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We investigate the spatially-resolved dynamics of the collective amplitude Schmid-Higgs (SH) mode in
disordered s-wave superconductors and fermionic superfluids. By analyzing the analytic structure of the zero-
temperature SH susceptibility in the complex frequency plane, we find that, when the coherence length
greatly exceeds the mean free path, (i) the SH response at fixed wave vectors exhibits late-time oscillations
decaying as 1=t2 with frequency 2Δ, whereΔ is the superconducting gap; (ii) subdiffusive oscillations with a
dynamical exponent z ¼ 4 emerge at late times and large distances; and (iii) spatial oscillations at a fixed
frequency decay exponentially, with a period that diverges as the frequency approaches 2Δ from above.When
the coherence length is comparable to the mean free path, additional exponentially-decaying oscillations at
fixed wave vectors appear with a frequency above 2Δ. Furthermore, we show that the SH mode induces an
extra peak in the third-harmonic generation current at finite wave vectors. The frequency of this peak is shifted
from the conventional resonance at Δ, thereby providing an unambiguous signature of order parameter
amplitude dynamics.
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Investigating the collective excitations in superconduc-
tors provides crucial insights into the complex structure of
their order parameter and associated dynamical responses
[1–6]. Unlike the well-studied phase fluctuations, the
collective dynamics of the order parameter amplitude
[so-called Schmid-Higgs (SH) mode] has received much
less attention due to experimental challenges in its detec-
tion, primarily caused by its decoupling from density
fluctuations. However, recent advances in terahertz and
Raman spectroscopic probes have made direct observation
of the SHmode more accessible [7–11], in turn prompting a
renewed wave of theoretical interest in the amplitude
fluctuations [12–30].
The properties of the SHmode in a disorder-free limit are

relatively well established in both three-dimensional (3D)
[17,24,31,32] and two-dimensional (2D) [17,18,29] sys-
tems, across weak and strong coupling regimes. However,
real materials inevitably contain impurities or other struc-
tural imperfections, making it imperative to understand
how disorder influences the fluctuations of the super-
conducting order parameter. Despite extensive research of
collective responses in dirty superconductors [26,33–43],
a comprehensive description of the spatially-resolved
SH dynamics in this limit is still lacking. In particular,
the dispersion relation and the associated long-distance
and late-time oscillatory behavior of the SH mode in
the presence of disorder remain unknown. Another open

question is how the SH mode contributes to the nonlinear
current response at finite wave vectors.
The goal of the present Letter is to fill this gap by

examining the nonanalyticities of the T ¼ 0 disorder-
averaged SH susceptibility χSHðz; qÞ as a function of
complex frequency and momentum. This susceptibility
quantifies the dynamical response of the order parameter
amplitude jΔðt; rÞj that arises when external perturbations
disturb it from its equilibrium state. Our approach is based
on the BCS model with impurities, assuming a local
attractive coupling λ that induces an s-wave, spin-singlet
superconducting state with a zero-temperature gap Δ. For
concreteness, we consider the following Hamiltonian
density

H ¼
X
σ

ψ†
σ

�
−
ð∇− iAÞ2

2m
− μþ VðrÞ

�
ψσ −

λ

ν
ψ†
↑ψ

†
↓ψ↓ψ↑:

ð1Þ

Here, σ ¼ ↑=↓ labels spin degrees of freedom, ν is the
density of states at the Fermi level in the normal state, λ > 0
is the dimensionless BCS coupling constant, ψσðrÞ is the
electron field, A is the vector potential, and VðrÞ is a white-
noise Gaussian random potential that induces elastic
scattering rate 1=τ. We assume that both 1=τ and the
superconducting gap Δ are much smaller than the Fermi

PHYSICAL REVIEW LETTERS 135, 056001 (2025)

