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The spin and integer quantum Hall effects are two cousins of topological phase transitions in two-dimensional
electronic systems. Their close relationship makes it possible to convert spin to integer quantum Hall effect
by continuous increase in a symmetry breaking Zeeman magnetic field. We study microscopic and mesoscopic
peculiarities of bulk-edge correspondence and a fate of massless edge and bulk topological (instantons) excita-
tions at such a crossover in topological superconductors. We propose possible experimental verification of our
predictions.
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Introduction. Topological phase transitions (TPT) are a
constant focus of physics research. The discovery of topo-
logical insulators and superconductors [1–4] gave a boost
to research on TPT in disordered electronic systems [5–20].
Perhaps the most famous example of a TPT is the integer
quantum Hall effect (iqHe) in which different topological
phases are labeled by Z (the set of the integer numbers).
The iqHe reflects the existence of the Z-valued topological
charge in a two-dimensional (2D) realization of class A in
the Altland-Zirnbauer symmetry classification of disordered
Hamiltonians [21–26]. The iqHe has two close cousins in
2D topological superconductors, whose distinct topological
phases are labeled by integers: the spin (class C) [27–29] and
thermal (class D) [30] quantum Hall effects.

The iqHe has been investigated extensively in experiments
[31–40] as opposed to the spin quantum Hall effect (sqHe).
However, the latter has an advantage since its criticality is
analytically tractable [41]. In particular, the position of the
critical point [42,43], the correlation length exponent, and
the infinite subset of generalized multifractal exponents are
known exactly through the mapping to percolation [44]. Class
C can be thought as a parent class for the classes A and D due
to the following crossovers: C →A with breaking of the SU(2)
spin rotation symmetry down to U(1) [45] and C →D which
corresponds to the complete breaking of SU(2) symmetry
while preserving superconductivity [28,29,44,46–48].

Although the crossover phenomena in the context of
phase transitions are thoroughly studied [49], the crossovers
between topologically nontrivial phases are much less inves-
tigated. An immediate difficulty can be readily appreciated
from the observation that the topological phases of the sqHe
are enumerated by even integers while the topological phases
of the iqHe are labeled by all integers. Thus the transfor-
mation 2Z → Z should occur during the C →A crossover.
The understanding of crossovers between topological phases
is complicated by the presence of topological excitations (in-
stantons) in the bulk and massless edge excitations, which are
related by the bulk-boundary correspondence. From practical

point of view, interest in the crossovers lies in their poten-
tial experimental applications. For instance, does the iqHe
realized in a topological superconductor due to the C →A
crossover differ from the ordinary iqHe experimentally?

The goal of this Letter is to study the sqHe-to-iqHe
crossover and answer the following physical questions: (i)
Is it possible to describe the crossover in terms of the edge
theory only? (ii) How do physical observables depend on a
bare spin Hall conductance after the crossover? (iii) What is
the structure of the emergent iqHe staircase?

Edge modes for sqHe. Both sqHe and iqHe possess
nondissipative gapless edge modes. First we discuss their
transformation across the crossover. We begin with a re-
minder of the edge theory for the sqHe [29]. We consider
chiral fermion quasiparticles at the edge of a (2D) disor-
dered dx2−y2 + idxy superconductor. To be able to average over
quenched disorder we will use the replica trick. The imaginary
time replica action for the sqHe edge can be written in terms
of Nr copies of spin 1/2 chiral fermions [29]:

Se =
∫ β

0
dτ

∫
dy[ψ̄ (iv∂y − ∂τ − η3)ψ + η−ψ̄�+ψ̄T

+ η+ψT�−ψ]. (1)

