
Abstract. This review presents recent work carried out at the
Landau Institute for Theoretical Physics of the Russian Academy
of Sciences on the study of the effect of superconducting vortices
on the shape and position of N�eel-type skyrmions in superconduc-
tor±chiral ferromagnet heterostructures. Based on analytical and
numerical approaches, a number of effects caused by the inhomo-
geneous magnetic field of the vortex have been predicted: a
significant increase in the skyrmion radius, a change in its chi-
rality in the case of a coaxial configuration of the vortex and
skyrmion, and modification of the skyrmion shape in the case of
an eccentric configuration. Recent experiments studying these
effects are discussed.

Keywords: superconductors, chiral ferromagnets, vortices,
skyrmions

1. Introduction

The development of modern physics is associated with a
growing interest in physical objects in many-body systems
that, on the one hand, represent collective excitations and, on
the other hand, possess topological protection. Skyrmions,
which were theoretically proposed by T. Skyrme as a model
for baryons in the mid-20th century [1±3], are one example of
such objects. Subsequently, the existence of similar topologi-
cal excitations was predicted in various physical systems: two-
dimensional electron gas in the quantum Hall regime [4],
spinor Bose±Einstein condensates [5], superfluid 3He [6],
chiral magnetic films [7], and others. We are particularly
interested in skyrmions realized in chiral ferromagnets. A
detailed description of key theoretical and experimental
results related to topologically nontrivial magnetic excita-
tions (including skyrmions) in noncentrosymmetric systems
can be found in recent review [8].

Another well-known example of topologically protected
objects in many-body systems is vortices in superconducting
structures [6, 9]. In the same material, superconductivity and
magnetism typically compete with each other and exist in
different regions of the phase diagram. The creation of
superconductor±ferromagnet heterostructures has made it
possible to observe a number of interesting effects associated
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with the spatially separated coexistence of magnetism and
superconductivity [10±17]. In particular, superconductor±
ferromagnet heterostructures allow the study of two topologi-
cally nontrivial objectsÐa skyrmion and a vortexÐ in a single
experimental system [18±20]. Even in the absence of super-
conducting vortices, the presence of skyrmions can strongly
influence the physics of superconductor±ferromagnet hetero-
structures: for example, skyrmions modify the Josephson effect
[21], can induce Yu±Shiba±Rusinov-type states [22, 23], and
affect the superconducting critical temperature [24].

The simultaneous presence of skyrmions and vortices in a
superconductor±ferromagnet heterostructure is of particular
interest, because the magnetic field created by the inhomoge-
neous magnetization of a skyrmion can induce a zero-energy
quasiparticle state in the superconducting vortex core, being a
Majorana state [25±32]. Such Majorana states can serve as a
platform for topological quantum computing [33, 34]. There are
severalmechanisms for the formation of a skyrmion±vortex pair
in superconductor±chiral ferromagnet heterostructures. In the
case of a sufficiently good quality interface, the proximity effect,
in the presence of spin-orbit coupling, leads to the formation of a
skyrmion±vortex pair [35, 36]. Regardless of the interface
quality, another mechanism exists: interaction between the
stray magnetic field of the vortex and the magnetization of the
skyrmion [37±40]. This effect is sensitive to the spatial distribu-
tionof the skyrmion'smagnetization, i.e., whether it is aBlochor
N�eel type. In the latter case, the stable configuration of the
skyrmion±vortex pair may correspond to a finite distance
between their centers [41]. This implies that, when analyzing
the structure of quasiparticle states in the superconducting
vortex core, one cannot a priori ignore the fact that the vortex-
inducedmagnetic field alters the spatial magnetization profile of
the skyrmion (including displacing it), which in turn affects the
Zeeman splitting of the quasiparticle spectrum.

Thus, a consistent microscopic analysis of Majorana
states in superconductor±ferromagnet heterostructures relies
on an explicit formof the equilibriummagnetization profile in
a chiral ferromagnetic film under the influence of the
magnetic field created by a vortex in the superconducting
film. This review presents methods for solving the magneto-
static problem to find such an equilibrium profile and recent
results obtained in this context [42±44].

Section 2 provides an overview of the problem of skyrm-
ion±vortex interaction in superconductor±chiral ferromagnet
heterostructures, including analytical methods and a numer-
ical approach based on micromagnetic simulations. In Sec-
tion 3, a variational analysis of the coaxial configuration of a
superconducting vortex and a N�eel-type skyrmion is pre-
sented. Section 4 is devoted to studying eccentric configura-
tions of vortices and skyrmions and discusses various effects
associated with such arrangements. Then, in Section 5, the
developed variational approach is used to analyze the
stabilization of a vortex±antivortex pair due to interaction
with a skyrmion. In Section 6, we discuss the influence of a
vortex on higher-order skyrmions. The review concludes with
a discussion of existing experimental results and final remarks.

2. Skyrmion and vortex:
perspectives and current status

2.1 Topological quantum computation
The recent surge of interest in Majorana fermions in
condensed matter systems has been driven by their potential

use in non-Abelian quantum computation [45]. Many
researchers have focused on creating one-dimensional hetero-
structures in which topological p-wave superconductivity
arises due to the proximity effect and leads to the formation
of Majorana states at the boundary [46±54]. Another
promising avenue involves studying heterostructures in
which a thin superconducting film is coupled to a noncol-
linear magnet [25, 55]. Among the advantages of the two-
dimensional realization ofMajorana states in a superconduc-
tor±noncollinear magnet structure are that Majorana states
can exist without precise tuning of the chemical potential, are
stabilized over a much wider parameter range, and are
separated by a distance determined by long-range noncol-
linear order, reaching macroscopic scales [25].

The discussion of a superconductor±noncollinear magnet
heterostructure in the context of Majorana states first
appeared in Ref. [55], where it was shown that a spiral spin
structure near an s-wave superconductor gives rise to edge
Majorana fermions with flat dispersion, while a spin config-
uration in the form of a skyrmion crystal generates chiral
Majorana states at the sample boundary. Shortly thereafter,
Ref. [25] developed a more refined and unified approach that
encompasses cycloidal, helical, and tilted conical orders
found in multiferroics, as well as Bloch- and N�eel-type
domain walls in ferromagnetic insulators.

With the emergence of new proposals for realizing
Majorana states, the need arose to study their stability and
the possibility of manipulating them. Various geometries were
proposed as possible implementations. Among them was a
heterostructure based on a two-dimensional electron gas
sandwiched between a chiral ferromagnet hosting magnetic
skyrmions on one side and an s-wave superconductor on the
other [27]. Another proposal considered a system in which a
magnetic skyrmion with even topological charge Q (see
Eqn (26)) was placed near an s-wave superconductor [26].

However, many of the proposed geometries have turned
out to be difficult to implement experimentally. In particular,
most known materials only support skyrmions with unit
topological charge [56], while the even-Q states described in
[26] are unstable and had not been observed until recently,
when they were first found at room temperature in a
multilayer structure [Co (0.2 nm)/Ni (0.7 nm)]n with
n � 4ÿ11Ðthe number of bilayers in the heterostructure
[57]. However, Ref. [29] showed that the need to realize even
jQj > 1 experimentally can be elegantly avoided. If one
considers a skyrmion with topological charge Q coaxial with
a superconducting vortex characterized by an inhomoge-
neous order parameter D�r� � exp �ibj�D�r�, where (r;j)
are the radial distance and azimuthal angle from the vortex
center, then it can be shown that a necessary condition for the
appearance of a Majorana state is the evenness of Q� b.
Thus, it was predicted that the most realistic case from an
experimental perspectiveÐ jQj � jbj � 1, corresponding to a
conventional skyrmion and a single-quantum superconduct-
ing vortexÐcan lead to the formation of a Majorana state.

At present, such a realization of Majorana states in
superconductor±chiral ferromagnet heterostructures is con-
sidered highly promising. In particular, recent paper have
proposed and theoretically analyzed protocols for moving
Majorana states relative to each other within skyrmion±
vortex pairs [33, 34].

Next, we will examine in more detail the theoretical model
that allows analytical investigation of the influence of a super-
conducting vortex on the shape and position of a skyrmion.
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2.2 Theoretical model
We consider a thin chiral ferromagnetic film, whose magnetic
free energy is given by expression [7]:

Fmagn�m�
dF

�
�
d2r

�
A�Hm�2 � K�1ÿm 2

z � � wDM�m�
�
;

�1�

where m�r� denotes a unit vector in the direction of
magnetization, dF is the film thickness, and A > 0 and K > 0
are the exchange stiffness and the effective 1 perpendicular
anisotropy constant, respectively. The density wDM�m� corre-
sponds to the contribution from the relativistic antisymmetric
exchange, also known as the Dzyaloshinskii±Moriya interac-
tion (DMI). It is important to note that the form of wDM�m�
depends on the crystalline class of the material and leads to
the formation of various noncollinear structures. Here, we are
interested in N�eel-type skyrmions, which form in lattices
belonging to the family of `pyramidal' symmetry groups Cnv.
For these cases, the explicit form of the DMI contribution is

wDM�m� � D
�
mzHmÿ �mH�mz

�
; �2�

where D is the Dzyaloshinskii±Moriya interaction constant.
Expressions for wDM�m� for other symmetry classes can be
found in Ref. [7].

The magnetic free energy is normalized so that Fmagn is
zero for the ferromagnetic state with mz � 1.

2.2.1 Free skyrmion. In the absence of an external magnetic
field, the free energy given by Eqn (1) allows the existence of
metastable stationary statesÐ skyrmions.

A single free skyrmion centered at the origin has a
cylindrically symmetric magnetization profile that can be
expressed in the following general form:

m � �er cosc�r� � ef sinc�r�
�
sin y�r� � ez cos y�r� : �3�

Here, er, ef, and ez are unit vectors in the radial, azimuthal,
and axial directions of the cylindrical coordinate system,
where the z-axis is perpendicular to the interface. The angle
c�r� defines the skyrmion type: for c�r� � p=2, the skyrmion
is the Bloch type, and for c�r� � 0, it is the N�eel type. In what
follows, we consider N�eel-type skyrmions, as these are the
ones observed in recent experiments [18±20] in configurations
with a superconducting vortex. For such skyrmions, both
coaxial and displaced configurations can exist [41, 42, 44].

Thus, the magnetization profile of a free N�eel-type
skyrmion takes the form

m � er sin y�r� � ez cos y�r� ; �4�

where the skyrmion angle y�r� can be found from the Euler±
Lagrange equation (ELE) obtained by minimizing the free
energy Fmagn with the DMI term given by Eqn (2),

` 2w
r

qr�r qry� ÿ `
2
w � r 2

2r 2
sin �2y� � 2E

sin2 y
r=`w

� 0 ; �5�

where we introduce the dimensionless DMI parameter E and
the length scale parameter `w, which characterizes the domain

wall width:

E � D

2
�������
AK
p ; `w �

����
A

K

r
: �6�

Note that, since `w sets the natural length scale of the
problem, the ferromagnetic film can be considered thin if its
thickness is small compared to this scale, dF 5 `w.

Equation (5) describes a skyrmion under the following
boundary conditions:

y�r!1� � 0 ; y�r � 0� � wp : �7�

The first condition ensures uniform magnetization far from
the skyrmion center. The second specifies that the magnetiza-
tion at the center is inverted with respect to the surrounding
uniform magnetization. Here, w � �1 denotes the skyrmion
chirality. It is important to note that a free skyrmion in an
isolated ferromagnetic film possesses only one chirality,
determined by the sign of the DMI parameter, w � sgn �E�.
In this paper, we focus on the case of positive 2 DMI, E > 0.
Therefore, the only stable solution to Eqn (5) for a free
skyrmion corresponds to chirality w � �1. However, in the
presence of an external inhomogeneous magnetic field,
skyrmions may possess either chirality (see [43] and Section 3
for details).