0031-9007=25=135(5)=056001(8) 056001-1 © 2025 American Physical Society

https://orcid.org/0000-0002-4829-4939
https://orcid.org/0000-0001-7203-251X
https://ror.org/03vek6s52
https://ror.org/046ak2485
https://ror.org/00z65ng94
https://ror.org/055f7t516
https://crossmark.crossref.org/dialog/?doi=10.1103/x12p-q7bj&domain=pdf&date_stamp=2025-07-30
https://doi.org/10.1103/x12p-q7bj
https://doi.org/10.1103/x12p-q7bj


energy, μ ¼ mv2F=2 (vF is the Fermi velocity and m is the
electron mass), which allows us to linearize the electron
dispersion and treat impurity scattering within the self-
consistent Born approximation. The ratio Δτ is used to
interpolate between the dirty (Δτ ≪ 1) and clean (Δτ ≫ 1)
regimes. Under these conditions, the interplay of super-
conductivity and disorder is treated at the level of
Anderson’s theorem [44–46], disregarding more subtle
effects such as interference-induced corrections [47–50]
or spatial inhomogeneity of the order parameter and
Lifshitz tails below the spectral edge [51–53].
SH susceptibility—The collective dynamics of the super-

conducting order parameter is described by the standard
Ginzburg-Landau functional obtained from Eq. (1) at
A ¼ 0, with its quadratic part encoding Gaussian fluctua-
tions of the amplitude jΔj around its mean-field value [54]:

SΔΔ ¼
Z
r

X
n

Δðiωn; rÞχ−1SHðiωn; r; r0ÞΔð−iωn; r0Þ

χ−1SHðiωn; r; r0Þ ¼ λ−1δðr− r0Þ−ΠΔΔðiωn; r; r0Þ; ð2Þ

where ωn ¼ 2πTn is the bosonic Matsubara frequency,
χSH is the real space Matsubara SH susceptibility in a
given disorder realization, and ΠΔΔðiωn; r; r0Þ is the
Fourier transform of the imaginary time correlation func-
tion ðπνÞ−1hT Δ̂ðτ; rÞΔ̂ð0; r0Þi. Here Δ̂ðτ; rÞ is the s-wave,
spin-singlet order parameter amplitude.
The expectation value is taken in the standard BCS

state with the uniform mean-field order parameter Δ
determined via the gap equation 1 ¼ πλT

P
m 1=Eεm .

Here Eεm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2m þ Δ2

p
, and εm ¼ 2πTðmþ 1=2Þ is the

fermionic Matsubara frequency.
In this setup, the disorder-averaged Matsubara SH

susceptibility χSHðiωn; qÞ is given by [56]

1

χSH
¼ πT

X
m

�
1

Eεm

− SqðEεm þ Eε̃mÞ
�
1þ εmε̃m − Δ2

EεmEε̃m

��
;

ð3Þ

where ε̃m ¼ εm þ jωnj. This expression assumes q ≪ mvF,
but fully captures the crossover between the diffusive
and ballistic scales through the structure factor SqðEÞ. It
is given by S2Dq ðEÞ ¼ 1=ðjEj − 1=τÞ for a 2D system and
by S3Dq ðEÞ ¼ 1=ðvFq= arg E − 1=τÞ in 3D, where E ¼
Eþ 1=τ þ ivFq. In the diffusive limit, vFq, E ≪ 1=τ,
the structure factor in Eq. (3) reduces to [4,33,55]

SqðEÞ ¼ 1=ðDq2 þ EÞ; D ¼ v2Fτ=d; ð4Þ

where d ¼ 2, 3 is the dimensionality. At q ¼ 0, Eq. (3)
reduces to its clean limit for any Δτ as a manifestation of
Anderson’s theorem.

The retarded SH susceptibility χRSHðω; qÞ at T ¼ 0

is obtained from Eq. (3) in a standard way [56].
The branch cuts are chosen along the real axis such
that for any real jEj ≥ Δ we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − ðE� i0Þ2

p
¼

∓isgnðEÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − Δ2

p
. If extended to the lower half-plane as

well, the above choice of the branch cut defines the
physical Riemann sheet of χSHðz; qÞ, with its imaginary
part changing discontinuously across the cut along the real
axis at jRezj ≥ 2Δ and vanishing for Im z ¼ 0; jRezj ≤ 2Δ
due to the presence of the superconducting gap (see Fig. 1).
The resulting Cauchy representation of ½χSHðz; qÞ�−1 on the
physical sheet is given by

