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Abstract. This review presents recent work carried out at the
Landau Institute for Theoretical Physics of the Russian Academy
of Sciences on the study of the effect of superconducting vortices
on the shape and position of Néel-type skyrmions in superconduc-
tor—chiral ferromagnet heterostructures. Based on analytical and
numerical approaches, a number of effects caused by the inhomo-
geneous magnetic field of the vortex have been predicted: a
significant increase in the skyrmion radius, a change in its chi-
rality in the case of a coaxial configuration of the vortex and
skyrmion, and modification of the skyrmion shape in the case of
an eccentric configuration. Recent experiments studying these
effects are discussed.

S.S. Apostoloff (-2, E.S. Andriyakhina -2, L.S. Burmistrov (!:®)
() Landau Institute for Theoretical Physics,
Russian Academy of Sciences,
prosp. Akademika Semenova la, 142432 Chernogolovka,
Moscow region, Russian Federation
@ National Research University Higher School of Economics,
ul. Myasnitskaya 20, 101000 Moscow, Russian Federation
() Dahlem Center for Complex Quantum Systems
and Physics Department, Freie Universitét Berlin,
Arnimallee 14, Berlin, 14195, Germany
E-mail: @ esandriyakhina@itp.ac.ru, ® burmi@jitp.ac.ru

Received 7 March 2025, revised 29 April 2025
Uspekhi Fizicheskikh Nauk 195 (11) 1157—1178 (2025)
Translated by the authors

1107
1108

1110
1110

Keywords: superconductors, chiral ferromagnets, vortices,
skyrmions

1. Introduction

The development of modern physics is associated with a
growing interest in physical objects in many-body systems
that, on the one hand, represent collective excitations and, on
the other hand, possess topological protection. Skyrmions,
which were theoretically proposed by T. Skyrme as a model
for baryons in the mid-20th century [1-3], are one example of
such objects. Subsequently, the existence of similar topologi-
cal excitations was predicted in various physical systems: two-
dimensional electron gas in the quantum Hall regime [4],
spinor Bose—FEinstein condensates [5], superfluid *He [6],
chiral magnetic films [7], and others. We are particularly
interested in skyrmions realized in chiral ferromagnets. A
detailed description of key theoretical and experimental
results related to topologically nontrivial magnetic excita-
tions (including skyrmions) in noncentrosymmetric systems
can be found in recent review [8].

Another well-known example of topologically protected
objects in many-body systems is vortices in superconducting
structures [6, 9]. In the same material, superconductivity and
magnetism typically compete with each other and exist in
different regions of the phase diagram. The creation of
superconductor—ferromagnet heterostructures has made it
possible to observe a number of interesting effects associated
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with the spatially separated coexistence of magnetism and
superconductivity [10-17]. In particular, superconductor—
ferromagnet heterostructures allow the study of two topologi-
cally nontrivial objects— a skyrmion and a vortex—in a single
experimental system [18-20]. Even in the absence of super-
conducting vortices, the presence of skyrmions can strongly
influence the physics of superconductor—ferromagnet hetero-
structures: for example, skyrmions modify the Josephson effect
[21], can induce Yu-Shiba—Rusinov-type states [22, 23], and
affect the superconducting critical temperature [24].

The simultaneous presence of skyrmions and vortices in a
superconductor—ferromagnet heterostructure is of particular
interest, because the magnetic field created by the inhomoge-
neous magnetization of a skyrmion can induce a zero-energy
quasiparticle state in the superconducting vortex core, being a
Majorana state [25-32]. Such Majorana states can serve as a
platform for topological quantum computing [33, 34]. There are
several mechanisms for the formation of a skyrmion—vortex pair
in superconductor—chiral ferromagnet heterostructures. In the
case of a sufficiently good quality interface, the proximity effect,
in the presence of spin-orbit coupling, leads to the formation of a
skyrmion—vortex pair [35, 36]. Regardless of the interface
quality, another mechanism exists: interaction between the
stray magnetic field of the vortex and the magnetization of the
skyrmion [37-40]. This effect is sensitive to the spatial distribu-
tion of the skyrmion’s magnetization, i.e., whether it is a Bloch or
Néel type. In the latter case, the stable configuration of the
skyrmion—vortex pair may correspond to a finite distance
between their centers [41]. This implies that, when analyzing
the structure of quasiparticle states in the superconducting
vortex core, one cannot a priori ignore the fact that the vortex-
induced magnetic field alters the spatial magnetization profile of
the skyrmion (including displacing it), which in turn affects the
Zeeman splitting of the quasiparticle spectrum.