Here ψ̄ = {ψ̄↑,1, . . ., ψ̄↓,Nr } and ψ = {ψ↑,1, . . ., ψ↓,Nr }T are
Grassmann variables corresponding to fermion creation and
annihilation operators, �± = σ±⊗1r with 1r being the iden-
tity matrix in the replica space and σ± = (σ1 ± iσ2)/2, where
σ j are standard Pauli matrices acting in the spin space. A
quasiparticle edge velocity is denoted as v, and β stands for
the inverse temperature. The random Gaussian fields η± =
η1 ± iη2 and η3 mimic fluctuations of a superconducting
order parameter and scattering off impurities, respectively.
They have the zero mean and are delta correlated in space:
〈η j (y)ηk (y′)〉 = κδ jkδ(y − y′). The action (1) does not con-
serve the number of ψ fermions but has SU(2) symmetry
corresponding to spin conservation.
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To elucidate symmetries of action (1) inherent in class
C, we introduce new fields: χ̄↑,α=ψ̄↑,α , χ↑,α = ψ↑,α , χ̄↓,α =
ψ↓,α , and χ↓,α = ψ̄↓,α , where α = 1, . . . , Nr [29]. In this rep-
resentation the edge action (1) becomes

Se =
∫ β

0
dτ

∫
dy χ̄ (−∂τ − H⊗1r )χ, H = −iv∂y + ησ.

(2)
The above action conserves the number of χ fermions,
which coincides with the z projection of the spin of ψ

fermions. Thus, the χ (ψ) fermions serve as spin (charge)
carriers, respectively. Hamiltonian (2) manifests antiunitary
Bogoliubov–de Gennes (BdG) symmetry, H = −σ2HT σ2,
as expected for class C. The action (2) describes two
spin-degenerate hybridized electron-hole edge modes that
propagate in the same direction and transfer a quantum of the
transverse spin conductivity each [29]. Therefore, in the case
of a clean system (for which η j ≡ 0 and Nr = 1), applying
a generalized Thouless-Kohmoto-Nightingale-Nijs (TKNN)
formula [50], we obtain that the spin Hall conductance is
quantized in units of G(s)

0 = h̄/8π [27,29],

gH = 2k G(s)
0 . (3)

Here k is the number of edge modes [k = 1 for Eq. (2)].
Edge theory for sqHe. As expected, the 2Z quantization

of gH, Eq. (3), holds in the presence of the disorder. Averag-
ing action (1) over disorder and employing the non-Abelian
bosonization [51–57], we derive the noninear sigma model
(NLσM) action for the soft diffusive edge modes (see Sup-
plemental Material [58] and also references [59–62] therein):

Se = k

2
Tr
T ∂yT −1 + πkνeTrε̂Q. (4)

Here νe = 1/(2πv) is the density of edge states. Q = T −1
T
is Hermitian traceless matrix acting in Nr×Nr replica space,
2Nm×2Nm Matsubara frequency space, and 2×2 Nambu
space. The matrix Q satisfies the following relations:

Q2 = 1, Q = Q† = −L0s2QT s2L0. (5)

Here and below, s0,1,2,3 stand for the standard Pauli matri-
ces in the Nambu space, (L0)α1α2

nm = δεn,−εmδα1α2 s0, 
α1α2
nm =

sgn(εn)δnmδα1α2 s0, ε̂α1α2
nm = εnδnmδα1α2 s0, where εn = π (2n +

1)/β denotes the fermionic Matsubara frequency. Symbol
“Tr” includes spatial integration as well as the trace over
replica, Matsubara, and Nambu spaces. As the consequence
of SU(2) symmetry, the spin space is not present in action
(4). The relations (5) determine the NLσM target manifold
of class C, Q ∈ Sp(2N )/U(N ), where N = 2NrNm, whereas
T ∈ Sp(2N ).

The information about the quantization of gH is encoded
in the first term of the NLσM (4), which is nothing but
the edge form of Pruisken’s θ term [63]. The factor k/2 is
responsible for exactly the same result for gH as in the clean
case, Eq. (3). It is expected since the gauge transformation
χ̃ (y) = Ty exp[i

∫ y dy′η(y′)σ/ve]χ (y) (Ty is spatial ordering)
[29] excludes disorder from Eq. (2).