A direct numerical solution of Eqn (5) with boundary
conditions (7) yields the skyrmion profile. In addition, the
exact solution is well approximated by the so-called 360�

domain wall ansatz, y�r� � yRd�r�:

yRd�r� � 2 arctan
sinh �R=d�
sinh �r=d� : �8�

Here, the parameter R encodes two physical quantities: the
skyrmion radius jRj and chirality w � sgn �R�, while d
represents the effective domain wall width forming the
skyrmion boundary. The parameters R and d can be
obtained by numerically minimizing the free energy Fmagn

using the domain wall ansatz (8).

2.2.2 Ferromagnetic film in external magnetic field. The
influence of an external inhomogeneous magnetic
field B�r; z� on a thin ferromagnetic film is described by the
Zeeman contribution, which is added to the free energy:

FZ �m;B� � ÿdF
�
d2rMs mBjz��0 ; �9�

where Ms denotes the saturation magnetization. In what
follows, the external magnetic field is considered at the level
of a thin ferromagnetic film, i.e., at z � �0. Therefore, we will
omit the notation jz��0 and simply write B�r�, unless
otherwise specified. Moreover, we assume that the magnetic
field vanishes at large distances, B�r!1� ! 0, which is
naturally satisfied for the stray field of one or several
superconducting vortices.

To determine the stable states of the ferromagnetic film in
the presence of an external magnetic field B�r�, one must
minimize the total free energy:

F ferro�m;B� � Fmagn�m� � FZ�m;B� : �10�
1 The contribution of the demagnetizing field is included in the effective

perpendicular anisotropy constant, K � K0 ÿ 2pM 2
s [39, 41, 58]. 2 In Section [3], we present some results for E < 0 in Fig. 4.
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The simplest stationary state is the `no-skyrmion' config-
uration, where the magnetization of the ferromagnetic film
under the influence of the inhomogeneous field B remains
nearly uniform and does not contain skyrmions or other
domain boundaries. We will consider a weak field character-
ized by an effective strength g,

g �MsB0

2K
5 1 ; �11�

where B0 is a characteristic constant amplitude of the field,
B�r� � B0b�r� in the film, and b�r� is a dimensionless
coordinate-dependent vector function. Note that the defini-
tion of B0 is ambiguous. It should be chosen such that: (i) the
effective strength g in Eqn (11) is estimated reasonably, and
(ii) the vector mb in Eqn (12) is of order g 0 � 1. The particular
choice of B0 does not affect the final result and is needed only
for evaluating the effective strength g, since only the product
gmb enters the answer. In particular, it is convenient to choose
B0 so that the function b�r� on the characteristic length scale
`w is of order g 0 � 1, which is done in Eqn (20) for the Pearl
vortex.

Then, the magnetization mb of such a stable state is
approximately given by

mb � ez � glb ; �12�
where lb�r� is a vector of order g 0, orthogonal to ez, i.e.,
lbez � 0.

Expanding the total free energy in Eqn (10) form � mb to
the second order in g and minimizing it yields the Euler±
Lagrange equation for lb:

` 2w D lb ÿ lb � bjj � 0 ; �13�

where D denotes the Laplacian, and bjj � bÿ ezbz is the in-
plane component of the normalized external magnetic field b.

2.2.3 Magnetic field generated by Pearl vortex. Hereafter, we
assume that a magnetic field B�r� acting on the ferromagnet
originates from either a single superconducting vortex or a
vortex±antivortex pair. Consider a heterostructure consisting
of two thin filmsÐa superconducting one and a ferromag-
netic oneÐseparated by a thin insulating layer that sup-
presses the proximity effect (Fig. 1). We assume that the
thickness dS of the superconducting film is much smaller than
the London penetration depth, dS 5 lL. In this case, the
superconducting vortex is referred to as a Pearl vortex, and
the characteristic length that defines the scale of the vortex's
stray magnetic field is l � l 2

L=dS, known as the Pearl length
[59].

The magnetic field BV generated above the superconduct-
ing film (at z > 0) by a single Pearl vortex centered at the
origin is given by [60]

BV � f0H
�

d2q

�2p�2
exp �ÿqz� iqr�

qF �q� ; �14�

where f0 � hc=2e is the magnetic flux quantum. For
arbitrary dS and lL, the function F �q� is

F �q� � l 2
L�
�q� ��2 exp ��dS� ÿ �qÿ ��2 exp �ÿ�dS�
�q� �� exp ��dS� � �qÿ �� exp �ÿ�dS� ÿ 2q

;

�15�

with � �
�������������������
q 2 � lÿ2L

q
.

In the thin film limit dS 5 lL, and not too close to the
vortex center, r4 dS, the integral in Eqn (14) can be
approximated using F �q� � 1� 2ql. Then, the magnetic
field of the Pearl vortex, which is cylindrically symmetric
about the vortex center, in the ferromagnetic film (at z � �0)
takes the form

BV�r� � f0

4p`wl

�
br�r� er � bz�r� ez

�
; �16�

where the functions bz�r� and br�r� are defined by Eqn (14) for
r4 dS:

br=z�r� � ÿ`w
�1
0

dq qJ1=0�qr�
q� 1=�2l� : �17�

Here, Ja�x� denotes a Bessel function of the first kind.
Note that for r9dS, themagnetic field calculated using the

above approximation F�q� � 1� 2ql deviates from the more
general result of Eqn (15). However, it turns out that lb is
small in this region (since lb ! 0 as r! 0), and therefore the
deviation of the magnetic field near the vortex core has little
effect on the behavior of the skyrmion. Thus, we will continue
using the thin-film approximation even for r9dS, i.e., for all r.

We restrict our analysis to this thin-film limit, as it allows
a number of analytical results. It is important to note that the
variational method presented in Sections 3 and 4 is applicable
to arbitrary magnetic field distributions and therefore can be
used with the full expressions (14) and (15).

Hereafter, we assume that the characteristic sizes of the
skyrmion and the distances between the centers of the
skyrmion and the superconducting vortex in stable config-
urations are governed by the domain wall width `w, which is
assumed to be small compared to the Pearl length l,
achievable for sufficiently thin superconducting films:

dS � dF 5 `w � d � jRj5 l � l 2
L

dS
: �18�

Under these assumptions, we may disregarded 1=�2l� in the
denominator of the integrand in Eqn (17) and obtain
simplified expressions for the vortex field:

br=z�r� � ÿ `w
r
; r5 l : �19�

The characteristic magnitude of the Pearl vortex stray
field, and hence the effective vortex strength g defined in

Vortex

Skyrmion

FM

SC

M
agn

etic
é
eld

Figure 1. Schematic illustration of heterostructure composed of thin

superconducting (SC) and ferromagnetic (FM) films, containing corre-

sponding topological objectsÐa vortex and a skyrmionÐwhich interact

via stray magnetic field.
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Eqn (11), are given by

B0 � f0

4p`wl
; g � Msf0

8pl
�������
AK
p : �20�

In the subsequent analytical treatment, we consider g to be a
small parameter, consistent with experimental observations
[43].

Since the magnetic field of a single Pearl vortex is
cylindrically symmetric, the magnetization in the `no-skyrm-
ion' state from Eqn (12) is also cylindrically symmetric, with
the vector lb aligned with er:

lb�r� � yb�r�er : �21�
Then, Eqn (13) reduces to an equation for yb:

` 2w
r

qr�r qryb� ÿ `
2
w � r 2

r 2
yb � br � 0 : �22�

The solution to this equation with zero boundary conditions,

yb�r � 0� � 0; yb�r!1� � 0 ; �23�
can be found analytically [44]:

yb�r� � ÿ2`w
�1
0

dq qJ1�qr�
�2q� 1=l��1� �`wq�2� : �24�

In the limit of large Pearl length, a simpler expression is
obtained [43]:

yb�r� � K1

�
r

`w

�
ÿ `w

r
; r5 l ; �25�

where Kn�z� denotes a modified Bessel function of the second
kind.

2.2.4 High-order skyrmions. To characterize different types of
topological objects in a ferromagnetic film, it is common to
introduce the concept of topological charge Q and its local
density r�r�. These quantities are related to themagnetization
m�r� through the following expressions:

Q �
�
d2r r�r�; r�r� � 1

4p
m

�
qm
qx
� qm

qy

�
: �26�

In the previous subsection, we considered the simplest
type of skyrmion with a topological charge of jQj � 1. Most
theoretical and experimental studies focus on such skyrmions.
However, recent numerical and physical experiments have
revealed other magnetic topological structures: skyrmion-
iums [61], high-order skyrmions [57], skyrmion bags [62],
and biskyrmions [63]. These structures can carry a topological
charge jQj 6� 1 due to various features of their spin textures.

The reasons why such nontrivial topological objects can
exist in a system vary. In this review, we focus more
specifically on high-order skyrmions (HOSs) with jQj5 2,
since, as shown in Refs [64, 65], such skyrmions can be
stabilized in the field of a superconducting vortex.

Radially symmetric HOSs centered at the origin are
described using a standard parameterization analogous to
Eqn (3):

m � �er cosf �n� � ef sinf
�n�� sin y� ez cos y : �27�

Here, f and ef are the azimuthal angle and the
corresponding unit vector in polar coordinates, f �n� �
�nÿ 1��fÿ f0�, where n is the vorticity parameter of the
skyrmion texture, related to its topological charge by n � ÿQ.

It is important to note that the introduction of the azimuthal
anglef0 effectively determines the helicity of the skyrmion.As
demonstrated in Ref. [65], HOSs can form stable configura-
tions with a Pearl vortex. For more details, see Section 6.

2.3 Micromagnetic simulations
2.3.1 General concepts. An important tool for analyzing
theoretical and experimental results is the technique of
micromagnetic simulation [66]. All simulations presented in
this study were performed using the Object Oriented Micro-
Magnetic Framework (OOMMF) software package [67] and
the Ubermag environment [68]. Below, we discuss the
operating principles of numerical minimizers in these pro-
grams.

In numerical calculations, we deal with a discretized
problem, where the system is placed on a lattice, and classical
magnetic moments of unit length are located at the lattice
nodes. A key assumption of the micromagnetic approach is
that the spin direction changes only slightly between
neighboring lattice nodes [69]. The expression for the
system's free energy is then discretized and depends on 3N
variables, where N is the number of lattice nodes and the
factor 3 corresponds to the three components of the
magnetization. According to the OOMMF documentation
[67], the program's algorithm is based on the step-by-step
evolution of the system's classical magnetic moments using
evolvers. Each step in the dynamic evolution or energy
minimization depends on the previous (or several previous)
steps, and the evolvers are responsible for updating the
magnetization configuration from one step to the next.
There are two types of evolvers: time evolvers, which track
the dynamics of the Landau±Lifshitz±Gilbert (LLG) equa-
tion, and minimization evolvers, which find local minima on
the energy surface using direct minimization methods.