1

χSH
¼

Z þ∞

−∞

dε
π

�
ρqðjεjÞsgnε

ε − z
þ π=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε2 − 4Δ2
p

�
θ

� jεj
2Δ

− 1

�

ð5Þ

for z∈C=fz∶ Im z ¼ 0; jRezj ≥ 2Δg. The second term in
Eq. (5) arises because 1=jχSHðωn; qÞj is an increasing
function of ωn; see Supplemental Material [56] for
details. This relation allows us to immediately interpret
the spectral density sgnðεÞθðjεj − 2ΔÞρqðjεjÞ in Eq. (5) as
Im½1=χRSHðε; qÞ�, whereas the real part is obtained by taking
the principal value of the integral. The full expression for
ρqðωÞ is given in Supplemental Material [56], and its
diffusive limit at Δτ ≪ 1 yields

ρqðωÞ ¼
4ω̄2 − ðq̄4 þ ω̄2Þ2

q̄2ðω̄þ 2Þðq̄4 þ ω̄2Þ

× Π
�ðω̄ − 2Þ2ðq̄4 þ ω̄2Þ

q̄4ð4 − q̄4 − ω̄2Þ
				 ω̄ − 2

ω̄þ 2

�

þ q̄2ð4þ q̄4 þ ω̄2Þ
ðω̄þ 2Þðq̄4 þ ω̄2ÞK

�
ω̄ − 2

ω̄þ 2

�
: ð6Þ

FIG. 1. Spectral function Im χRSHðω; qÞ for Dq2=Δ ¼
0.25ðξq ¼ 0.5Þ. The blue (orange) curve corresponds to Δτ ≪
1ðΔτ ¼ 1Þ in 2D. The dotted line indicates the continuum edge.
The dashed red line corresponds to q ¼ 0 independent of Δτ.
Inset: ReχRSHðω; qÞ for the same parameters.
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Here, we define dimensionless variables ω̄ ¼ ω=Δ and
q̄ ¼ ξq, and ξ ¼ ffiffiffiffiffiffiffiffiffiffi

D=Δ
p

is the coherence length. Also,

ΠðxjyÞ ¼ R π=2
0 dα=½ð1 − xsin2αÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2sin2α

p
� is the com-

plete elliptic integral of the 3rd kind, and KðxÞ ¼ Πð0jxÞ.
Equation (6) only assumes jωj; vFq ≪ 1=τ, but ξq and
jωj=Δ can be arbitrary.
The imaginary and real parts of χRSHðω; qÞ at q > 0

feature a peak at a frequency above 2Δ for arbitrary values
of Δτ, as shown in Fig. 1. This peak shifts to higher fre-
quencies when momentum is increased. At q ¼ 0, the peak
is replaced with a square-root singularity at ω ¼ 2Δ [1].
Further, assuming the dirty limit, ξq ≪ 1 and 0 ≤
ω − 2Δ ≪ Δ, while keeping the ratio Δξ4q4=ðω − 2ΔÞ
fixed (i.e., anticipating the z ¼ 4 dynamical exponent,
defined by the relation jω − 2Δj ∼ qz), we obtain

1

χRSH
≃
q̄2

4

�
ln
26

q̄4
−
X
s¼�

ð1þ suÞ lnðuþ sÞ þ iπð1− uÞ
�
; ð7Þ

where u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðω̄ − 2Þ=q̄4

p
≥ 1. From Eq. (7), we find

that the frequency and width of the peak in χRSH at ξq ≪ 1

[56] scale as

ωmaxðqÞ
Δ

≈ 2þ 4ξ4q4

π2
ln2

2
ffiffiffi
2

p

ξq
;

γmaxðqÞ
Δ

∼ ξ4q4 ln
1

ξq
:

