a

∫
k[U †

k γ̂ (a)Uk]aa|vk|−2

∫
pi

δ(p1 − p2 + p3 − p4)
∣∣(vp4

U †
p3

γ̂aUp2
− vp2

U †
p3

γ̂aUp4

)
āa

∣∣2
[U †

p1
γ̂ (a)Up1

]aa

× γ a

∣∣vp1

∣∣2 + γ a

∣∣vp2

∣∣2 + γ a

∣∣vp3

∣∣2 + γ a

∣∣vp4

∣∣2

(ξp1
− ξp2

− ξp3
− ξp4

)2 + (
γ a

∣∣vp1

∣∣2 + γ a

∣∣vp2

∣∣2 + γ a

∣∣vp3

∣∣2 + γ a

∣∣vp4

∣∣2)2 . (C2)

We find, unexpectedly, that ϒāa(0, 0) = (γ̄a/γ̄ā)�(a)
I (0, 0). The resulting a-diffuson self-energy contribution is �

(a)
II (0, 0) =

[τaτā(D(ā)
jl Q jQl − i�)]−1.

Now let us look at how all the other diagrams in Fig. 3(e) in the main text (pale ones) vanish. They are shown in detail in
Fig. 14. These diagrams are equal to zero even with nonzero momentum Q and frequency � due to causality: The poles of the
Green’s functions, which participate in integration over frequencies, cannot be placed on opposite sides of the real axis.
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GR
a (ω+) GR

a (ε+)

GA
a (ω−) GA

a (ε−)

=
GR

a (ω+) GR
a (ε+)

GA
a (ω−) GA

a (ε−)

=
GR

a (ω+) GR
a (ε+)

GA
a (ω−) GA

a (ε−)

=
GR

a (ω+) GR
a (ε+)

GA
a (ω−) GA

a (ε−)

= 0

FIG. 14. Connecting diagrams for diffusons of different bands, which turned out to be equal to zero due to causality. The arrangement of
matrices L and L on these diagrams is uniquely determined by a = u or a = d.

APPENDIX D: RECOMBINATION

We now analyze the last contribution to the self-energy, �
(a)
III . It is related with calculation of the Hartree-Fock diagrams (see

Fig. 3) taking into account fermion density deviations δna from the dark state. Until now, we have used exclusively the dark
state Green’s functions and considered the contributions to the self-energy of second order in γ a. Now we are interested in the
contribution of the first order in γ a, which is also proportional to the δna, since we are going to take into account the deviation
of the Green’s functions from the dark state. The calculation is carried out in terms of the Keldysh component of the Green’s
function, so we introduce the notation

δGK
p = i

(
δup, δηp

δη∗
p δdp

)
. (D1)

Here we use the deviations of the particle distribution functions in the upper and lower bands, δup and δdp. They are related
to the density deviations in a simple way,

δnu =
∫

p
δup, δnd =

∫
p
δdp. (D2)

In this notation, after calculating the Hartree-Fock diagrams with shifted Green’s functions (D1), for the upper band we get
the result:

�
(u)
III (0, 0) = i

∫
q,p,ω

|vq|2
[
U †

q γ̂ (u)Uq
]

uu
GR

q,u(ω)GA
q,u(ω)

{[
GR

q,u(ω) + GA
q,u(ω)

]([
vqv

∗
p[U †

q γ̂ (u)Up]uu − vpv
∗
q [U †

p γ̂ (u)Uq]uu
]
δup

+ [
vqv

∗
p[U †

q γ̂ (u)Up]udδη
∗
p − vpv

∗
q [U †

p γ̂ (u)Uq]duδηp
]) + [

GR
q,u(ω) − GA

q,u(ω)
]

× ([|vq|2[U †
p γ̂ (u)Up]uu − |vp|2[U †

q γ̂ (u)Uq]uu
]
δup + [|vq|2[U †

p γ̂ (u)Up]duδηp + |vq|2[U †
p γ̂ (u)Up]udδη

∗
p

]
+ [|vp|2[U †

q γ̂ (d)Uq]uu + |vq|2[U †
p γ̂ (u)Up]dd

]
δdp

)}
. (D3)

This expression can be simplified using the property of the distribution functions obtained in previous work [54]. In that
article, the formulas were obtained for a specific model, and here we present their generalization:

δup = [U †
p γ̂ (u)Up]uu

γ u|vp|2
∫

k
|vk|2δuk, δdp = [U †

p γ̂ (d)Up]dd

γ d|vp|2
∫

k
|vk|2δdk. (D4)

Similar relations can be written for off-diagonal elements, δηp. Using them, it can be shown that the terms of the Eq. (D3)
with δηp and δη∗

p have a higher order in γ̄a than the terms proportional to the diagonal elements, δup and δdp. Therefore, they
will not be included in the final answer.