Thus, a consistent microscopic analysis of Majorana
states in superconductor—ferromagnet heterostructures relies
on an explicit form of the equilibrium magnetization profile in
a chiral ferromagnetic film under the influence of the
magnetic field created by a vortex in the superconducting
film. This review presents methods for solving the magneto-
static problem to find such an equilibrium profile and recent
results obtained in this context [42—44].

Section 2 provides an overview of the problem of skyrm-
ion—vortex interaction in superconductor—chiral ferromagnet
heterostructures, including analytical methods and a numer-
ical approach based on micromagnetic simulations. In Sec-
tion 3, a variational analysis of the coaxial configuration of a
superconducting vortex and a Néel-type skyrmion is pre-
sented. Section 4 is devoted to studying eccentric configura-
tions of vortices and skyrmions and discusses various effects
associated with such arrangements. Then, in Section 5, the
developed variational approach is used to analyze the
stabilization of a vortex—antivortex pair due to interaction
with a skyrmion. In Section 6, we discuss the influence of a
vortex on higher-order skyrmions. The review concludes with
a discussion of existing experimental results and final remarks.

2. Skyrmion and vortex:
perspectives and current status

2.1 Topological quantum computation
The recent surge of interest in Majorana fermions in
condensed matter systems has been driven by their potential

use in non-Abelian quantum computation [45]. Many
researchers have focused on creating one-dimensional hetero-
structures in which topological p-wave superconductivity
arises due to the proximity effect and leads to the formation
of Majorana states at the boundary [46-54]. Another
promising avenue involves studying heterostructures in
which a thin superconducting film is coupled to a noncol-
linear magnet [25, 55]. Among the advantages of the two-
dimensional realization of Majorana states in a superconduc-
tor—noncollinear magnet structure are that Majorana states
can exist without precise tuning of the chemical potential, are
stabilized over a much wider parameter range, and are
separated by a distance determined by long-range noncol-
linear order, reaching macroscopic scales [25].

The discussion of a superconductor—noncollinear magnet
heterostructure in the context of Majorana states first
appeared in Ref. [55], where it was shown that a spiral spin
structure near an s-wave superconductor gives rise to edge
Majorana fermions with flat dispersion, while a spin config-
uration in the form of a skyrmion crystal generates chiral
Majorana states at the sample boundary. Shortly thereafter,
Ref. [25] developed a more refined and unified approach that
encompasses cycloidal, helical, and tilted conical orders
found in multiferroics, as well as Bloch- and Néel-type
domain walls in ferromagnetic insulators.

With the emergence of new proposals for realizing
Majorana states, the need arose to study their stability and
the possibility of manipulating them. Various geometries were
proposed as possible implementations. Among them was a
heterostructure based on a two-dimensional electron gas
sandwiched between a chiral ferromagnet hosting magnetic
skyrmions on one side and an s-wave superconductor on the
other [27]. Another proposal considered a system in which a
magnetic skyrmion with even topological charge Q (see
Eqn (26)) was placed near an s-wave superconductor [26].