ð8Þ

To calculate the late-time and long-distance behavior of
the SH susceptibility, we now proceed to identify its non-
analyticities (e.g., poles) in the complex plane.
SH mode as a pole in the SH susceptibility—The

appearance of a peak in χRSHðω; qÞ on the real frequency

axis is already indicative of a pole in the lower half-plane.
However, as emphasized above, the presence of the branch
cut implies that χSHðωþ i0þ; qÞ is not smoothly connected
to χSHðω − i0þ; qÞ. In fact, χSHðz; qÞ does not have any
nonanalyticities in the lower half-plane on the physical
Riemann sheet. Instead, one has to smoothly continue it
through the branch cut into the unphysical Riemann
sheet and search for a pole there [24,29,31]. The resulting
susceptibility, denoted as χ↓SHðz; qÞ, coincides with Eq. (5)
in the upper half-plane, but remains continuous across the
interval Im z ¼ 0;Rez > 2Δ. The structure of χ↓SHðz; qÞ is
demonstrated in Figs. 2(a) and 2(b), and the explicit
formula for it is given in End Matter. Numerical evaluation
reveals that χ↓SHðz; qÞ indeed has a pole zq in the lower half-
plane at any finite momentum q. The SH mode’s dispersion
is then obtained as ωSHðqÞ≡ Rezq and γSHðqÞ≡ j Im zqj,
with both of these quantities exhibiting strong dependence
on Δτ [see Fig. 2(c)]. In the dirty limit Δτ ≪ 1, for ξq ≪ 1
we obtain

ωSHðqÞ
Δ

≈ 2−
4ξ4q4

π2
ln2

2
ffiffiffi
π

p
ξq

;
γSHðqÞ

Δ
≈
4ξ4q4

π
ln
2

ffiffiffi
π

p
ξq

:

ð9Þ

The z ¼ 4 scaling of ωSHðqÞ with momentum can be also
estimated directly from SqðEÞ in Eq. (4) since the SH mode
involves quasiparticles with energy ω≳ Δ. Expanding
Sqð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − Δ2

p
Þ for such ω, we find that the pole occurs

at jω − Δj ∼D2q4=Δ in the dirty limit. We also emphasize
that ωSHðqÞ < 2Δ. In the terminology of Ref. [59], the pole
is “hidden” behind the branch cut of χ↓SHðz; qÞ on the real
axis at Rez < 2Δ [see Figs. 2(b) and 2(c)]. Upon increasing

FIG. 2. (a) Im χ↓SHðz; qÞ (orange surface) in the complex frequency plane forDq2=Δ ¼ 0.5 andΔτ ≪ 1. The red solid line corresponds
to the real axis Im z ¼ 0, and the red vertical region indicates the discontinuity in Im χ↓SHðz; qÞ along its branch cut. The transparent blue
plane marks zero on the vertical axis. (b) Contour plot of Im χ↓SHðz; qÞ for the same parameters. The red dashed line indicates the branch

cut of χ↓SHðz; qÞ. The yellow dashed line shows the trajectory of the pole while momentum is varied. (c) Frequency of the SH mode as a
function of ξ2q2 ≡Dq2=Δ for Δτ ≪ 1 (left panel) and Δτ ¼ 1 (right panel) in 2D, shown with a yellow solid curve. The small-q
asymptotic behavior, Eq. (B2), is shown with the dashed red curve. The normalized spectral function 2 arctanðIm χRSHðω; qÞÞ=π ∈ ½0; 1� is
shown with the background color. The yellow dashed line shows the position of the maximum of the spectral function. The horizontal
white dashed line denotes the edge of the two-particle continuum. The SH damping rate (blue solid curve) is shown at the bottom.
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Δτ while keeping ξq fixed, the pole zq shifts to the right.
Eventually, its frequency ωSHðqÞ exceeds 2Δ—that is, the
pole becomes “visible”—and it contributes to the Fourier
transform, giving rise to additional exponentially decaying
oscillations at frequency ωSHðqÞ in χRSHðt; qÞ [cf. Eq. (10)].
At moderate values of Δτ ≈ 1, the dispersion develops a
quadratic dependence on q [see Fig. 2(c)]. The results of
Refs. [29,31] are recovered in the limit Δτ → ∞ (see
Supplemental Material [56] for a detailed analysis of the
crossover between the dirty and clean regimes). A similar
analysis of the SH susceptibility in the complex momentum
plane at fixed ω̄ also reveals a pole [56].
Late-time and long-distance SH oscillations—Let us

now discuss how the aforementioned pole manifests itself
in various asymptotic limits of χRSH. First, we consider
χRSHðt; qÞ at late times t and fixed momentum, which
describes a response to a sudden, spatially periodic per-
turbation. For arbitrary Δτ, we find