Simplifying the expression (D3) using formulas (D4), we get

�
(u)
III (0, 0) = −

2
∫

p |vp|−2
(
γ d[U †

p γ̂ (u)Up]uu[U †
p γ̂ (d)Up]uu + γ u[U †

p γ̂ (u)Up]dd[U †
p γ̂ (d)Up]dd

)
∫

k[U †
k γ̂ (u)Uk]uu|vk|−2

∫
q[U †

q γ̂ (d)Uq]dd|vq|−2
δnd. (D5)

For the lower band everything is similar.
Therefore, to the lowest order of density deviations and γ̄a, we find �

(a)
III (0, 0) = −βsaδnā with β = βu + βd, where

βa =
2γ a

∫
p[U †

p γ̂uUp]aa[U †
p γ̂dUp]aa|vp|−2∫

k[U †
k γ̂uUk]uu|vk|−2

∫
q[U †

q γ̂dUq]dd|vq|−2
. (D6)

APPENDIX E: ESTIMATION OF |1/τu| FOR THE SPECIFIC MODEL OF A TOPOLOGICAL INSULATOR

Let us calculate the leading contribution to the self-energy |1/τa| for the model of a two-dimensional topological insulator
from Ref. [32], in which ξp = p2 + m2, vp = √

ξp, Up = (px − ipyσz − imσy)/
√

ξp, and γ̄a≡γ̄ . The definition Eq. (A2) after the
substitution p1 = p, p2 = k, p3 = k + Q and integration over p4 takes the form

1

|τa| = 2γ̄ 3m2

n2
∫

k |vk|−2

∫
p,k,Q

(
ξp+QQ2

ξkξk+Q
− Q(k − p)

ξk+Q

)
ξp + ξk + ξp+Q + ξk+Q

(ξp − ξk − ξp+Q − ξk+Q)2 + γ̄ 2(ξp + ξk + ξp+Q + ξk+Q)2
. (E1)
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Here the number of particles n = ∫
k 1 is introduced. Note that in this model γ̄a = ∫

p[U †
p γ̂aUp]aa≡γ n≡γ̄ . Now we substitute

mx = k, my = p + Q, mz = −k − Q and rewrite the integral as

1

|τa| = γ̄ 3m6n−2∫
k |vk|−2

∫
x,y,z

(
2(1 + y2)(x2 + xz)

(1 + x2)(1 + z2)
− z2 + xy + xz + yz

(1 + z2)

)
2 + x2 + y2 + z2 + xy + xz + yz

(1 − xy − xz − yz)2 + γ̄ 2(2 + x2 + y2 + z2 + xy + xz + yz)2
.

(E2)
The main part of the integral is collected at |z|�|x|, |y|. Let us expand the integrand, move to polar coordinates, and integrate
over the angle:

1

|τa| ≈ γ̄ 3m6n−2∫
k |vk|−2

∫
x,y,z

y2

1 + z2

x2 + y2

(xy)2 + γ̄ 2(x2 + y2)2
= γ̄ 3m6n−2

(2π )2

∫∫
xy dx dy

γ̄

√
x2y2

(x2+y2 )2 + γ̄ 2
. (E3)

Here, in accordance with the definition of the number of particles n, the integral over the momenta is carried out along a circle
of radius

√
4πn (or

√
4πn/m for dimensionless variables x and y). Now, after expanding in γ̄ , we can take the integral exactly

and get the final answer:

1

|τa| ≈ γ̄ 2m6

(2π )2n2

√
4πn/m∫∫

0

dx dy (x2 + y2) = 8γ̄ 2m2

3
. (E4)

Now we consider a one-dimensional analog of this model with the same ξp = p2 + m2, vp = √
ξp, and γ̄a≡γ̄ , but Up =

(p − imσy)/
√

ξp. Eq. (E2) for d = 1 after some symmetry-based simplifications takes the form

1

|τa| = γ̄ 3m3n−2

2
∫

k |vk|−2

∫
x,y,z

(x − y)2(1 − xy − xz − yz)2

(1 + x2)(1 + y2)(1 + z2)

2 + x2 + y2 + z2 + xy + xz + yz

(1 − xy − xz − yz)2 + γ̄ 2(2 + x2 + y2 + z2 + xy + xz + yz)2
. (E5)

As can be seen, the main part of the integral is collected at |x|�|y|, |z| and |y|�|x|, |z|. Instead of taking into account both
regions, we can take the first one twice. Recall also that according to n = ∫

k 1, the integral over the momenta is carried out along
a circle of radius πn (or πn/m for dimensionless variables):

1

|τa| ≈ γ̄ 3m3n−2∫
k |vk|−2

∫
x,y,z

x4(y + z)2

(1 + x2)(1 + y2)(1 + z2)

1

(y + z)2 + γ̄ 2x2
= 2γ̄ 3m4

n2(2π )3

∫ πn/m

−πn/m

x4

(1 + x2)

2π2 dx

2 + γ̄ |x| . (E6)

The integrals over y and z do not diverge at infinity and therefore, in the leading order, are independent of the cutoff πn/m. The
integral over x, on the contrary, is collected at large momenta:

1

|τa| ≈ γ̄ 3m4

2πn2

∫ πn/m

−πn/m

x2 dx

2 + γ̄ |x| ≈
{
π2γ̄ 3nm/6, γ̄ n/m � 1,

πγ̄ 2m2/2, γ̄ n/m � 1.
(E7)
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