The sqHe-to-iqHe crossover at the edge. In order to re-
move the spin degeneracy of the chiral edge states, we
introduce the Zeeman magnetic field Bz by adding the term

FIG. 1. The quasiparticle spectrum in the toy model: 2D
fermions on a stripe in the presence of a perpendicular magnetic field,
constant superconducting pairing amplitude, and Zeeman splitting
(see SM [58] and Refs. [64–66] for details).

μBBz
∫

dτ dy ψ̄ (σ3⊗1r )ψ to the action (1). Here μB is the
Bohr magneton. In Eq. (2), it works as the shift H → H +
μBBzσ0, which explicitly breaks the BdG symmetry. Thus
the resulting Hamiltonian becomes just a Hermitian operator
belonging to class A.

In the clean case, the spectrum of ψ fermions remains
linear in momentum py, but modes with different spin projec-
tions are split by the momentum difference �py = μBBz/v

(see Fig. 1 for the energy level ε2). Since in the presence of
orbital magnetic field the real space coordinate is proportional
to the quasimomentum in the perpendicular direction, the
Zeeman field results in splitting of the chiral edge modes with
different spin projections in a real space. However �py can
be absorbed into the phase of ψ fermions, thus the magnitude
of gH remains insensitive to the presence of Bz; see Eq. (3).
Therefore, in the case of the Zeeman field acting at the edge
only, the 2Z quantization of gH survives.

The edge modes have curvature due to merging with the
bulk states. Then the spectrum of spin-↑ (spin-↓) ψ fermion
floats up (down) in energy with increasing Bz. Hence there are
energy levels (e.g., energy ε1 in Fig. 1) for which only a single
edge mode remains. Thus the spin Hall conductance becomes
gH = (2k − 1)G(s)

0 , in agreement with the Z quantization for
the iqHe.

Now let us turn on disorder at the edge again. The Zeeman
splitting emerges in the NLσM action as [58]

S (Z)
e = iπμBBzνeTrs3Q. (6)

We emphasize that the physical magnetic field Bz enters the
NLσM as the Zeeman splitting acting in the Nambu space.
Though S (Z)

e is consistent with the symmetry (5), it breaks
rotation symmetry in the Nambu space from SU(2) down to
U(1). The term (6) acts as the mass term for an otherwise
massless theory (4). At long distances, |y| � 1/�py, only the
rotations T commuting with the matrix s3 survive, enforcing
the diagonal form of the matrix Q in the Nambu space. Sub-
stituting Q = diag{Qu, Qd} into Eq. (4) and using the relation
Qd = −L0QT

uL0, we find that Se is given by Eq. (4) with T ,
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Q, and k substituted by Tu, Qu, and 2k respectively, with
traces now over replica and Matsubara spaces alone. Since
the Hermitian matrix Qu has no additional constraints except
the nonlinear one, Q2

u = 1, at long distances the NLσM edge
action in the presence of Zeeman splitting, Eqs. (4) and (6),
becomes the iqHe edge action with Qu ∈ U(N )/[U(N/2) ×
U(N/2)]. That action describes 2k chiral edge channels and
leads to Eq. (3) for gH. As in the clean case, we see that within
the edge theory only the Zeeman field does not change the 2Z
quantization of gH. Thus, to get the 2Z → Z transformation
of gH’s quantization, we have to study the bulk theory.

Bulk theory for sqHe. Now we recall the NLσM description
of the 2D bulk of a system with class C symmetry [67–70]:

Sb = − ḡ

16
Tr(∇Q)2 + iπ ḡHC + πν̄Tr[ε̂ + iμBBzs3]Q. (7)

Here ν̄ denotes the bare bulk density of states and ḡ and
ḡH stand for the bare dimensional spin longitudinal and Hall
conductances (in units G(s)

0 ). The topology of the class C is
encoded in the Z quantized topological charge

C[Q] = Tr(ε jkQ∇ jQ∇kQ)/(16π i), (8)

where ε jk is the Levi-Civita symbol with εxy = −εyx = 1. For
ḡH = 2k the term proportional to C[Q] in Eq. (7) coincides
with the first term in the edge theory (4). The term in Eq. (7)
proportional to Bz describes breaking the SU(2) symmetry in
the Nambu space. As expected, its form is the same as for the
edge theory, Eq. (6) [58].