χRSHðt; qÞ ≃ 2 Im½Zqe−iωSHðqÞt�e−γSHðqÞtθ½ωSHðqÞ − 2Δ�

−
2 sinð2ΔtÞ

πt2
∂ω Im χRSHðω; qÞω¼2Δþ0þ ; ð10Þ

where Zq is the residue of χ
↓
SHðz; qÞ at zq. The asymptotic

late-time behavior is determined by the second term
stemming from the continuum edge at ω ¼ 2Δ in
Im χRSH. These oscillations at frequency 2Δ decay as 1=t2,
in contrast to the conventional ∼1=

ffiffi
t

p
decay at q ¼ 0 [1].

The first term in Eq. (10) originates from the pole zq,
provided that its real part, ωSHðqÞ, exceeds 2Δ. Although
this exponentially decaying contribution is subleading,
interestingly, its frequency is q-dependent. In the dirty
limit, the pole is “hidden” by the branch cut [ωSHðqÞ < 2Δ,
see Figs. 2(a) and 2(b)], so its contribution to χRSH is
strongly incoherent and does not produce oscillations. Thus
for Δτ ≪ 1 and ξq ≪ 1, Eq. (10) yields

χRSHðt; qÞ ≈ − sinð2ΔtÞ=½Δt2ðξqÞ6ln2ðξq=2Þ�: ð11Þ

At moderate disorder (or large momentum), the SH pole
shifts into the right half-plane (ωSH > 2Δ) and becomes
“visible” [cf. Fig. 2(c)], resulting in a coherent feature in
χRSH and additional oscillations [first term in Eq. (10)]. The
“critical” qc at which these oscillations first appear [i.e.,
ωSHðqcÞ ¼ 2Δ] is analyzed in Supplemental Material [56].
The long-distance oscillations of χRSHðω; rÞ at a fixed

frequency ω are closely related to the pole in χ↓SH in the
complex momentum space. These oscillations correspond
to a spatially-local periodic external drive and exist for
ω > 2Δ only. In 2D and in the dirty limit, Δτ ≪ 1, we find

Im χRSHðω; rÞ ≃
21=4

ffiffiffiffiffiffiffiffiffiffi
ξω=r

p
ffiffiffi
π

p
ξ2 ln 24Δ

ω−2Δ

e−r=ξω sin

�
r
ξω

þ π

8

�
; ð12Þ

where ξω¼ ξfj lnf½ðω=ΔÞ−2�=24gj2=fπ2½ðω=ΔÞ−2�gg1=4
is the period of oscillations diverging at the thresh-
old ω ¼ 2Δ.
The long-distance and late-time behavior of χSHðt; rÞ in

the regime Δτ ≪ 1 is subdiffusive, featuring oscillations as
a function of ϰ ¼ π2ðr=ξÞ4=ðΔtÞln2ðΔtÞ with an approxi-
mate dynamical exponent z ¼ 4 (which implies the relation
r ∼ t1=z). In 2D, for ϰ ≫ 1, we find

χRSHðt; rÞ ≃
23=4e−

3
ffiffi
3

p
8
ϰ1=3ffiffiffi

3
p

πξ2t lnðΔtÞ cos
�
3

8
ϰ1=3 − 2Δt

�
: ð13Þ

In the opposite regime, Δτ ≫ 1, the amplitude SH fluctua-
tions propagate diffusively, with z ¼ 2. Oscillations
[Eq. (13)] can be induced by a quenched perturbation
affecting a local gap magnitude. The results in 3D are
qualitatively similar to Eqs. (12) and (13) and are presented
in Supplemental Material [56]. The analytic results
[Eqs. (12) and (13)] are benchmarked against direct
numerical evaluation of χRSH shown in Fig. 3.
SH mode and the nonlinear current response—The

results for χSH outlined above can be directly probed via
the electromagnetic response to an external harmonic