Let us now discuss the numerical solution to the dynamic
problem using the LLG equation [70, 71]. In the absence of
dissipation and spin-polarized current, the magnetization
dynamics are governed by

qm
qt
� ÿjgLLGjm�Heff ; �28�

where gLLG is a phenomenological constant, and Heff

represents the effective magnetic field acting on the system.
This field is defined as the variational derivative of the free
energy with respect to magnetization:

Heff � ÿ dF�m�
dm

: �29�

Naturally, stationary solutions of Eqn (28) correspond to
local extrema of the free energy.

Including dissipation modifies the original equation. The
most well-known dissipative modifications of the lossless
equation include an additional term in the Landau±Lifshitz
form:

qm
qt
� ÿjgLLjm�Heff ÿ jgLLja

M 2
s

m� �m�Heff� ; �30�

where a is a dimensionless damping constant, typically
associated with the presence of spin-orbit coupling, or, in
the Gilbert form,

qm
qt
� ÿjgGjm�Heff � a

Ms

�
m� qm

qt

�
: �31�
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These two forms are equivalent and related by the transfor-
mation gG � gLL�1� a 2�.

From the perspective of numerical modeling, inclusion of
the dissipative term allows the system to reach equilibrium in
a finite time. However, if the goal is to precisely model the
dynamics of the system, the choice of a becomes crucial.

2.3.2 Numerical analysis of skyrmion magnetization in Pearl
vortex field. Micromagnetic simulation methods are actively
used to study the behavior of magnetic skyrmions in external
fields. For instance, the analysis of skyrmion magnetization
dynamics is of particular interest in the broader context of spin
transport and in the field of skyrmionics. In this review, we
focus on the behavior of skyrmions in superconductor±chiral
ferromagnet heterostructures when vortices are present in the
superconducting layer.

In Ref. [39], the possibility of manipulating skyrmions in
such heterostructures using vortices was investigated. In
particular, the authors numerically observed that the char-
acteristic size of a skyrmion can increase significantly (by two
orders of magnitude) in the presence of a vortex field, under
certain ratios of interaction parameters, such as the strength
of the DMI and the Pearl vortex core size. It is worth noting
that this intriguing result did not follow from analytical
approaches, and no systematic analysis was performed to
determine the cause of and conditions for this effect.

A numerical analysis of the stability of coaxial configura-
tions of a skyrmion and a Pearl vortex, as well as changes in
the skyrmion profile depending on system parameters, was
carried out by the authors of this review in Ref. [42]. Through
micromagnetic simulations and aminimal analytical model, it
was found that a N�eel-type skyrmion may be unstable with
respect to a displacement of its center relative to the Pearl
vortex center, and its radius may significantly increase.

In our subsequent studies [43, 44], it was further shown
that, in the `N�eel skyrmionÐPearl vortex' system, the
magnetization can undergo chirality switching, and meta-
stable states may exist.Wewill discuss this inmore detail later
in the review.Within this subsection, we draw attention to the
micromagnetic simulation results shown in Fig. 2. This figure
presents four metastable skyrmion states in the stray field of a
Pearl vortex for fixed DMI and vortex strength parameters,
E � 0:325 and g � 0:479. The results illustrate the formation
of three distinct coaxial configurations, as well as a config-
uration where the skyrmion and vortex are offset relative to
each other.

In summary, numerical studies exploring skyrmions in
vortex fields reveal a variety of effects associated with changes
in the magnetization profile. These effects cannot be described
within the framework of the standard domain wall ansatz,
which motivated us to develop a new analytical approach.

2.3.3 Details of micromagnetic simulations. Finally, before
proceeding to the development of an analytical description of
a skyrmion in a vortex field, we provide a brief overview of the
micromagnetic simulations used in this paper. Additional
details can be found in Appendix E of Ref. [44].

In the numerical simulations, we model the ferromagnetic
film as a system 2L� 2L� dL in size, composed of cells
dL� dL� dL in size. All lengths aremeasured in units of `w.
Depending on the desired accuracy and the capabilities of the
computing hardware, different values of L and dLwere used.
For the data shown in Figs 2 and 3, the following parameters
were used: L�15, dL�0:04. For Figure 5, we used L � 32,
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dL � 0:2. Figures 6 and 8 were generated using L � 10:05
and dL � 0:015. The data for Fig. 10 were obtained with
L � 10, dL � 0:02.

3. Coaxial configurations of skyrmion
and vortex

We begin our study of the shape of a N�eel-type skyrmion in
the field of a Pearl vortex by considering the simplest case,
where the skyrmion and the vortex are in a coaxial config-
uration. Such configurations were first analytically studied in
Ref. [43].

3.1 Euler±Lagrange equation
In the coaxial configuration, the skyrmion exhibits a centrally
symmetric magnetization; therefore, its profile can be written
in the form of Eqn (4). Minimizing the total free energy from
Eqn (10), we obtain the Euler±Lagrange equation for y�r�:
` 2w
r

qr�rqr y� ÿ `
2
w � r 2

2r 2
sin 2y�2E sin

2 y
r=`w

� g�bz sin yÿbr cos y�:
�32�

Equation (32), supplemented by the boundary condi-
tions (7), can be solved numerically. Note that, unlike the
case of a free skyrmion, where the solution is unique and
possesses a definite chirality w � sgn �E�, the presence of an
external inhomogeneous magnetic field allows multiple
solutions to the ELE, including both chiralities w � �1.
Moreover, some of these solutions may correspond not to
minima of the free energy (10), but to saddle points (see
Fig. 3). In the latter case, the ELE solution does not describe
a stable skyrmion state and should be discarded after proper
verification.

These features lead to additional technical challenges in
numerically determining the stable states. Therefore, it is
convenient to use a variational approach, in which the
skyrmion profile is given by a fixed function containing
several parameters that are determined by the minimization
of the free energy.

3.2 Variational approach
As shown in Ref. [43], the exact solution of Eqn (32) with
boundary conditions (7) can be effectively approximated by
the following expression (hereafter referred to as the coaxial
ansatz):

y�r� � yg
Rd�r� � yRd�r� � gyb�r� cos yRd�r� ; �33�

where yRd is the domain wall ansatz given in Eqn (8), and g
and yb are defined by Eqns (20) and (25), respectively, and
arise due to the presence of the superconducting vortex.

It is useful to rewrite the ansatz (33) in terms of the
magnetization. Indeed, if we add the vector mRd Ðwhich
describes the deviation of the homogeneous magnetization
under the influence of the magnetic field B (see Eqns (12)
and (21))Ð to the magnetization vector glb described by the
domain wall ansatz (8), and then normalize the sum to unit
length, the resulting unit vector (to linear order in g5 1)
corresponds to a skyrmion with profile y g

Rd�r� from
Eqn (33):

mRd � glb
jmRd � glbj

� er sin y
g
Rd � ez cos y

g
Rd : �34�

The qualitative idea of the ansatz (33) is as follows. It is
natural to expect that the skyrmion magnetization is, to the
leading order, described by the 360� domain wall ansatz.
However, due to the relatively weak magnetic field (g5 1),
the magnetization at each point is additionally rotated. This
means we can write y�r� � yRd�r� � dy�r�. To determine the
rotation angle dy�r�, we consider the magnetization in three
regions: near the skyrmion center, at r � jRj, and far from the
origin.Near the center or far away, themagnetization is nearly
homogeneous (mz � �1), and its change is mainly governed
by the vortex field. Thus, dy�r� � � g yb�r�, directly following
from the solution to Eqn (22) for the `no-skyrmion' state. In
the intermediate region,mz � cos yRd�r�, so the rotation angle
is naturally smoothed, yielding dy�r� � gyb�r�mz �
gyb�r� cos yRd�r�, which gives ansatz (33).

It is important to note that the rotation angle dy remains
small for g5 1, which makes it seems that the ansatz in
Eqn (33) only describes a slight deviation from a free
skyrmion. Nevertheless, it turns out that, for not-too-small g,
significant changes in the skyrmion radius R can occur, and
even solutions with opposite chirality may emerge [43].
Indeed, the coaxial ansatz (33) should be substituted into the
free energy expression (10) and minimized with respect to the
two parameters R and d, without assuming proximity to the
free skyrmion parameters. This variational method proves to
be faster and more efficient than a direct numerical solution
of Eqn (32). Moreover, it yields reliable results over a wide
range of parameters E and g [43].

The upper panel of Fig. 3a shows results from the exact
ELE solution (solid curves), the variational approach (dashed
curves), and micromagnetic simulations for E � 0:325 and
g � 0:479. Thin solid curves show y�r� � gyb�r� and y�r� �
pÿ gyb�r�, closely matching skyrmion profiles at small and
large r. The three approaches are in good agreement.

As seen from the lower panels in Fig. 3b, the normalized
free energy as a function of R and d may exhibit multiple
minima: two with positive chirality, w � �1 (green diamond
and blue square), and onewith negative chirality, w � ÿ1 (red
triangle). These minima may correspond to stable skyrmion
states. Notably, the radius of the stable skyrmion (blue
square in Fig. 3c) is R � 5:7`w, about 14 times larger than
the radius of the skyrmionR0 � 0:41`w for g � 0. In addition,
the free energy has two saddle points (brown and purple
circles), representing unstable skyrmion states that cannot be
stabilized in micromagnetic simulations.

3.3 Analysis of results
Since the choice of parameters E and g corresponds to a
specific heterostructure, variations in these parameters can
lead to a different number of extrema in the free energy and,
consequently, to a different number of possible stable skyrm-
ion±vortex configurations. To explore this, Fig. 4 shows the
dependence ofR on g for several values of E. Solid and dashed
curves in the �g;R� plane correspond to minima and saddle
points of the free energy (10) as a function of R and d,
respectively. The region of unstable saddle-point configura-
tions is marked with light gray shading.

Note that even those solutions of the Euler±Lagrange
equation (32) that correspond to a minimum of the free
energy as a function of R and d do not necessarily represent
stable skyrmion±vortex configurations. This is because the
derivation of Eqn (32) assumes that the center of the
skyrmion coincides with the center of the Pearl vortex,
which may not correspond to a stable state for certain E and
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g values, since the skyrmion center may shift away from the
vortex core. As shown in Refs [41, 42, 44], a skyrmion±vortex
pair can remain stable when the skyrmion is located at a finite
distance a from the Pearl vortex. These displaced configura-
tions are discussed in more detail in Section 4. For now, we
state that coaxial configurations with chirality w � �1 are
unstable for E < Ecr � 0:49 and g < gÿcr� E� (Fig. 8). In this case,
the skyrmion is repelled by the vortex. If either of these
conditions is not met, the coaxial configuration is stable with
respect to displacement. In Figure 4, unstable configurations
are shaded dark gray, while stable coaxial configurations are
shown on a white background.

Figure 4 exhibits several interesting features. First, all
curves for skyrmions with chirality w � �1 (Fig. 4a) lie in the
quadrants formed on the �g;R� plane by the curve with
E � Esep � 0:266 (black line). For E < Esep, the R�g� curves lie
in the bottom-left and top-right quadrants, while for E > Esep,
they are located in the top-left and bottom-right quadrants.

Second, for 0:39E90:35, there are values of g for which
two skyrmions with chirality w � �1 can coexist. An example
of such a situation is shown in Figs 2 and 3c, where the lower
panels of the latter shows two free energyminima correspond-
ing to positive chirality.

Third, for every pair of E and g, a skyrmion exists with
chirality w � ÿ1 and a certain radius jRj (see Fig. 4b).
However, for small g and E > 0, the skyrmion radius becomes
extremely small (R`w). In this case, the expression for the free
energy (1) becomes invalid, and such small-radius solutions are
excluded from Fig. 4. As can be seen in Fig. 4b, the radius jRj
for skyrmions with w � ÿ1 increases monotonically with g.