The crossover in the bulk. The NLσM action (7) is
renormalized such that the parameters g, gH, and ν become
length-scale (L) dependent. Their renormalization group (RG)
equations are well known [68–73]. The class C →A crossover
can be seen already at the level of the NLσM action. At
long distances, L � LB = √

g(LB)/[ν(LB)μBBz], the Zeeman
term in Eq. (7) forces Q to become a diagonal matrix in
the Nambu space. As a result, the NLσM action of class A
arises. It is given by Eq. (7) with Q, ḡ, ḡH, ν̄ substituted by
Qu, 2 ¯̄g = 2g(LB), 2 ¯̄gH = 2gH(LB), 2 ¯̄ν = 2ν(LB), respectively,
and with Bz = 0. Thus, the sqHe-to-iqHe crossover can be
considered roughly as follows. At � � L � LB the system is
described by the RG equations for class C with initial condi-
tions g(�) = ḡ and gH(�) = ḡH. At L = LB the conductivities
reach magnitudes ¯̄g and ¯̄gH, respectively. Then at L > LB the
system is governed by the RG equations for class A with
initial conditions g(LB) = ¯̄g and gH(LB) = ¯̄gH. Consequently,
a physical observable O at L > LB depends on ¯̄g and ¯̄gH.

The crossover scenario characterized by the length scale
LB is universal for a relevant symmetry-breaking parameter in
the renormalization-group sense and is therefore applicable to
both topologically trivial and nontrivial systems. In our case,
the corresponding relevant parameter is the Zeeman splitting,
which drives the crossover between the class C and class A
[44,47]. It is straightforward to verify that, at the perturbative
level, the presence of Bz generates a mass for the diffusive
modes of the NLσM (7) that do not belong to class A [58].
This is exactly the mechanism that converts the perturbative
part of the RG equations for class C to the ones for class A.
However, the topological nontrivial systems have topological
excitations (instanton configurations QW in our case) with
integer quantized value of the topological charge C[QW ] = W .

It is these topological excitations that are responsible for the
nonperturbative part of the RG equations and for the periodic-
ity of the physical observables with the bare Hall conductance
in the cases of iqHe [74–78] and sqHe [70]. The 2Z [70]
(Z [31]) quantization in the case of sqHe (iqHe) implies the
periodicity of each physical observable O with respect to ḡH

( ¯̄gH) with period 2 (1). Consequently, we suggest that at the
sqHe-to-iqHe crossover the following transformation occurs:

O =
∑
W ∈Z

O(C)
W eiπ ḡHW︸ ︷︷ ︸

L�LB

−→ O =
∑
W ∈Z

O(A)
W ei2π ¯̄gHW︸ ︷︷ ︸

L�LB

, (9)

where O(C)
W ∝ exp(−π ḡ|W |) and O(A)

W ∝ exp(−2π ¯̄g|W |). The
only consistent possibility to realize Eq. (9) is the following
picture of the crossover in the nonperturbative contributions
to the RG equations. At L � LB the nonperturbative class C
contributions with odd W have to be suppressed [58], while
contributions with even W transform smoothly into the class
A contributions.

Topological excitations at the crossover. To argue for the
above scenario, we consider the class C instantons with W =
1, 2. For simplicity, we present expressions for instanton so-
lutions for Nr = Nm = 1. The W = 1 instanton is given as
Q1 = T −1
1(x)T , where T represents a spatially uniform ro-
tational matrix that defines orientation of the instanton within
the NLσM manifold and [70]


1 =
(

s0 cos2 θ − s1 sin2 θ (is2−s3 )
2 eiφ sin 2θ

− (is2+s3 )
2 e−iφ sin 2θ −s0 cos2 θ − s1 sin2 θ

)
.