FIG. 3. Oscillations in (a) ln ξ2j Im χRSHðω; rÞj and in (b) jξ2χRSHðt; rÞ=Δj in 2D, and in the dirty limit Δτ ≪ 1. (c) The absolute value of
the individual contributions to the current for Dq2=Δ ¼ 1=8 for Δτ ≪ 1. The red dashed line indicates the q ¼ 0 resonance at ω ¼ Δ.
The blue (orange) curve corresponds to the quasiparticle (Schmid-Higgs) contribution. The inset shows the total current. Additional
details on the dependence of the current on Dq2=Δ are provided in Supplemental Material [56].
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vector potential Aðt; rÞ ¼ Aω;qeiq·r−iωt. As is well known, at
cubic order in Aω;q, induced corrections to the amplitude
fluctuations at frequency 2ω and momentum 2q lead to
the current oscillations at frequency 3ω and momentum
3q—the effect known as third harmonic generation (THG)
[8,19,20,25,26]. After evaluating the diagrams familiar
from the q ¼ 0 case [26], we find that the resulting
paramagnetic contribution to the current (which is absent

in the clean case [6,20]) consists of two terms, J3ω;3q ¼
JðqpÞ3ω;3q þ JðSHÞ3ω;3q (see End Matter). The first term corresponds
to a direct quasiparticle (qp) channel, and the second one
involves the SH susceptibility:

JðSHÞ3ω;3q ¼ 4πνD2χRSHð2ω; 2qÞBR
SHðω; qÞjAω;qj2Aω;q: ð14Þ

The lengthy expression for BR
SHðω; qÞ is given in

Supplemental Material [56]. Unlike the SH susceptibility
χRSHð2ω; 2qÞ, BR

SHðω; qÞ does not exhibit any sharp non-
analytic features in the limit q → 0 andω → Δ, and it could
be replaced in Eq. (14) with its limiting value BR

SHðΔ; 0Þ≈
−1.55 − 1.27i. Consequently, for jω − Δj ≪ Δ, the current
JðSHÞ3ω;3q is essentially governed by the SH susceptibility and
exhibits a peak at a frequency ωmaxðqÞ=2 > Δ with the
height that scales as 1=ðξqÞ2; see Eq. (8) and Fig. 3(c). In
contrast, we find that the peak in the “quasiparticle”

contribution JðqpÞ3ω;3q remains fixed at Δ even for q ≠ 0, as
shown in Fig. 2(c). Intuitively, this is expected because
the momentum-resolved collective dynamics of the order
parameter fluctuations is very distinct from individual

quasiparticle excitations. Since JðqpÞ3ω;3q at ω ¼ ωmaxðqÞ=2
grows as ln½1=ðξqÞ� only (see End Matter), the peak in the
SH contribution dominates the quasiparticle contribution at
ξq ≪ 1. The pair-breaking effects (e.g., magnetic impu-
rities) will broaden both peaks, thereby establishing a lower
bound on q for observation of the SH peak in the THG.
Thus, the emergence of an additional peak at a frequency
above Δ in the finite-momentum current provides an
unambiguous signature of the amplitude SH fluctuations
and allows for a direct investigation of their dynamics
summarized by Eqs. (11)–(13).
Conclusions—In this Letter, we studied the spatially-

resolved dynamics of the order parameter amplitude (SH)
fluctuations in BCS superconductors with nonmagnetic
impurities. We identified a pole on the unphysical Riemann
sheet of the SH susceptibility, associated with the oscil-
latory mode exhibiting subdiffusive z ¼ 4 spreading in the
dirty limit. This pole also produces a peak in the spectral
function above the edge of the two-particle continuum,
even though the frequency of the SH mode itself can be
below 2Δ for sufficiently strong disorder. We also calcu-
lated the contribution of the SH mode to the nonlinear
current response, focusing on the THG. We found that at