However, many of the proposed geometries have turned
out to be difficult to implement experimentally. In particular,
most known materials only support skyrmions with unit
topological charge [56], while the even-Q states described in
[26] are unstable and had not been observed until recently,
when they were first found at room temperature in a
multilayer structure [Co (0.2 nm)/Ni(0.7 nm)], with
n=4—11—the number of bilayers in the heterostructure
[57]. However, Ref. [29] showed that the need to realize even
|Q] > 1 experimentally can be elegantly avoided. If one
considers a skyrmion with topological charge Q coaxial with
a superconducting vortex characterized by an inhomoge-
neous order parameter A(r) = exp (ibp)4(r), where (r,)
are the radial distance and azimuthal angle from the vortex
center, then it can be shown that a necessary condition for the
appearance of a Majorana state is the evenness of Q + b.
Thus, it was predicted that the most realistic case from an
experimental perspective— |Q| = |b| = 1, corresponding to a
conventional skyrmion and a single-quantum superconduct-
ing vortex —can lead to the formation of a Majorana state.

At present, such a realization of Majorana states in
superconductor—chiral ferromagnet heterostructures is con-
sidered highly promising. In particular, recent paper have
proposed and theoretically analyzed protocols for moving
Majorana states relative to each other within skyrmion—
vortex pairs [33, 34].

Next, we will examine in more detail the theoretical model
that allows analytical investigation of the influence of a super-
conducting vortex on the shape and position of a skyrmion.
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2.2 Theoretical model
We consider a thin chiral ferromagnetic film, whose magnetic
free energy is given by expression [7]:

Fmagn[m] szr {A(Vm)2 + K(1 —m?) +WDM[m}} ;

dr
(1)

where m(r) denotes a unit vector in the direction of
magnetization, dr is the film thickness, and 4 > 0 and K > 0
are the exchange stiffness and the effective! perpendicular
anisotropy constant, respectively. The density wpm [m] corre-
sponds to the contribution from the relativistic antisymmetric
exchange, also known as the Dzyaloshinskii-Moriya interac-
tion (DMI). It is important to note that the form of wpy [m]
depends on the crystalline class of the material and leads to
the formation of various noncollinear structures. Here, we are
interested in Néel-type skyrmions, which form in lattices
belonging to the family of ‘pyramidal’ symmetry groups C,,.
For these cases, the explicit form of the DMI contribution is

wpm[m] = D[m.Vm — (mV)m.] , (2)

where D is the Dzyaloshinskii-Moriya interaction constant.
Expressions for wpym[m] for other symmetry classes can be
found in Ref. [7].

The magnetic free energy is normalized so that Fp,gq is
zero for the ferromagnetic state with m, = 1.

2.2.1 Free skyrmion. In the absence of an external magnetic
field, the free energy given by Eqn (1) allows the existence of
metastable stationary states — skyrmions.

A single free skyrmion centered at the origin has a
cylindrically symmetric magnetization profile that can be
expressed in the following general form:

m = [e, cosy/(r) + e siny(r)] sin0(r) + e-cos0(r).  (3)

Here, e,, e, and e are unit vectors in the radial, azimuthal,
and axial directions of the cylindrical coordinate system,
where the z-axis is perpendicular to the interface. The angle
W (r) defines the skyrmion type: for y(r) = nt/2, the skyrmion
is the Bloch type, and for y(r) = 0, it is the Néel type. In what
follows, we consider Néel-type skyrmions, as these are the
ones observed in recent experiments [18-20] in configurations
with a superconducting vortex. For such skyrmions, both
coaxial and displaced configurations can exist [41, 42, 44].

Thus, the magnetization profile of a free Néel-type
skyrmion takes the form

m = e, sin0(r) + e, cos 0(r) , 4)

where the skyrmion angle 0(r) can be found from the Euler—
Lagrange equation (ELE) obtained by minimizing the free
energy Fmagn With the DMI term given by Eqn (2),

sin? 0

é\i—l—i‘z
L Tos0 o

0 .
~ 0,(ro,0) 52 sin (20) + 2¢

where we introduce the dimensionless DMI parameter ¢ and
the length scale parameter ¢y, which characterizes the domain

' The contribution of the demagnetizing field is included in the effective
perpendicular anisotropy constant, K = Ky — 2nM2 [39, 41, 58].

wall width:

D A
e:m, KW:\/%. (6)

Note that, since /¢, sets the natural length scale of the
problem, the ferromagnetic film can be considered thin if its
thickness is small compared to this scale, dp < /.