Finally, for each E and both chiralities w � �1, there is a
critical value g�1�E�. As g increases and approaches g�1, the
skyrmion radius grows substantially. For jRj4 d � `w, the
free energy can be approximated as

F ferro�R�
8pAdF

� �1� Ep=2�jRj
`w

� g`ÿ2w

� jRj
0

dr rbz�r� : �35�

The first term corresponds to the domain wall energy
separating the inner and outer regions of the skyrmion,
while the second term arises from the energy of the skyrm-
ion's inner region, where the magnetization mz � ÿ1 is
opposite to the main ferromagnetic state, mz � �1. For
`w 5 jRj5 l, we approximate bz�r� � ÿ`w=r (see Eqn (19))
and estimate the second term in Eqn (35) as gjRj=`w. Thus, the
critical value g can be approximated as

g�1�E� � 1� Ep
2
> 0 : �36�

If g0g�1, the skyrmion radius becomes comparable to or
exceeds the Pearl length, jRj0l4 `w, and the minimum of
the free energy is determined by the condition
ÿbz�jRj�jRj=`w � g�1=g, which requires taking into account
the Pearl vortex field dependence on l. A more detailed
analysis of such configurations is presented in the next
Section 3.4.

3.4 Skyrmion radius at finite Pearl length
In the previous sections, we assumed that the Pearl length is
much larger than the skyrmion radius, i.e., l4R. This
assumption is justified when the parameters E and g, which
describe the Dzyaloshinskii±Moriya interaction and the
influence of the superconducting vortex, are relatively small.
As shown in Fig. 4 and discussed at the end of the previous
Section 3.3, increasing these parameters leads to a growth in
skyrmion size, eventually making it comparable to l.
Furthermore, from the perspective of applying theoretical
results to real experiments, one should consider that l is
related to g via

z � lg
`w
�Msf0

8pA
; �37�

where the introduced parameter z depends only on the
material parameters of the ferromagnetic film and is
typically of the order of 10 (see Table). Therefore, in a certain
parameter range, the finite value of l must be taken into
account.

It is known in [72] that the magnetic field of the vortex
from Eqn (17) can be well approximated by

br�r�� ÿ `w

r
�
1� r=�2l�� ; bz�r�� ÿ `w

r
�
1� r=�2l�� 2 : �38�

This allows us to write a fairly simple expression for yb,
analogous to Eqn (25):

yb�r� � K1

�
r

`w

�
ÿ `w

r
�
1� r=�2l��ÿ exp �ÿr=`w�

2l
: �39�

By using Eqns (38) and (39) in the variational approach
outlined in Section 3.2, we can determine a more accurate
dependence of the skyrmion radius R on the effective vortex
strength g. Furthermore, to analyze this dependence for a
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large radius, we can use Eqn (35). As already mentioned, the
free energy minimum is then determined by the condition
ÿbz

ÿjRj�jRj=`w � g�1=g. Using Eqn (38), we find that the
minimum of F ferro is reached at a skyrmion radius

jRj � 2l
� ������

g
g�1

r
ÿ 1

�
� 2z`w

�
1��������
gg�1

p ÿ 1

g

�
: �40�

Note that this expression remains valid for all jRj4 `w, which
is fulfilled when g0g�1.

Figure 5 shows the dependence of the skyrmion radius
R=`w of positive chirality for E � 0:5 on the effective vortex
strength g, comparing the cases of infinite and finite Pearl
length with the micromagnetic modeling results and asymp-
totic formula (40).

We also highlight an interesting feature of the jRj versus g
dependence given in Eqn (40): it is nonmonotonic and reaches
a maximum at g � 4g�1:

jR�maxj �
z`w
2g�1
� z`w

2� Ep
; �41�

which is determined solely by the ferromagnetic parameters
and not by the superconductor. In other words, an upper limit
exists on the skyrmion size that can be achieved in a given
ferromagnetic film due to the influence of a Pearl vortex.

4. Eccentric configurations

In this section, we study the state of an isolated N�eel-type
skyrmion placed in an external inhomogeneous magnetic
field. An analytical investigation of such states is signifi-
cantly complicated by the challenge of choosing an appro-
priate magnetization profile m. The exact approach requires
deriving the Euler±Lagrange equations and setting boundary
conditions, m � ÿez at the skyrmion center and m � ez far
from the center. However, solving such equations, which are
vector partial differential equations, numerically requires
computational resources comparable to those needed for the
micromagnetic simulations.

The simplest approach to describe an eccentric configura-
tion is to compute the Zeeman contribution to the energy,
which depends on the distance between the skyrmion and

vortex centers, while ignoring the deformation of the sky-
rmion due to the vortex. This approach corresponds to the
theoretical framework developed in this review in the formal
limit g! 0. It was precisely this method that was employed in
Ref. [41], where it was found that a N�eel-type skyrmion may
energetically prefer to position itself at a finite distance from
the vortex center. Qualitatively, this behavior arises due to the
following physical reasoning. The nonuniform skyrmion
magnetization induces a supercurrent in the superconduct-
ing film. This current has only an azimuthal component,
which can vanish at a certain distance from the skyrmion
center. Since the supercurrent acts on the superconducting
vortex via the Lorentz force, the vortex can be in equilibrium
only at points where the supercurrent vanishes. It can be
shown [9] that the supercurrent magnitude is determined by
the derivative of the Zeeman energy with respect to the
skyrmion±vortex distance. Therefore, a zero of the super-
current corresponds to a minimum in the Zeeman energy. As
we will see below, the approximation g! 0 used in Ref. [41]
proves to be quite crude, and amore refined theory is required
for an accurate description of eccentric configurations.

As an alternative to an exact numerical solution, we
employ a variational approach similar to that described in
Section 3.2, based on a sufficiently simple analytical ansatz
that accurately approximates exact Euler±Lagrange solutions
or micromagnetic simulation results. Following Ref. [44], we
will introduce, explain, and justify the choice of such an
ansatz for the skyrmion magnetization under a weak,
spatially varying magnetic field B�r� in the general case, and
then apply this variational method to describe eccentric
skyrmion±vortex configurations. Furthermore, based on the
obtained results, Section 5 will analyze the stability of a
vortex±antivortex pair due to interaction with a skyrmion.

4.1 Variational approach
In this subsection, we describe the idea behind constructing
an ansatz for the magnetization of a skyrmion subjected to a
weak, spatially inhomogeneous external magnetic field. This
ansatz is defined by three parameters: the radius R, the
effective domain wall width d, and the position a of the
skyrmion relative to the magnetic field. To justify this
construction, we expand the total free energy (10) to second
order in the small effective field strength g and analytically
minimize it. As a result, we derive the expressions for the
ansatz (see Eqns (42), (45), and (48)) and simplify the full free
energy to the form of one-dimensional integrals (see
Eqns (54), (58), and (61)). These simplified expressions can
then be used to numerically determine the parameters R, d,
and a that describe the skyrmion magnetization.

It is also useful to outline the key stages of the calculation.
First, in order to determine the parameters R and d at a fixed
skyrmion position a, it is sufficient to expand the free energy
only to first order in g5 1, as shown in Eqn (54), and then
minimize it. At this stage, one may ignore skyrmion
deformation and assume that its magnetization remains
radially symmetric. In this case, we obtain the skyrmion
radius and domain wall width as functions of the position,
R�a� and d�a�, since the magnetic field is inhomogeneous.

Second, in order to determine a, second-order contribu-
tions in the free energy expansion must be taken into account
(see Eqns (58) and (61)). These contributions capture the
deformation of the skyrmion's shape. The total free energy
must then be minimized with respect to a, using R and d as
functions of the skyrmion position.

l=`w � z=g

g�1 � 1ÿ pE=2
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Note that the stages described above imply that the
minimization procedure can be performed in two different
ways. The direct method involves searching for the
minimum simultaneously with respect to all three para-
meters, R, d, and a, which yields the stable skyrmion
configuration with minimal energy, similar to micromag-
netic simulations.

The second method involves a two-step procedure. First,
the free energy is minimized only with respect to R and d at
fixed a. Then, the resulting function of a is analyzed to
identify local minima corresponding to metastable skyrmion
positions. This approach differs from micromagnetic model-
ing because it facilitates the identification of multiple
potentially metastable extrema.

A detailed comparison of the analytical results and
micromagnetic simulations will be presented in Section 4.2.

4.1.1 Formulation of magnetization ansatz.For convenience in
the subsequent derivation, we shift the origin of coordinates
to the center of the skyrmion, denoted by the point a. As a
result, the shifted external magnetic field depends on a as a
parameter, Ba�r� � B�ra�, where ra � r� a.

The central idea of the ansatz construction is to find a
leading-order approximation for the skyrmion magnetiza-
tion m in the form of a radially symmetric function �m (cf.
Eqn (4)):

�m � er sin �y�r� � ez cos �y�r� ; �42�

where �y�r� is the skyrmion angle.
As will be shown in Section 4.1.2, the angle �y can be

interpreted as the skyrmion angle in the effective magnetic
field �Ba, i.e., the angular average of Ba around the skyrmion
center, taken over the polar angle f, for the radial, azimuthal,
and out-of-plane components:

�Ba � hB a
r ifer � hB a

z ifez; h. . .if �
� p

ÿp

df
2p

. . . : �43�

Consequently, the angle �y satisfies the same Euler±Lagrange
Eqn (32) as in the coaxial skyrmion case. The exact solution of
this equation can be approximated by the coaxial ansatz given
in Eqn (33) (see also Ref. [43]):

�y�r� � yga
Rd�r� � yRd�r� � gy�ba�r� cos yRd�r� ; �44�

where yRd�r� is the domain wall ansatz from Eqn (8), and
y�ba�r� is the solution of Eqn (22) with br � �b a

r . Recall that
ba � Ba=B0 and �ba � �Ba=B0, where B0 is the characteristic
amplitude of the external magnetic field, defined for the Pearl
vortex in Eqn (20).

At the next step of constructing the ansatz, one needs to
incorporate the deformation of the skyrmion relative to the
radially symmetric magnetization �m. As previously men-
tioned, this deformation is expected to be small and propor-
tional to the small parameter g associated with the external
field. Therefore, the magnetization of the skyrmion takes the
form

m � �m� g~m : �45�
Within the linear approximation in g, the deformation

vector ~mmust be orthogonal to �m, since bothm and �m are unit
vectors. Thus, ~m can be written as a cross product,
~m � �m� x, where x can be determined from the following
arguments.

Since �m is expressed via �y from Eqn (44), i.e., it
corresponds to a coaxial skyrmion in the averaged field �Ba,
one can use expression (34). Expanding it to first order in g
yields a linear dependence of �m on the vector l�ba � y�b

a er:

�m � mRd � gl�b
a

jmRd � gl�b
a j � mRd � g�mRd � l�b

a �mRd� : �46�

It is natural to expect that the full skyrmion magnetization in
linear order in g depends on the full magnetic field Ba in the
same way:

m � mRd � glba

jmRd � glba j � mRd � g�mRd � lba �mRd� : �47�

Returning to Eqn (45), we finally obtain the expression for
the deformation part of the magnetization:

~m � ��m� �lba ÿ l�b
a� � �m

�
: �48�

Thus, to linear order in g, the ansatz for the skyrmion
magnetization is fully specified by the set of expressions (42),
(45), and (48). Note that the ansatz remains valid even up to
quadratic order in g if one adds the term ÿg 2 �m ~m 2=2 on the
right-hand side of Eqn (45) (see Eqn (57)).