(10)
Here θ = arctan(λ/|z − z0|), φ = arg(z − z0), z = x + iy is
the complex coordinate, λ is the instanton scale size, and z0

is the position of instanton. In the absence of the last term in
Eq. (7), we find Sb[Q1] = −π ḡ + iπ ḡH, such that the param-
eters λ, z0, and the generators of the T rotations constitute
the zero mode manifold of the W = 1 instanton. We note
that there is no analog of such an instanton solution in the
case of the iqHe. This can be understood from the Nambu
structure of Eq. (10): the presence of nonzero off-diagonal
(superconducting) elements prevents the reduction described
above. Due to the Zeeman term, rotational zero modes with
[T, s3] �= 0 acquire a mass ∝ Bz ln(L/λ), i.e., modification
of the zero mode manifold from T ∈ Sp(2N ) (class C) to
T ∈ U(N )/[U(N/2)×U(N/2)] (class A) occurs. However, λ

and z0 remain zero modes, i.e., the W = 1 instanton is not
fully suppressed by Bz at the classical level [79].

Accounting for fluctuations around the W = 1 instanton
leads to logarithmically divergent renormalizations in physi-
cal observables. These divergences can be resummed within
the RG framework. Without the Zeeman splitting, the re-
summation process continues until the RG flow reaches a
scale where the instanton size becomes comparable to the
dynamically generated localization length in class C, λ ∼
ξ (C) � � exp(π ḡ) [70]. In the presence of a nonzero Bz, the
RG procedure for W = 1 instantons halts at λ ∼ LB, because
all instantons with sizes λ > LB fail to contribute logarithmic
corrections to physical observables [58]. It leads to suppres-
sion of contributions from the W = 1 instantons to the RG
equations beyond the length scale LB.
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(a) (b)
(c)

FIG. 2. Sketch of the crossover RG flow for strong (a) and weak (b) Zeeman splitting. For bare values ḡ � 1, the RG flows in blue (orange)
regions are governed by the RG equations for class C (A). Blue lines correspond to separatrixes that define the width of the iqHe plateaus.
(c) The quantization of the spin Hall conductance at L → ∞ as a function of its bare value ḡH for the sqHe (blue solid line), the ordinary iqHe
(orange solid line), and a finite Bz (dashed black line). The inset shows the phase diagram in the {ḡH, Bz} plane. The black dashed line indicates
the Zeeman splitting for which the main panel is plotted.

The W = 2 instanton solution can be expressed as Q2 =
T̃ −1
2(x)T̃ , where the matrix T̃ contains rotational zero
modes and (for Nr = Nm = 1 as above)


2(x) =
(

1̂ 0
0 −1̂

)
K−1

(
cos 2θ̂ sin 2θ̂

− sin 2θ̂ cos 2θ̂

)
K. (11)

Here K = diag{U ,U∗} with an arbitrary U(2) matrix U and a
matrix θ̂ = diag{θ1, θ2}. The instanton angles θ j are defined
similarly to those of the W = 1 instanton and involve two
sets of zero modes z( j)

0 and λ j . The resulting classical bulk
action for this solution can be divided into two parts: the clas-
sical action for the W = 2 instanton, S (cl)

b = −2π ḡ + 2π iḡH,
and the Zeeman contribution, S (Z)

b ∝ Bz
∫

d2x[cos 2θ1(x) −
cos 2θ2(x)], with a coefficient depending on the matrices T̃
and U (see [58] for details). The Zeeman term enforces
synchronization of the instanton scale sizes, λ1 = λ2, and po-
sitions, z(1)

0 = z(2)
0 . As a result, the W = 2 instanton becomes

a diagonal matrix in Nambu space, which can be interpreted
as two identical class A W = 1 instantons with pinned centers
and equal sizes. Thus the Zeeman splitting forces the class C
W = 2 instanton to transform into the class A W = 1 instan-
ton already at the level of the classical action (for details, see
[58]).