Equation (5) describes a skyrmion under the following
boundary conditions:

0(r—o00)=0, O(r=0)=yn. (7)
The first condition ensures uniform magnetization far from
the skyrmion center. The second specifies that the magnetiza-
tion at the center is inverted with respect to the surrounding
uniform magnetization. Here, y = 41 denotes the skyrmion
chirality. It is important to note that a free skyrmion in an
isolated ferromagnetic film possesses only one chirality,
determined by the sign of the DMI parameter, y = sgn (¢).
In this paper, we focus on the case of positive> DMI, € > 0.
Therefore, the only stable solution to Eqn (5) for a free
skyrmion corresponds to chirality y = +1. However, in the
presence of an external inhomogeneous magnetic field,
skyrmions may possess either chirality (see [43] and Section 3
for details).

A direct numerical solution of Eqn (5) with boundary
conditions (7) yields the skyrmion profile. In addition, the
exact solution is well approximated by the so-called 360°
domain wall ansatz, 0(r) = Og;s(r):
sinh (R/9)

Ogrs(r) = 2arctan Snh (7/0) (8)

Here, the parameter R encodes two physical quantities: the
skyrmion radius |R| and chirality y =sgn(R), while ¢
represents the effective domain wall width forming the
skyrmion boundary. The parameters R and J can be
obtained by numerically minimizing the free energy Fmagn
using the domain wall ansatz (8).

2.2.2 Ferromagnetic film in external magnetic field. The
influence of an external inhomogeneous magnetic
field B(r,z) on a thin ferromagnetic film is described by the
Zeeman contribution, which is added to the free energy:

Fz[m,B] = —dx szr M;mB|_,,, 9)

where M denotes the saturation magnetization. In what
follows, the external magnetic field is considered at the level
of a thin ferromagnetic film, i.e., at z = +0. Therefore, we will
omit the notation |._,, and simply write B(r), unless
otherwise specified. Moreover, we assume that the magnetic
field vanishes at large distances, B(r — oco) — 0, which is
naturally satisfied for the stray field of one or several
superconducting vortices.

To determine the stable states of the ferromagnetic film in
the presence of an external magnetic field B(r), one must
minimize the total free energy:

fferro [myB] = fmagn [m} + \7:2 [m,B] . (10)

2In Section [3], we present some results for ¢ < 0 in Fig. 4.
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The simplest stationary state is the ‘no-skyrmion’ config-
uration, where the magnetization of the ferromagnetic film
under the influence of the inhomogeneous field B remains
nearly uniform and does not contain skyrmions or other
domain boundaries. We will consider a weak field character-
ized by an effective strength 7y,

Ms BO

— 1
r=5g <h

(11)

where By is a characteristic constant amplitude of the field,
B(r) = Bob(r) in the film, and b(r) is a dimensionless
coordinate-dependent vector function. Note that the defini-
tion of By is ambiguous. It should be chosen such that: (i) the
effective strength y in Eqn (11) is estimated reasonably, and
(i) the vector , in Eqn (12) is of order y° = 1. The particular
choice of By does not affect the final result and is needed only
for evaluating the effective strength y, since only the product
yuy, enters the answer. In particular, it is convenient to choose
By so that the function b(r) on the characteristic length scale
£y is of order y° = 1, which is done in Eqn (20) for the Pearl
vortex.

Then, the magnetization m, of such a stable state is
approximately given by

my = e + Py, (12)

where p,(r) is a vector of order y°, orthogonal to e, i.e.,
we: =0.