Using the ansatz presented here, one can determine the
optimal skyrmion parametersÐ radius R, effective domain
wall width d, and position aÐby minimizing the full free
energy (10). Note that the free energy (10) is a double integral
over space, which is computationally expensive to evaluate
numerically. In the following subsections, we derive a
simplified form of the free energy (58), valid to quadratic
order in g5 1. The corresponding contributions (54) and (61)
are written as integrals over only the radial coordinate, with
the angular integration performed analytically, significantly
speeding up numerical computations.

4.1.2 First-order approximation. In this subsection, we
compute and minimize the free energy up to terms linear in
the effective strength g5 1 of the external magnetic field. In
this case, as indicated in Section 4.1.1, the leading-order
approximation for the skyrmion magnetization m is the
radially symmetric unit vector function �m (see Eqn (42)).
The skyrmion deformation described by the vector ~m appears
only in the first order in g (see Eqn (45)).

To determine the unknown skyrmion angle �y at first order
in g5 1, we substitute the magnetization m in the form (45)
into the full free energy (10) and expand it to linear order in g:

F ferro�m;Ba� � F ferro��m;Ba� � gF �1�magn��m; ~m� ; �49�

whereF �1�magn is the first variation of the magnetic energy from
Eqn (1),

F �1�magn��m; ~m� � ÿ2dF
�
d2 r
�
A~mD�m� K ~mz �mz

ÿD� ~mzH�mÿ ~mH �mz�
�
: �50�

Note that integration over the polar angle f in the above
expression is only required for the radial and out-of-plane
components of ~m, since �m is radially symmetric. This implies
that, if the angular average of these components is zero,

h ~mrif � h ~mzif � 0 ; �51�
then the first variationF �1�magn will vanish as well. Additionally,
since ~m must be orthogonal to �m and can be written as
~m � �m� x, this condition simplifies to hofif � 0.
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On the other hand, if we shift �y! �y� g# in Eqn (45), then
x should be changed as of ! of � # to keep m unchanged.
To resolve this ambiguity, we may fix the function of such
that its angular average vanishes, i.e., hofif � 0, and define �y
only up to terms linear in g5 1. This condition for
x � ��lba ÿ l�ba� � �m� from Eqn (48) simplifies to hm a

r if � 0,
where

la � lba ÿ l�ba ; �52�

and is obvious due to

hlbaerif � l�baer � y�ba�r� ; �53�

which can be verified by comparing Eqn (22) for b � �ba with
Eqn (13) for b � ba after multiplication by er and angular
averaging.

As a result of this choice, only the first term F ferro��m;Ba�
in Eqn (49) is retained. Since �m is radially symmetric, angular
integration allows replacing the external magnetic field Ba

with its angular average �Ba (see Eqn (43)). Consequently, the
full free energy to linear order in g5 1 becomes

F ferro�m;Ba�
2pdFA

� F ferro��m; �Ba�
2pdFA

� F ferro�mb;B�
2pdFA

�
�1
0

dr r

` 2w

��
` 2w
r 2
� 1

�
sin 2 �y� 2E

�
`wqr�y� sin 2�y

2r=`w

�
� ` 2w�qr�y�2 ÿ 2g

�
�b a
r sin

�yÿ 2�b a
z sin

2

� �y
2

���
: �54�

Here, F ferro�mb;B� is the free energy of the `no-skyrmion'
background configuration, which does not depend on any
skyrmion parameters such as the radius R, domain wall
width d, or position a, and can thus be omitted during
minimization.

Minimizing the free energy (54) with respect to the
skyrmion angle �y�r� yields the Euler±Lagrange equation,

` 2w
r

qr�rqr�y� ÿ `
2
w � r 2

2r 2
sin �2�y� � 2E

sin2 �y
r=`w

� g��b a
z sin

�yÿ �b a
r cos

�y� ; �55�
which is identical in form to Eqn (32) for coaxial skyrmions,
but with �b a

r=z replacing br=z. This equation must be supple-
mented with boundary conditions analogous to Eqn (7), with
the corresponding physical meaning:

�y�r!1� � 0 ; �y�r � 0� � wp : �56�

Note that the exact solution of Eqn (55) can be accurately
approximated using the ansatz (44), just as in the coaxial case
described in Section 3.2, by substituting b into �ba.

Finally, we emphasize that the free energy expression (54)
can be formallyminimized, not only with respect to �y, but also
with respect to the skyrmion position a. However, it can be
shown that the resulting a is accurate only to zeroth order in
the small parameter g (see Ref. [44] for details). This is because
the skyrmion position is highly sensitive not only to its size,
determined by the parameters R and d, but also to the shape
deformation caused by the external field, which appears in
both �y and ~m. To properly account for this and determine a
more accurately, we must compute the free energy to second
order in g5 1, which is done in the next section.

4.1.3 Second-order approximation. To accurately determine
the dependence of the skyrmion position a on the effective
field strength g5 1, it is necessary to evaluate the total
energy F ferro�m;Ba� up to second order in g, and then
minimize it with respect to a. For this purpose, we must
extend the expansion of m to include second-order terms
in g. Formally, we add a term g 2k to Eqn (45), where k is
an arbitrary vector function of order g 0, and then normal-
ize m to unit length. This yields the following expansion up
to order g 2:

m � �m� g~mÿ g 2 �m ~m 2

2
� g 2

�
�m� k � �m

�
: �57�

Substituting this form of m into Eqn (10), we obtain the
total energy:

F ferro�m;Ba� � F ferro��m; �Ba� � F �2���m; ~m; a� ; �58�

where the first term is defined in Eqn (54), and the second-
order correction takes the form

F �2���m; ~m; a� � g 2F 0ferro�~m;Ba� ÿ g 2F �1�magn

�
�m;

�m ~m 2

2

�
: �59�

Here, the prime in the first term indicates that, when
computing Fmagn according to Eqn (1), the constant term K
in the integrand of the full free energy (10) is excluded.

Among the g 3 and higher-order contributions omitted in
Eqn (59), one particular term deserves attention:

g 2F �1�magn

�
�m; ��m� k � �m�	
2pdFA

� 2g 2
�
dr r

` 2w
�k � �m�f

�
�
` 2w
r

qr�rqr�y� ÿ `
2
w � r 2

2r 2
sin �2�y� � 2E

sin2 �y
r=`w

�
: �60�

At first glance, this term appears to be of order g 2, but the
expression in square brackets is actually of order g because
it corresponds to the left-hand side of Eqn (55). Therefore,
the entire term is of order g 3 and can be disregarded.
Consequently, the determination of the unknown vector
function k is not required to compute the free energy up to
order g 2.

It is also important to note that �y, which enters the
expression F ferro��m; �Ba� in Eqn (58), should be calculated
only to first order, as given by Eqns (44) and (55). Any
corrections to �y of order g 2 can be interpreted as modifica-
tions of k in Eqn (57), and thus contribute to the energy at
order g 3, making them negligible.

Now, using Eqn (48) for ~m, we can perform angular
averaging over f in Eqn (59) and derive an explicit
expression for F �2�:
F �2���m; ~m; a�

2pdFA
� g 2

�
dr r

` 2w

�
2~b

a

r sin
2 �y� ~b a

z sin �2�y�

� �~m a
r sin

2 �yÿ ~m a
f

�
` 2w�qr�y�2ÿ

~m a
r

2r 2
�` 2w � r 2� sin2 �2�y�

ÿ 2E
�

~m a
f`wqr�y�

~m a
r�f

2r=`w
sin �2�y� � ~m a

r

4r=`w
sin �4�y�

��
;

�61�
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where the following auxiliary functions are introduced, which
result from the external magnetic field and depend on the
skyrmion position a:

~b a
r �r� �

�
m a
r

�
b a
r �

` 2w Dm a
r

2

��
f
ÿ
�
`w
r

�2

~m a
r�f

�
��

`w
r

�2

ÿ 1

�
~m a
r � ~m a

f

2
; �62�

~b a
z �r� �



m a
r b

a
z

�
f; ~m a

r �r� �

�m a

r �2
�
f; ~m a

f�r� �

�m a

f�2
�
f;

~m a
r�f�r� � ~m a

r � ~m a
f �



m a
r qfm

a
f ÿ m a

fqfm
a
r

�
f :

4.2 Optimal positions of skyrmion and vortex
In this section, we present the results of applying the
previously described variational approach to study stable
eccentric configurations of a N�eel-type skyrmion subjected
to the stray field of a Pearl vortex. A comparison with
micromagnetic simulations is also provided.

It is important to note that the obtained results indicate
that eccentric configurations can only be realized for skyrm-
ions with positive chirality, w � �1. For a nearly free sky-
rmion (g! 0), this phenomenon was predicted in Ref. [41].
Let us provide a qualitative explanation. In the limit g! 0,
the skyrmion's shape is independent of the distance a to the
vortex center, and its free energy for chirality w can be written
as F � F� ÿ wFÿ, where F� are monotonic functions of the
distance. When w � ÿ1, the function F�a� is monotonic, and
the only minimum is at a � 0. In contrast, for w � �1, the
subtraction of two monotonic functions may yield a function
with multiple minima. This qualitative behavior persists for
arbitrary g, although the skyrmion's size and shape begin to
depend on the distance.

To minimize the total free energy (58) with the corre-
sponding contributions (54) and (61), one must first evaluate
the functions associated with the shifted vortex
field Ba�r� � BV�ra�, where ra � r� a (see Eqn (14) and the
explanation about the origin of the shift in Section 4.1.1).
Under the assumptions in (18), some of these functions can be
evaluated analytically:

ba � ÿ era � ez
ra=`w

; lba � yb�ra� era ; �63�

�ba � �b a
r �r� er � �b a

z �r�ez ; l�ba � y�ba�r� er ; �64�

�b a
r �r� � ÿ

Y�rÿ a�
r=`w

; �b a
z �r� � ÿ

K
�
4ar=�a� r�2�

p�a� r�=2`w ; �65�

y�ba�r� �
�
I0

�
a

`w

�
K1

�
r

`w

�
ÿ `w

r

�
Y�rÿ a�

ÿ K0

�
a

`w

�
I1

�
r

`w

�
Y�aÿ r� �66�

(see also Eqns (19) and (25)). Here, era � ra=ra is the unit
radial vector with respect to the shifted vortex center. The
function In�z� denotes modified Bessel functions of the first
kind,K �z� is the complete elliptic integral of the first kind, and
Y�z� is the Heaviside step function. The remaining functions,
~b a
r=z, ~m a

r=f, and ~m a
r�f, are computed numerically according to

Eqn (62). Once these are known, the total free energy can be
minimized using the full form given in Eqn (58), along with
explicit expressions from Eqns (54) and (61), substituting �y as
per Eqn (44).

Due to the radial symmetry of the Pearl vortex, the
skyrmion position a enters the total free energy only through
its magnitude a, i.e., the distance between the centers of the
skyrmion and the vortex. Thus, the minimization is carried
out over three skyrmion parameters: the radius R, the
effective domain wall width d, and the distance a from the
vortex center. The stable solution with a � 0 corresponds to
the coaxial configuration discussed in Section 3 and Ref. [43].
Eccentric configurations of the skyrmion, where a 6� 0, are
discussed below.