finite wave vectors, the THG current exhibits an additional
peak in its amplitude, shifted away from the conventional
resonance at ω ¼ Δ. This extra peak arises solely from the
dynamics of the amplitude SH mode. Importantly, both
disorder and finite wave vectors are essential for this effect.
Without disorder, the SH mode would not contribute to the
current [20], and at zero wave vector, multiple processes
conflate into a single peak at Δ [26], making it difficult to
disentangle the SH contribution. Our findings could be
directly tested with spatially-resolved terahertz and Raman
spectroscopic probes [7–10]. Moreover, a finite wave
vector can be imprinted in the current response in thin
films with high-frequency surface acoustic waves [60,61],
diffraction gratings and micropatterning [62], finite spot
size of the pump pulse [6,63], or adding extra layers of a 2D
van der Waals material with a Moiré superlattice. Another
promising possibility is to use spatially-inhomogeneous
Feshbach modulation of the interaction strength in disor-
dered cold gases [64] to directly quench the local value of
the gap and study its spatial relaxation [65].
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End Matter

Appendix A: Formula for χ↓SHðz; qÞ—The explicit
formula for the function χ↓SHðz; qÞ is given by

1

χ↓SHðz; qÞ
¼

� ½χSHðz; qÞ�−1; Im z > 0

½χSHðz; qÞ�−1 þ 2iρqðzÞ; Im z ≤ 0:
ðA1Þ

Here ½χSHðz; qÞ�−1 is defined in Eq. (5), and ρqðzÞ is the
analytic continuation of ρqðωÞ, given in Eq. (6) for
Δτ ≪ 1 and for arbitrary Δτ in Supplemental Material
[56], from ω ≥ 2Δ into the lower complex half-plane.

Appendix B: SH pole for Δτ ≪ 1—Next, we
analytically derive the expression for the pole in the
dirty limit. Instead of using our global integral
representation in Eq. (A1), we follow an equivalent
route by analytically continuing the approximate

expression for χRSHðω; qÞ [given in Eq. (7) on the real
axis at ω > 2Δ] into the lower half plane, thereby
ensuring the smoothness of the resulting function across
the cut. After setting the inverse of the rhs of Eq. (7) to
zero and treating u as a complex variable, we obtain the
following equation: lnðu�q̄2=8Þ ¼ iπð1 − u�Þ=2. Its solu-
tion is given by u� ≃ 2þ 2i½1 −Wð4π=q̄2Þ�=π, where
WðyÞ is the Lambert function defined as a solution of
the equation W expW ¼ y. For y ≫ 1, we find WðyÞ≃
lnðy= ln yÞ, and thus we can assume that Wð4π=q̄2Þ ≫ 1.
The resulting behavior near the pole is given by

χ↓SHðz; qÞ ≃
Zq

z − zq
;

Zq

Δ
≃
4q̄2

π2

�
W

�
4π

q̄2

�
þ iπ

�
; ðB1Þ

and the position of the pole zq is given by
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zq
Δ
≃ 2−

q̄4

π2
½Wð4π=q̄2Þ− 1�2 − 2iq̄4

π
½Wð4π=q̄2Þ− 1�: ðB2Þ

Within the leading logarithmic accuracy, we obtain Eq. (9).
The position of the pole in the complex momentum plane

can also be found from Eq. (7). After rewriting the
expression in Eq. (7) as

χRSHðω;qÞ≃ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
u2− 1

ω̄− 2

r �
ln

24

ω̄− 2
þu ln

u− 1

uþ 1
þ iπð1−uÞ

�
−1

ðB3Þ

for ω > 2Δ and Δτ ≪ 1, setting the inverse of this
expression to zero, finding the solution ũ�, and converting
it back to momentum q̄, we obtain

χRSHðω; qÞ ≃
Z̃ω

q̄2 − q̄2ω
; q̄2ω ≃

2π
ffiffiffiffiffiffiffiffiffiffiffiffi
ω̄ − 2

p

ln 24

ω̄−2

�
iþ π

ln 24

ω̄−2

�
;

ðB4Þ

and Z̃ω ≃ 1=j ln½ðω̄ − 2Þ1=4=2�j is the residue at q̄2ω. Its
Fourier transform leads to Eqs. (12) and (13) [56].