Expanding the total free energy in Eqn (10) for m = m,, to
the second order in y and minimizing it yields the Euler—
Lagrange equation for p;:

o Apy —m, +by =0, (13)
where A denotes the Laplacian, and b = b — e.b; is the in-
plane component of the normalized external magnetic field b.

2.2.3 Magnetic field generated by Pearl vortex. Hereafter, we
assume that a magnetic field B(r) acting on the ferromagnet
originates from either a single superconducting vortex or a
vortex—antivortex pair. Consider a heterostructure consisting
of two thin films—a superconducting one and a ferromag-
netic one—separated by a thin insulating layer that sup-
presses the proximity effect (Fig. 1). We assume that the
thickness ds of the superconducting film is much smaller than
the London penetration depth, ds < Ap. In this case, the
superconducting vortex is referred to as a Pearl vortex, and
the characteristic length that defines the scale of the vortex’s
stray magnetic field is A = },f /ds, known as the Pearl length
[59].

The magnetic field By generated above the superconduct-
ing film (at z > 0) by a single Pearl vortex centered at the
origin is given by [60]

dzq exp (—gz + iqr)
n)?  qF(q) 7

By = 6 | (14)

where ¢, = hc/2e is the magnetic flux quantum. For
arbitrary ds and A, the function F (g¢) is

(q + r)* exp (rds) — (¢ — )? exp (—rds)
(¢ + k) exp (rds) + (¢ — r) exp (—kds) — 2q

(15)
with s = \/q2 + 2%

F(q) = ir

Vortex

Figure 1. Schematic illustration of heterostructure composed of thin
superconducting (SC) and ferromagnetic (FM) films, containing corre-
sponding topological objects —a vortex and a skyrmion — which interact
via stray magnetic field.

In the thin film limit ds < A1, and not too close to the
vortex center, r > ds, the integral in Eqn (14) can be
approximated using F(g) =1+ 2¢gA. Then, the magnetic
field of the Pearl vortex, which is cylindrically symmetric
about the vortex center, in the ferromagnetic film (at z = 4-0)
takes the form

b0
Amly A

BV(T) = [br(r) e+ bz(r) ez} ) (16)

where the functions b.(r) and b, (r) are defined by Eqn (14) for
r> ds:

byo(r) = J‘” dgq/10(qr) (17)
" Yo gt 17020
Here, J,(x) denotes a Bessel function of the first kind.

Note that for r < ds, the magnetic field calculated using the
above approximation F(g) = 1 + 2¢/. deviates from the more
general result of Eqn (15). However, it turns out that p, is
small in this region (since p, — 0 as r — 0), and therefore the
deviation of the magnetic field near the vortex core has little
effect on the behavior of the skyrmion. Thus, we will continue
using the thin-film approximation even for r < ds, i.e., for all r.

We restrict our analysis to this thin-film limit, as it allows
a number of analytical results. It is important to note that the
variational method presented in Sections 3 and 4 is applicable
to arbitrary magnetic field distributions and therefore can be
used with the full expressions (14) and (15).

Hereafter, we assume that the characteristic sizes of the
skyrmion and the distances between the centers of the
skyrmion and the superconducting vortex in stable config-
urations are governed by the domain wall width 4,,, which is
assumed to be small compared to the Pearl length 4,
achievable for sufficiently thin superconducting films:

s

ds ~ dy < by ~ 3~ |R| <h="c. (18)
S

Under these assumptions, we may disregarded 1/(21) in the
denominator of the integrand in Eqn (17) and obtain
simplified expressions for the vortex field:

balr) = =, (19)

The characteristic magnitude of the Pearl vortex stray
field, and hence the effective vortex strength y defined in

r<a.
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Eqn (11), are given by

&
4mly s’

Y — Ms§b0 (20)

N4

In the subsequent analytical treatment, we consider y to be a
small parameter, consistent with experimental observations
[43].