4.2.1 Skyrmion radius and distance in eccentric configuration.
Figure 6 shows the distance a between the centers of the
skyrmion and the vortex (Fig. 6a) and the skyrmion radius R
(Fig. 6b) in stable eccentric configurations as functions of the
effective vortex strength g for different values of the DMI
parameter E. Solid lines correspond to the results obtained
from minimizing Eqn (58) using the ansatz (44), while dots
represent results from micromagnetic simulations (see Sec-
tion 2.3).

All curves start with a gentle slope at small g and end with
a sharp increase in radius R as well as a rapid decrease in
distance a. This behavior corresponds to a square-root-type
dependence near a certain critical value g�cr:

R �g�cr � ÿ R�g� / a �g� ÿ a �g�cr � /
��������������
g�cr ÿ g

p
; �67�

for jg�cr ÿ gj5 g�cr . As discussed in Section 4.1, accurate
determination of the distance a critically depends on the
second-order contributions in g (see Eqn (61)). The precision
of these contributions is reflected in the good agreement
among the a �g� curves (obtained with the help of analytical
ansatz and micromagnetic modeling) in Fig. 6a, although
some quantitative deviation is observed near g�cr . This arises
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Figure 6. Dependence of distance a=`w between the skyrmion and vortex

centers (a) and skyrmion radius R=`w (b) on effective vortex strength g,
obtained by minimizing total free energy, Eqn (58), using ansatz for �y,
Eqn (44). Different curves correspond to various DMI parameters:

E � 0:25, 0.3, 0.35, 0.4, 0.45, and 0.48 (top to bottom in panel a and

bottom to top in b). Dots connected by dashed lines indicate analogous

dependences obtained from micromagnetic simulations.
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because the parameters R, d, and a are formally defined only
to linear order in g. Nevertheless, Fig. 6 shows that, even
near g�cr , the qualitative (and even quantitative, for g5 1 and
E > 0:4) behavior described by Eqn (67) is well reproduced.
Moreover, the distance a is particularly sensitive to small
changes in the free energy, so unaccounted effects contribut-
ing at order g 2 may affect the experimentally observable
separation between the skyrmion and the vortex.

Note also an interesting feature in Fig. 6: the skyrmion
radius and the distance between the centers of the skyrmion
and the vortex converge as g approaches g�cr . This feature can
be explained physically as follows. As the vortex strength g
increases, the skyrmion radiusR grows due to the influence of
the stray magnetic field. A larger radius requires a smaller
distance a, which can be confirmed by evaluating the Zeeman
energy, Eqn (9), as a function of radius for a free skyrmion.
When R5 a, the skyrmion only contacts the vortex center
with its `tail', where the magnetization is approximately
vertical, m � ez. However, when the skyrmion radius R
becomes comparable to the distance a, the domain wallÐ
where the magnetization significantly deviates from the
verticalÐbegins to overlap with the vortex center. This
configuration is energetically unfavorable, and the skyrmion
relocates directly above the vortex core, meaning the eccentric
configuration transitions into a coaxial one.

4.2.2 Free energy vs. distance: multiple minima. Let us analyze
the dependence of the free energy on the distance a in detail to
determine which configurationÐeccentric or coaxialÐ is
energetically favorable for given values of E and g. To this
end, we define the function F�a� as

F�a� � min
R;d

F ferro�m;Ba�
2pdFA

; �68�

which represents the total free energy F ferro�m;Ba� from
Eqn (58), with �y taken from Eqn (44), normalized by 2pdFA
and minimized with respect to the skyrmion's geometric
parameters: radius R and effective domain wall width d. A
minimum F�a� at a � amin indicates a possible stable skyrm-
ion configuration in the stray field of a Pearl vortex.

Figure 7 illustrates the behavior of F�a� for E � 0:45 and
several values of g, representing the typical types of behavior
classified by three critical values: gÿcr �E�, gcr�E�, and g�cr �E�, as
discussed below.

For E < Eÿcr � 0:488 and g < gÿcr �E�, the functionF�a� has a
single minimum at a � amin > 0, indicating that the only
stable skyrmion±vortex configuration is eccentric.

When g > g�cr �E� or E > E�cr � 0:493, the function F�a�
has a single minimum at a � 0, meaning that the coaxial
skyrmion±vortex configuration is the only possible stable
state.

In the intermediate regime, gÿcr �E� < g < g�cr �E�, the system
can support both coaxial and eccentric skyrmion±vortex
configurations, as F�a� possesses at least two minima: one at
a � 0 and another at a � amin > 0. However, the free energy
values for these configurations differ: the global minimum
occurs for the coaxial configuration when gcr�E� < g < g�cr �E�,
and for the eccentric configuration when gÿcr �E� < g < gcr�E�.

Remarkably, there is no fundamental restriction on F�a�
having more than two minima. In particular, we have found
an additional local minimum at a � aadd � 0:2`w. However,
for all values of E and g considered, this minimum remains
local and its small depth falls outside the precision of our

second-order expansion in g5 1. Consequently, the varia-
tional analytical approach alone cannot guarantee the
existence of such a stable configuration. Furthermore,
micromagnetic simulations did not confirm its presence.

The dashed line in Fig. 7 shows the evolution of the
minima andmaxima as g is varied continuously. Near g � g�cr ,
the location of the minimum amin changes rapidly with g,
approaching the maximum point amax and merging at an
inflection point ain precisely at g � g�cr . This rapid change
leads to a sharp decrease (increase) in the distance a (skyrm-
ion radius R), as shown in Fig. 6.

4.2.3 Phase diagram. The results of the previous section are
summarized in the phase diagram on the �E; g� plane shown in
Fig. 8. This diagram identifies four distinct phases of skyrm-
ion±vortex configurations �indicated by solid monotonic
curves corresponding to the critical values gÿcr �E�, gcr�E�, and
g�cr �E��, as well as the phase of stable skyrmion±vortex±
antivortex configurations (shown as a solid nonmonotonic
line), which will be discussed in more detail in Section 5. The
two unshaded regions indicate phases where only eccentric
�g < gÿcr �E�� or only coaxial �g > g�cr �E�� configurations are
possible. The solid shaded areas between the curves gÿcr �E�,
gcr�E�, and g�cr �E� represent phases in which both eccentric and
coaxial configurations are theoretically allowed within the
same heterostructure, since the free energy exhibits two
minima with respect to the distance a. In practice, both
configurations were observed in micromagnetic simulations
near g � gcr, as described in Section 2.3 and illustrated in
Fig. 2.

Note that the curves gÿcr �E� and gcr�E� approach the
asymptotic line g�1�E� � 1ÿ pE=2 for E90:3. As the effective
vortex strength g approaches the critical threshold g�1, the
radius R of the coaxial skyrmion increases significantly,
becoming comparable to the Pearl length l, which is much
larger than `w (see the details in Section 3.3 and in Ref. [43]).
Since the free energy of such an enlarged coaxial skyrmion
turns out to be substantially lower than that of any eccentric
configuration, the value of g�1 is always higher than both
gÿcr �E� and gcr�E�, which characterize the transition points
between coaxial and eccentric configurations.

1
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1
0
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gcr 5 g5 g�cr

gÿcr 5 g5 gcr

g � gcr

g � gÿcr

Figure 7. Plot of 100�F�a� ÿ F�0��, obtained from total free energy,

Eqn (68), for DMI parameter E � 0:45 and several values of effective

vortex strength g: gÿcr � 0:106, 0.119, gcr � 0:138, 0.147, g�cr � 0:156
(bottom to top). Circles, diamonds, and squares indicate minima,

maxima, and inflection points, respectively. The dashed curve traces

the locations of minima and maxima as g is varied continuously. All

plotted functions increase monotonically for a > 2:5`w beyond the

visible range.
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The green dots in Fig. 8 represent the values of gcr�E�
obtained from micromagnetic simulations, confirming the
analytical predictions with a high degree of agreement.

5. Stabilization of vortex±antivortex pair
by skyrmion

In this section, we discuss a more complex configuration,
where a skyrmion is placed in the field of a Pearl vortex±
antivortex pair, whose magnetic fields are oriented in
opposite directions. We refer to the vortex defined by
Eqn (14) as the vortex, and the second one with reversed
magnetic field as the antivortex. To define the magnetic field
of the antivortex, the sign in Eqn (14) must be reversed:

B�V � ÿf0 sgn �z�H
�

d2q

�2p�2
exp

ÿÿ qjzj � iq�rÿ �a��
q �1� 2ql� : �69�

Here, we have also accounted for the fact that the antivortex is
located at r � �a, while the vortex is assumed to be at the
origin, r � 0 (cf. Eqn (14)).

It is worth noting that the interaction between a skyrmion
and a single antivortex is less interesting than the interaction
of a skyrmion with a vortex or with a vortex±antivortex pair.
The reason is that a skyrmion is generally repelled by an
antivortex over a wide range of parameters. Indeed, let us
consider very small g, when the shape of the skyrmion can be
considered unperturbed. As already noted in Section 4.2, in
this case, the skyrmion energy as a function of a is monotonic
for negative chirality, w � ÿ1, and may be nonmonotonic for
positive chirality, w � �1. In the first case, the energy
decreases monotonically and the skyrmion is repelled by the
antivortex for any a, meaning that no stationary state can
form. In the second case, the skyrmion is attracted to the
antivortex only if their centers are sufficiently close (see
Section 5.2 and Fig. 9) for details; otherwise, it is also
repelled. Moreover, the energy minimum at a � 0 can be

lower than the energy at a!1 for E < Eanti � 0:387 only. In
this work, we do not analyze in detail these coaxial skyrmion±
antivortex states and instead proceed to the more interesting
skyrmion±vortex±antivortex configurations.

In general, determining the stable configurations of the
skyrmion±vortex±antivortex system is similar to the problem
solved in the previous subsection. However, there is one
essential difference: the additional parameter Ð the distance
�a � j�aj between the centers of the vortex and antivortex Ð
affects not only the energy of the ferromagnet but also that of
the superconductor. Therefore, we first describe the simpler
problem of determining and analyzing the energy of the `no-
skyrmion' state, assuming a fixed vortex±antivortex separa-
tion �a. Then, based on that result, we will use a variational
approach to determine stable skyrmion±vortex±antivortex
configurations under variations in all distances between the
elements of the configuration.

5.1 `No-skyrmion' configuration
in magnetic field of vortex±antivortex pair
We begin by considering the case where the distance between
the centers of the vortices is comparable to the magnetic
length and is small relative to the Pearl length,

x5 lw � �a5 l : �70�
This condition also explicitly assumes that the magnetic
length `w is much greater than the coherence length x in the
superconductor. Under these conditions, the supercurrents
and magnetic field of the vortex±antivortex pair can be
treated as a superposition of two individual vortices.