Appendix C: Explicit expressions for the nonlinear
current response—The nonlinear current response at
q ¼ 0 was analyzed in [26]. Here, we extend that
analysis to finite q. The diagrams determining the
paramagnetic contribution to the current are identical to
those in [26]. A straightforward calculation yields
Eq. (14), where the function BR

SHðω; qÞ is expressed as a
product of two fermionic loops, each connecting two
external vector potential vertices to the SH susceptibility:

BR
SHðω; qÞ ¼ −2πBR

1 ðω; 2qÞBR
2 ðω; 2qÞ: ðC1Þ

The expressions for B1ðωn; qÞ and B2ðωn; qÞ on the
Matsubara axis are given in Supplemental Material [56].
Here, we only provide the result after analytic
continuation for Δτ ≪ 1 and at T ¼ 0:

BR
1 ðω;qÞ
Δ

¼
Z

ω

0

dε
2πi

FRA
ω;qðεÞþ

Z þ∞

−∞

dε
4πi

sgnðε−ωÞFRR
ω;qðεÞ;

FRs
ω;qðεÞ ¼

Δ2þ 3ε2 −ω2−ER
εþωE

s
ε−ω

ðDq2þER
εþωþEs

ε−ωÞER
ε ER

εþωE
s
ε−ω

;

ER
ε ¼ θðΔ− jεjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2− ε2

p

− iθðjεj−ΔÞsgnðεÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2−Δ2

p
ðC2Þ

and EA
ε ¼ ER

−ε. Similarly, for BR
2 , we find

BR
2 ðω; qÞ
Δ

¼
Z

ω

0

dε
2πi

ΦRAA
ω;q ðεÞ þ

Z
2ω

ω

dε
2πi

ΦRRA
ω;q ðεÞ

þ
Z þ∞

−∞

dε
4πi

sgnðε − 2ωÞΦRRR
ω;q ðεÞ; ðC3Þ

where we also define

ΦRsσ
ω;q ðεÞ ¼

1

ðDq2 þ ER
εþω þ Es

ε−ωÞER
εþωE

s
ε−ω

×

��
1

ER
εþ2ω

þ 1

Eσ
ε−2ω

�

×


Δ2 þ ε2 − ω2 − ER

εþωE
s
ε−ω

�

þ 2ε

�
εþ 2ω

ER
εþ2ω

þ ε − 2ω

Eσ
ε−2ω

��
: ðC4Þ

Finally, the quasiparticle contribution, JðqpÞ3ω;3q, is given by

JðqpÞ3ω;3q ¼ −4πνD2BR
3 ðω; 2qÞjAω;qj2Aω;q; ðC5Þ

where B3ðωn; qÞ on the Matsubara axis is provided in
Supplemental Material [56]. The real frequency
expression for BR

3 ðω; qÞ is the same as for BR
2 ðω; qÞ in

Eq. (C3), but with ΦRsσ
ω;q ðεÞ replaced by WRsσ

ω;q ðεÞ, where

WRsσ
ω;q ðεÞ ¼

1

ðDq2 þ ER
εþω þ Es

ε−ωÞER
ε

��
Δ

ER
εþ2ω

þ Δ
Eσ
ε−2ω

�

×

�
1þ ω2 − Δ2 − 3ε2

ER
εþωE

s
ε−ω

�

−
ε

Δ

�
1þ 3Δ2 − ω2 þ ε2

ER
εþωE

s
ε−ω

�

×

�
εþ 2ω

ER
εþ2ω

þ ε − 2ω

Eσ
ε−2ω

��
: ðC6Þ

Near the resonance at ω ≈ Δ, we find a logarithmic
divergence

BR
3 ðω; qÞ ≈

1

π

1

Dq2=Δþ 1 − i
ffiffiffi
3

p ln
Δ

jω − Δj : ðC7Þ

Therefore, JðqpÞ
3ωmaxðqÞ=2;3q increases as ln 1=ðξqÞ for

ξq ≪ 1. The expressions for arbitrary Δτ can be
obtained by replacing factors ðDq2 þ ER

εþω þ Es
ε−ωÞ−1 in

Eqs. (C2), (C4), and (C6) with SqðER
εþω þ Es

ε−ωÞ.
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