Since the magnetic field of a single Pearl vortex is
cylindrically symmetric, the magnetization in the ‘no-skyrm-
ion’ state from Eqn (12) is also cylindrically symmetric, with
the vector p,, aligned with e,:

By

1y, (r) = Op(re; . (21)
Then, Eqn (13) reduces to an equation for Oy:
02 02 42
5 0,(r0,00) — 2 gy 4 b, = 0. (22)
r r
The solution to this equation with zero boundary conditions,
Op(r=0)=0, Op(r—o00)=0, (23)
can be found analytically [44]:
0 dqg qJi(qr
Ou(r) = WJ L 1(gr) . (24)
0 (2q+1/2)[1+ (bwq)?]

In the limit of large Pearl length, a simpler expression is
obtained [43]:

r 14
O(r=K——) -
b () 1 ( fw) P
where K,,(z) denotes a modified Bessel function of the second
kind.

(25)

2.2.4 High-order skyrmions. To characterize different types of
topological objects in a ferromagnetic film, it is common to
introduce the concept of topological charge Q and its local
density p(r). These quantities are related to the magnetization
m(r) through the following expressions:

1 Oom am}

0= [ e, ol = pm| TS (26)

4n
In the previous subsection, we considered the simplest
type of skyrmion with a topological charge of |Q| = 1. Most
theoretical and experimental studies focus on such skyrmions.
However, recent numerical and physical experiments have
revealed other magnetic topological structures: skyrmion-
iums [61], high-order skyrmions [57], skyrmion bags [62],
and biskyrmions [63]. These structures can carry a topological
charge |Q| # 1 due to various features of their spin textures.
The reasons why such nontrivial topological objects can
exist in a system vary. In this review, we focus more
specifically on high-order skyrmions (HOSs) with |Q| > 2,
since, as shown in Refs [64, 65], such skyrmions can be
stabilized in the field of a superconducting vortex.
Radially symmetric HOSs centered at the origin are
described using a standard parameterization analogous to
Eqn (3):

m = (e,cos ") + ey sin ™) sin 6 + e cos 6. (27)

Here, ¢ and e; are the azimuthal angle and the
corresponding unit vector in polar coordinates, ¢ =
(n—1)(¢ — ¢y), where n is the vorticity parameter of the
skyrmion texture, related to its topological charge by n = —Q.

It is important to note that the introduction of the azimuthal
angle ¢, effectively determines the helicity of the skyrmion. As
demonstrated in Ref. [65], HOSs can form stable configura-
tions with a Pearl vortex. For more details, see Section 6.

2.3 Micromagnetic simulations

2.3.1 General concepts. An important tool for analyzing
theoretical and experimental results is the technique of
micromagnetic simulation [66]. All simulations presented in
this study were performed using the Object Oriented Micro-
Magnetic Framework (OOMMPF) software package [67] and
the Ubermag environment [68]. Below, we discuss the
operating principles of numerical minimizers in these pro-
grams.

In numerical calculations, we deal with a discretized
problem, where the system is placed on a lattice, and classical
magnetic moments of unit length are located at the lattice
nodes. A key assumption of the micromagnetic approach is
that the spin direction changes only slightly between
neighboring lattice nodes [69]. The expression for the
system’s free energy is then discretized and depends on 3N
variables, where N is the number of lattice nodes and the
factor 3 corresponds to the three components of the
magnetization. According to the OOMMF documentation
[67], the program’s algorithm is based on the step-by-step
evolution of the system’s classical magnetic moments using
evolvers. Each step in the dynamic evolution or energy
minimization depends on the previous (or several previous)
steps, and the evolvers are responsible for updating the
magnetization configuration from one step to the next.
There are two types of evolvers: time evolvers, which track
the dynamics of the Landau-Lifshitz—Gilbert (LLG) equa-
tion, and minimization evolvers, which find local minima on
the energy surface using direct minimization methods.