Physical predictions. The above picture of the sqHe-
to-iqHe crossover has implications for the length-scale
dependence of physical observables. For example, the depen-
dence of g and gH on L can be visualized as a two-parameter
scaling diagram shown in Fig. 2. We assume that RG flow
starts from a weak coupling region, ḡ � 1. At strong Zee-
man splitting, LB � ξ (C) [80], the crossover occurs in weak
coupling region, ¯̄g � 1; see Fig. 2(a). In contrast, at weak Bz

such that LB�ξ (C), the crossover occurs in the strong coupling
regime close to the class C unstable fixed point g(C)

∗ = √
3/2

[42,43] (for class A, g(A)
∗ � 0.5–0.6 [81–83]); see Fig. 2(b).

In cases of both strong and weak Bz, the flow lines starting at
|ḡH − 1| � �

(odd)
B /2 approach the stable fixed point at g = 0

and gH = 1 as L → ∞. Thus for Bz �= 0 the RG flow in Fig. 2

shows the Z quantization of gH as L → ∞. The RG flow in
Fig. 2 looks similar to the crossover RG flow due to breaking
of spin degeneracy in an ordinary iqHe [84] and mixing of val-
leys for the iqHe in graphene [85]. However, those crossovers
occur within the same class A.

For |ḡH − 1| � �
(odd)
B /2 the dependence of gH on L is

nonmonotonic, with the extremum at L ∼ LB. Plateaus at odd
integer values in dependence of gH on ḡH start to develop as
L grows beyond LB. In the limit L → ∞ the dependence of
gH on ḡH becomes steplike with plateaus at Z; see Fig. 2(c).
However, the widths of the odd, �

(odd)
B , and even, �

(even)
B =

2 − �
(odd)
B , plateaus are different. This fact reflects periodic

dependence of physical observables on ḡH with period 2G(s)
0 ,

as follows from Eq. (9).
At small values of Bz, corresponding to LB ∼ ξ (C), the

width of the odd plateaus can be estimated as �
(odd)
B ∼ |Bz|3/7

[44]. At strong Zeeman splitting, LB � ξ (C), the odd-plateau
width approaches 1 as [58]

1 − �
(odd)
B ∼ [(LB − �)/ξ (C)] ln3(ξ (C)/LB). (12)

We note that the staircase with �
(odd)
B �= �

(even)
B distinguishes

the iqHe obtained in a result of crossover from the sqHe in a
topological superconductor, and from the ordinary iqHe.

Summary. We developed a coherent physical picture of
the spin-to-integer quantum Hall effect crossover in the bulk
and at the edge of topological superconductors. We demon-
strated that it is not possible to describe the crossover in
terms of the edge theory only. The correct description of the
crossover involves the bulk theory, in particular, topological
excitations (instantons). We found that although the spin Hall
conductance becomes quantized in units G(s)

0 as a result of
the crossover, the periodic dependence of the physical observ-
ables on the bare spin Hall conductance has the period 2G(s)

0
as for the sqHe. We found that after the crossover the widths
of the odd and even iqHe plateaus are different, in contrast
to the conventional iqHe staircase. Although we study the
sqHe-to-iqHe crossover in the absence of electron-electron
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interaction, we expect that it does not alter the developed
physical picture.

Finally, we mention that twisted Bi2Sr2CaCu2O8+x bi-
layers have been recently shown to spontaneously break
time-reversal symmetry [86], in agreement with theoretical
predictions for an emergent dx2−y2 + idxy topological super-
conducting state [87,88]. Results of our work suggest that a
magnetic field parallel to bilayers is an efficient tool to control
and manipulate the edge spin-current-carrying states in such
topological superconductors in a way similar to manipulation
of edge current channels in the conventional iqHe [89–92].
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