The total free energy of a superconductor±ferromagnet
heterostructure containing such a vortex±antivortex pair
consists of the sum of the superconducting and ferromag-
netic energies:

F tot�m; �a� � F super��a� � F ferro�m;BV � B�V� : �71�
Assuming that the effective vortex strength g is small (see
Eqn (11)) and themagnetizationm deviates only slightly from
the vertical direction (cf. Eqn (12)),

m � ez � g�lb ÿ lb�a� ; �72�
the ferromagnetic free energy can be calculated in leading
order in g:

F ferro�m;BV�B�V�
2pdFA

� ÿg 2
�

d2 r

2p` 2w
�lb ÿ lb�a��bÿ b�a� : �73�

Here, b � BV=B0 and b�a � ÿB�V=B0 denote the normalized
fields of the vortex and antivortex, respectively, and lb and
lb�a are the corresponding vectors describing the magnetiza-
tion tilt due to the magnetic fields (see Eqns (20), (21), and
(63)). Note that Eqn (73) includes not only the Zeeman
energy, but also other necessary terms, which reduce the
Zeeman contribution exactly by half. Under condition (70),
one can use the approximations (19), (25), and (65) to obtain
an explicit dependence of the energy on �a:

F ferro�m;BV � B�V�
2pdFA

� ÿ2g 2
�
K0

�
�a

`w

�
�ln �a

2 exp �ÿgE�`w

�
;

�74�

where gE � 0:577 is Euler's constant.
The interaction energy of Pearl vortex±antivortex pairs at

separation �a was calculated in Ref. [59]. When the distance is
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small compared to the Pearl length, this energy equals

F super��a� � f 2
0

8p2l
ln

�a

x
; x5 �a5 l : �75�

Normalizing it by the same factor as the magnetic energy, we
obtain

F super��a�
2pdFA

� bg 2 ln
�a

x
; �76�

where the dimensionless parameter b is expressed via material
parameters of the heterostructure as

b � f0

2p2gdF `wMs
� 4Al

pdF ` 2wM 2
s

�77�

and is small for experimentally relevant values [18±20].
Comparing Eqns (74) and (76), we conclude that, for

b5 1 and under condition (70), the superconducting con-
tribution to the energy can be ignored, and the total energy
can be approximated by the ferromagnetic part alone. Note
thatF ferro, Eqn (74), is a decreasing function of �a, indicating a
repulsion between the vortex and antivortex. Physically, this
repulsion arises because the magnetic field of nearby vortices
creates an unfavorable magnetization pattern in the ferro-
magnet.

Importantly, vortices attract when �a does not satisfy
condition (70). Indeed, for �a5 `w, the ferromagnetic energy
(74) becomes small and can be comparable to or smaller than
the superconducting energy (76), causing the vortex and
antivortex to annihilate, as would happen in the absence of
a ferromagnet.

In the opposite limit �a4 l, the interaction energy of
supercurrents takes the form [59]

F super

2pdFA
� Csuper ÿ 2bg 2

l
�a
; �78�

where Csuper is a constant independent of the distance �a. For
large distances, �a4 l, the ferromagnetic energy (73) should
be calculated relying on expressions (17) and (24). In this
regime, the ferromagnetic energy is given by

F ferro

2pdFA
� Cferro � 32g 2l 3

�a 3
; �79�

where Cferro is also independent of �a. Minimizing the total
energy yields the stationary distance between vortex and
antivortex �amin � 4l=

��������
b=3

p
, which satisfies �amin 4 l.

5.2 Variational approach
for skyrmion±vortex±antivortex configuration
Let us now consider a configuration consisting of a vortex±
antivortex pair and a skyrmion with positive chirality, and
assume that the system parameters are such that this
configuration is stable for distances between the centers of
the objects comparable to `w. As we will see below, there is a
fairly wide range of parameters where this holds (see Fig. 4).
In Figure 9, we show the dependence of the normalized free
energy �F�a� ÿ F�a � 0��=�2pdFAg 2� for three pairwise
configurations: vortex±antivortex (solid curve, labeled V±
�V), skyrmion±vortex (dashed curve, labeled Sk±V), and
skyrmion±antivortex (dashed-dotted curve, labeled Sk±�V),
where a denotes the distance between the centers of the

respective objects. From the presented dependences, it is
clear that the vortex and antivortex repel each other, as
shown in the previous section. The skyrmion tends to
position itself at a certain distance from the center of the
vortex (see Section 4.2), and coaxially with the antivortex.
Also, for other parameters, the skyrmion may tend to
position itself directly above the center of the vortex and
repel from the antivortex, but in this case the configuration is
obviously not stable.

Since in the considered configuration the skyrmion
attracts both the vortex and the antivortex, while the vortex
and antivortex repel each other, the centers of all three objects
will lie on a single line, with the skyrmion located in the
middle between the two vortices. We denote the distances
from the skyrmion center to the centers of the vortex and
antivortex by aV and a�V, respectively, and seek the minimum
of the free energy as a function of these two distances, as well
as the skyrmion radius R and effective domain wall width d,
following the approach developed in Section 4.1. In the inset
of Fig. 9, we show (in arbitrary units) the dependence of the
total energy F of such a configuration as a function of the
displacements aV of the vortex and a�V of the antivortex
relative to the skyrmion. It can be seen that the minimum of
the function, marked by a white dot, is reached at values of aV
and a�V that differ from the minima in the corresponding
pairwise configurations skyrmion±vortex and skyrmion±
antivortex (marked by dashed and dashed-dotted lines,
respectively). Next, we analyze the stable skyrmion±vortex±
antivortex configurations in more detail.

5.3 Stable configurations
Figure 10 shows the dependence of the distances aV and a�V

from the skyrmion center to the centers of the vortex and
antivortex, as well as the skyrmion radius R, as functions of g
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total energy (in arbitrary units) of skyrmion±vortex±antivortex config-

uration as function of displacements aV (vortex) and a�V (antivortex)
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in pair configurations; dot marks actual minimum. Parameters: E � 0:41,
g � 0:1.
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for several values of the DMI parameter E. The solid curves
are obtained using the variational approach, and the dots are
the result of micromagnetic simulations. Two distinct regimes
can be identified, which can be qualitatively described as
follows:

(1) For E < E �cr � 0:46, the vortex moves away from the
skyrmion±antivortex pair as g increases.

(2) For E > E �cr � 0:46, the antivortex moves away from
the skyrmion±vortex pair as g increases.

In the indicated regimes, once a certain critical value
g > g �cr�E� is exceeded, the vortex (or antivortex) moves away
from the skyrmion±antivortex (or skyrmion±vortex) pair to a
distance �amin � 4l=

��������
b=3

p
4 l4 `w (see the previous Sec-

tion 5.2), and its influence on the skyrmion effectively
vanishes. However, there is a qualitative difference between
these regimes at g � g �cr�E�.

In the first regime, the vortex moves away from the
skyrmion±antivortex pair gradually, i.e., the distance aV
can take arbitrary intermediate values depending on g. In
the second regime, the antivortex moves away from the
skyrmion±vortex pair only within limited bounds, i.e., the
distance a�V is bounded from above by a value a�V; cr of the
order of `w, corresponding to a maximum of the energy as
a function of the distance a�V. The presence of this
maximum can be understood as follows. For small g,
where the change in the skyrmion size can be ignored, the
energy dependence on a�V enters only through two terms:
F �VÿSk�a�V� and FVÿ�V�aV � a�V�. The first of these energies is
of order g and reaches a maximum at a finite value of a�V,
while the second is of order g 2 and decreases monotoni-

cally with increasing a�V (see Fig. 9). This means that their
sum also has a maximum. As g increases, the role of the
second term becomes more significant, and, in addition,
the dependence on a�V appears via the change in the size
and shape of the skyrmion. However, the maximum
persists up to g �cr. For larger values of g, the maximum in
the energy dependence on a�V disappears, and the anti-
vortex is forced to jump directly to the distance
�amin 4 l4 `w, skipping intermediate positions.

In the lower part of Fig. 8, the region of parameters �E; g� is
shown where stable skyrmion±vortex±antivortex configura-
tions can exist. It is easy to see that the region has a
characteristic triangular shape, where the two sloped lines
correspond to the two regimes described above. Diamonds
mark the critical values g �cr extracted from micromagnetic
simulations. It is seen that the analytical prediction agrees
well with the simulation results.

6. Higher-order skyrmions
in magnetic field of Pearl vortex

In this section, following Refs [65, 73], it is shown that the
stray fields of a superconducting Pearl vortex can give rise to
stable configurations involving higher-order skyrmions
(HOSs) due to the orbital effects of the inhomogeneous
magnetic field. The skyrmions considered in the previous
sections possessed a topological charge jQj � 1 (see the
definition of the topological charge in Eqn (26)). Here, we
focus on HOSs characterized by n � jQj5 2 (see Eqn (27)).

6.1 Three-spin interaction
To study such states, one must take into account an
additional contribution to the free energy of the ferromag-
netic film, caused by the so-called scalar chiral or three-spin
interaction [64]:

FK �
�
d2 r r�r�K�jrÿ aj� ; �80�

where r�r� denotes the topological charge density (see
Eqn (26)), and the explicit form of the kernel K,

K�jrÿ aj� � K0 sin

�
pfD�jrÿ aj�

f0

�
; �81�

can be derived from the Hubbard model in the strong
correlation regime within third-order perturbation theory
accounting for orbital effects [64]. Here, K0 is a constant,
fD is the magnetic flux of the Bz component of the Pearl
vortex field through an elementary plaquette of the
triangular ferromagnetic lattice, and the vortex center is
located at the point a. Almost everywhere, except near the
vortex core, the argument of the sin in Eqn (81) is small and
the sine can be replaced by its argument. The influence of
the vortex core region turns out to be negligible, as shown
by numerical results [65]; thus, one may use the simplified
expression implying direct proportionality between the
kernel K and the transverse component Bz of the magnetic
field: K / Bz.

Substituting the magnetization of a higher-order skyrm-
ion, given by Eqn (27) for n5 2, into Eqns (1), (9), and (80),
representing the energies of the free ferromagnet, Zeeman
interaction, and the three-spin interaction, respectively, and
performing azimuthal integration around the skyrmion
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center, one obtains

Fmagn

2pdFA
�
�1
0

dr r

` 2w

��
n 2` 2w
r 2
� 1

�
sin2 y� ` 2w �qry�2

�
; �82�

FZ

2pdFA
� ÿ2g

�1
0

dr r

` 2w

�
�b a
r; n sin yÿ 2�b a

z sin
2

�
y
2

��
; �83�

FK

2pdFA
� ÿ�gn

�1
0

dr �b a
z �r�qr

�
cos y�r�� : �84�

Here, �b a
z �r� is the z-component of the normalized magnetic

field of a vortex shifted to point a and averaged over the
azimuthal angle f around the skyrmion center (see Eqn (65)),
while �b a

r; n�r;f0� denotes the corresponding radial projection
averaged with the weight cosf �n� (see Eqn (27)),

�b a
r; n�r;f0� � �ÿ1�n

cos �nÿ 1�f0

�r=`w��r=a� nÿ1
Y�rÿ a� : �85�

The dimensionless parameter � in Eqn (84) is given by

� �
���
3
p

pK0d
2

2Msf0dF
; �86�

where d is the lattice constant of the ferromagnet.
Note that, in expression (82) for the free energy of the

ferromagnet, terms due to the Dzyaloshinskii±Moriya inter-
action (DMI) are absent. This is because, for a radially
symmetric skyrmion with n5 2, described by Eqn (27), this
contribution vanishes due to the cosf �n� factor, which
averages to zero over the azimuthal angle. Therefore, within
the approximation considered in Ref. [65], the DMI does not
influence the total energy of the skyrmion±vortex system.
However, deviations from radial symmetry in the HOS,
similar to those discussed in Section 4.1.1, may yield a
contribution of order g 2 and affect the skyrmion's position
a. Moreover, Ref. [74] demonstrates that a superconducting
film can induce an effective, spatially dispersive DMI in the
ferromagnetic layer. This effective DMImay contribute more
significantly to the HOS configurations, even though the
`ordinary' DMI remains weak.

6.2 Stable configurations
To determine stationary HOS±vortex configurations, one
should minimize the total energy. In such a configuration,
an optimal value of helicity exists, determined by the anglef0,
which depends only on the skyrmion order n and is given by
the relation cos �nÿ 1�f0 � �ÿ1�n. This condition arises from
minimizing the first term in Eqn (83) for an eccentric
configuration (in the coaxial configuration, f0 can take
arbitrary values due to symmetry).

Next, following Ref. [65], we restrict ourselves to an
approximate expression for the skyrmion angle in the form
of a domain-wall ansatz. This approach may lead to
quantitative inaccuracies, since it does not account for shape
deformation of the skyrmion, but it provides a qualitative
description of the variation in the skyrmion radiusR, domain
wall width d, and position a relative to the vortex.

To analyze the stability of the coaxial configuration, we
perform calculations in the limit of the small, a5 `w, and
dominant,A4K0 � K, exchange interaction. In this approx-
imation, the total energy can be expressed as

F tot � F 0 ÿ F 1a
an � F 2a

2 ; �87�

where F 0; 1; 2 > 0 are constants determined by the system
parameters and the optimal values of R and d at a � 0. The
second term originates from the Zeeman energy. For n � 2,
the exponent an�2 � 1, and the coaxial state is always
unstable, since the free energy decreases with increasing a at
small a. For n � 3; 4, the exponent is an�3; 4 � 2, so the second
and third terms compete. In this case, determining the stable
configuration requires a more detailed analysis, partially
carried out in [73], and also accounting for shape deforma-
tions of the skyrmion induced by the vortex magnetic field. In
the case n5 5, formation of coaxial configurations of HOS
with a Pearl vortex is expected [73], though numerical
simulations are necessary to verify this effect.

7. Discussion

7.1 Experimental studies
It turns out that the experimental observation of coupled
vortex±skyrmion pairs formed due to stray magnetic fields in
a superconductor±chiral magnet heterostructure is a
challenging task [80]. The coexistence of superconducting
vortices and N�eel-type skyrmions was first observed in a
multilayer magnetic structure [Ir1Fe0:5Co0:5Pt1]10/Nb, where
thesubscript10indicatesthattheheterostructureIr1Fe0:5Co0:5Pt1
was repeated 10 times [18]. A dielectric MgO layer was used
to suppress the superconducting proximity effect. N�eel-
type skyrmions in the structure were stabilized using an
external magnetic field and imaged by magnetic force
microscopy (MFM). Based on the nonlinear dependence
of sample magnetization on the applied magnetic field, the
authors concluded that the presence of skyrmions leads to
the spontaneous formation of antivortices in the super-
conductor [18]. Here, an antivortex is defined as a super-
conducting vortex whose core magnetic field is oriented
opposite to the applied external magnetic field. Such
spontaneous antivortex generation is consistent with the
predictions of Ref. [41] and with the results presented
above. Later, using a similar structure with a different
Fe=Co composition, �Ir1Fe0:3Co0:7Pt1�10=NbPt, MFM mea-
surements of N�eel skyrmion radii were carried out at two
temperatures: above and below the superconducting transi-
tion temperature Tc [19]. It was found that, in the super-
conducting state, the radius of some skyrmions increased by
approximately 3%, which the authors attributed to the
spontaneous creation of superconducting antivortices. This
increase in skyrmion radius agrees with the predictions of
Ref. [41] and with the results discussed in this review.

More recently, a similar MFM experiment at tem-
peratures above and below Tc was conducted on the
�Ta=Ir=CoFeB=MgO�7=Nb heterostructure [20]. The authors
discovered that applying a weakmagnetic field opposite to the
direction of uniform magnetization in the ferromagnet leads,
at temperatures belowTc, to the emergence of skyrmions with
radii nearly twice as large as those observed above Tc.
Conversely, for the opposite field direction, skyrmions of the
same radius as above Tc reappeared. The authors of [20]
explained this behavior by noting that, in the first case, a
superconducting vortex (referred to as an antivortex in
Refs [18, 19]) is generated and forms a coaxial configuration
with the skyrmion, increasing its radius, while in the second
case an antivortex appears and is repelled by the skyrmion.
This behavior is in full qualitative agreement with the
theoretical results presented in the review. However, for
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quantitative comparison, it is important to consider that the
superconducting film used was relatively thick, and thus the
magnetic field of the vortex is not accurately described by
the Pearl approximation. Additionally, the multilayer
nature of the real heterostructure leads to more complex
stray field distributions than those used in our theoretical
model.

In summary, the Table presents values of various
constants for chiral magnets known to support N�eel-type
skyrmions. Our analysis shows that the characteristic scale `w
lies in the range of 5±10 nm, while the dimensionless
parameter z is between 2 and 9 nm. A large z allows efficient
tuning of the coupling constant g � z`w=l � z`wwwdS=l

2
L

over a wide range by varying the thickness dS of the
superconducting film. For example, in experiments [18, 20]
with Nb as the superconductor, the London penetration
depth is lL ' 40 nm [81], so the Pearl length for an Nb film
of thickness dS ' 10 nm is l ' 160 nm. Accordingly, the
coupling parameter g for the materials listed in the Table will
vary in the range of 0.1±0.4.

7.2 Further avenues of theoretical research
In this review, we focused on the case of a thin super-
conducting film. However, the developed theory is applic-
able to any spatial profile of an inhomogeneous magnetic
field, including that created by a vortex in a thick super-
conducting film. In Ref. [39], the influence of a superconduct-
ing antivortex in a thick superconducting film on a skyrmion
was studied numerically, and it was found that the skyrmion
is stabilized in a coaxial configuration with an increased
radius. This indicates that the physical effects discussed
aboveÐsuch as an increase in skyrmion radius and a change
in chirality in a coaxial configuration, deformation of the
skyrmion in an eccentric configuration, and skyrmion-
mediated stabilization of a vortex±antivortex pairÐare also
possible in thick superconducting films. Naturally, verifying
this requires further detailed investigations.

An interesting problem concerns the dynamics of a
skyrmion±vortex pair when either the vortex or the skyrmion
begins to move under the influence of an applied current in a
superconducting or ferromagnetic film, respectively. The first
case was numerically studied in Ref. [39] for a skyrmion±
antivortex pair. It was found that, beyond a critical super-
current threshold, the pair breaks apart and the antivortex
continues to move without the skyrmion. A promising
direction would be to determine this threshold current,
accounting for possible skyrmion shape deformation during
pair motion.

We also note that skyrmion size can change when it moves
near various defects, as shown in [82] using a simple domain-
wall ansatz. However, it would be of interest to apply the
variational method developed here, using a more accurate
ansatz, to study shape distortions and refine the results
obtained in [82].

A powerful tool for probingmagnetic states is the study of
spinwaves. In recent years, significant progress has beenmade
in controlling and manipulating spin waves using external
(magnetization gradients [83]) or internal (domain walls [84±
87], skyrmions [88±90]) inhomogeneities in the magnetization
profile. In a superconductor±ferromagnet heterostructure, the
magnon spectrum is influenced by the superconducting film.
Several mechanisms underlie this effect: (i) changes in stray
fields due to the superconducting film [91±97], (ii) the
presence of a vortex lattice in the superconductor [98, 99],
and (iii) the spin-torque transfermechanism [100]. It is known
that skyrmions can support localized magnon states [89].
Similar localized magnon states can also be induced by the
magnetic field of a Pearl vortex and its induced distortion of
the magnetization profile [101]. It would be interesting to
explore which localized magnon states arise in skyrmion±
vortex and skyrmion±vortex±antivortex complexes.

As shown in Section 5, the presence of a skyrmion affects
the interaction between a vortex and an antivortex in a
superconducting film. This raises the intriguing question of
the interaction between skyrmion and vortex lattices.
Recently, Ref. [102] addressed this problem via numerical
simulations of the equations of motion for superconducting
vortices and skyrmions. A rich variety of phases was found.
However, in that paper, the skyrmions were treated as rigid
particles whose parameters do not change in the presence of
vortices. It would be interesting to go further and incorporate
skyrmion shape deformations during vortex interactions. For
lattice systems, this could be done using the stereographic
projection approach developed in Refs [90, 103, 104].

It is well known [105±107] that a nonuniform magnetiza-
tion profile in ferromagnets can lead to a magnetoelectric
effect, i.e., the generation of an electric polarization
P / �mH�mÿm�Hm�. In an external electric field E, this
results in an additional term in the free energy of the
ferromagnetic film,

�
d2 rPE=2. This opens the possibility of

controlling inhomogeneous magnetic textures via external
electric fields. For example, this was demonstrated experi-
mentally in Refs [108±110]. It would be interesting to apply
the theoretical framework developed in this review to explore
the effect of external inhomogeneous electric fieldsÐe.g.,
generated by a charged tip as in experiments [108±110]Ðon

Table. Experimental data for exchange stiffness (A), magnetic anisotropy constant (K ), DMI strength (D), and saturation magnetization (Ms). Based on
these parameters, we also compute characteristic scale `w Ð (see Eqn (6)), dimensionless DMI constant EÐ(see Eqn (6)), and dimensionless
ferromagnetic film parameter zÐ(see Eqn (37)).

A, 10ÿ12 J mÿ1 K, 106 J mÿ3 D, 10ÿ3 J mÿ2 Ms, 106 A mÿ1 `w, 10ÿ9 m E z

[IrFeCoPt]10 [18] 13.9 1.4 2.1 1.45 3.15 0.24 8.6

[Ta/Ir/CoFeB/MgO]7 [20] 19 0.164 1.7 1.37 11 0.48 5.8

Pt/Co/AlOx [75] 16 0.39 2.2 1.1 6.4 0.44 5.6

Ir/Co/Pt [76] � 10 0.17 1.9 0.96 � 8 � 0:6 � 8

[Co/Pd]n [77] 10 0.24 2.0 0.88 6 0.6 7.8

Ta/CoFeB/MgO [78] 10 1.3 0.22 1.2 7 0.03 3.9

Pt/Co/Ni/Co [79] 20 0.6 3 0.6 6 0.43 2.3
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the shape and chirality of a skyrmion. Given that a skyrmion
can be bound to a superconducting vortex, this opens the way
to indirectly controlling a superconducting vortex via a local
electric field.

8. Conclusion

This review presents the results of a theoretical study on the
effect of the inhomogeneous magnetic field of a super-
conducting vortex on a N�eel-type skyrmion in thin super-
conductor±chiral ferromagnet heterostructures. An analytic-
al variational approach is described in detail, based on an
ansatz for the skyrmion magnetization profile that accounts
for deformations due to the magnetic field of the vortex. This
method allowed us to analyze the stability conditions for
coaxial vortex±skyrmion configurations and to explain and
predict a number of new effects induced by the inhomoge-
neous magnetic field of the vortex. In the coaxial case, the
superconducting vortex can induce a change in the skyrm-
ion's chirality or significantly increase its radius (up to the
maximum possible value) while preserving the chirality. For
eccentric configurations, the inhomogeneous magnetic field
of the vortex leads to a distortion of the cylindrically
symmetric skyrmion profile, which is crucial for accurately
calculating the equilibrium distance between the centers of the
skyrmion and the vortex. The developed approach has also
been applied to analyze the stability of a vortex±antivortex±
skyrmion triple complex. All theoretical predictions are
confirmed by micromagnetic simulations. The review also
briefly discusses the effect of the superconducting vortex on
high-order skyrmions, recent experiments on the influence of
superconducting vortices on N�eel skyrmions, and possible
avenues for future theoretical research.
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