Let us now discuss the numerical solution to the dynamic
problem using the LLG equation [70, 71]. In the absence of
dissipation and spin-polarized current, the magnetization
dynamics are governed by

om

m (28)

= —[yLgIm x Herr,
where y;;g is a phenomenological constant, and Heg
represents the effective magnetic field acting on the system.
This field is defined as the variational derivative of the free
energy with respect to magnetization:
3F [m]

Her = ————.

S (29)

Naturally, stationary solutions of Eqn (28) correspond to
local extrema of the free energy.

Including dissipation modifies the original equation. The
most well-known dissipative modifications of the lossless
equation include an additional term in the Landau-Lifshitz
form:

m X (m X Heff),

Om [yielo
=5 (30)

— = —[yeeim x Her —
ot ¢ :

where o is a dimensionless damping constant, typically
associated with the presence of spin-orbit coupling, or, in
the Gilbert form,

om

o Oom
E:—‘yG|mXHeﬁ‘+ﬁ<mXE>. (3])
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These two forms are equivalent and related by the transfor-
mation yg = ypp (1 +«?).

From the perspective of numerical modeling, inclusion of
the dissipative term allows the system to reach equilibrium in
a finite time. However, if the goal is to precisely model the
dynamics of the system, the choice of « becomes crucial.

2.3.2 Numerical analysis of skyrmion magnetization in Pearl
vortex field. Micromagnetic simulation methods are actively
used to study the behavior of magnetic skyrmions in external
fields. For instance, the analysis of skyrmion magnetization
dynamics is of particular interest in the broader context of spin
transport and in the field of skyrmionics. In this review, we
focus on the behavior of skyrmions in superconductor—chiral
ferromagnet heterostructures when vortices are present in the
superconducting layer.

In Ref. [39], the possibility of manipulating skyrmions in
such heterostructures using vortices was investigated. In
particular, the authors numerically observed that the char-
acteristic size of a skyrmion can increase significantly (by two
orders of magnitude) in the presence of a vortex field, under
certain ratios of interaction parameters, such as the strength
of the DMI and the Pearl vortex core size. It is worth noting
that this intriguing result did not follow from analytical
approaches, and no systematic analysis was performed to
determine the cause of and conditions for this effect.

A numerical analysis of the stability of coaxial configura-
tions of a skyrmion and a Pearl vortex, as well as changes in
the skyrmion profile depending on system parameters, was
carried out by the authors of this review in Ref. [42]. Through
micromagnetic simulations and a minimal analytical model, it
was found that a Néel-type skyrmion may be unstable with
respect to a displacement of its center relative to the Pearl
vortex center, and its radius may significantly increase.

In our subsequent studies [43, 44], it was further shown
that, in the ‘Néel skyrmion—Pearl vortex’ system, the
magnetization can undergo chirality switching, and meta-
stable states may exist. We will discuss this in more detail later
in the review. Within this subsection, we draw attention to the
micromagnetic simulation results shown in Fig. 2. This figure
presents four metastable skyrmion states in the stray field of a
Pearl vortex for fixed DMI and vortex strength parameters,
¢ = 0.325 and y = 0.479. The results illustrate the formation
of three distinct coaxial configurations, as well as a config-
uration where the skyrmion and vortex are offset relative to
each other.

In summary, numerical studies exploring skyrmions in
vortex fields reveal a variety of effects associated with changes
in the magnetization profile. These effects cannot be described
within the framework of the standard domain wall ansatz,
which motivated us to develop a new analytical approach.

2.3.3 Details of micromagnetic simulations. Finally, before
proceeding to the development of an analytical description of
askyrmion in a vortex field, we provide a brief overview of the
micromagnetic simulations used in this paper. Additional
details can be found in Appendix E of Ref. [44].

In the numerical simulations, we model the ferromagnetic
film as a system 2L x 2L x dL in size, composed of cells
dL x dL x dLinsize. All lengths are measured in units of 4.
Depending on the desired accuracy and the capabilities of the
computing hardware, different values of L and dL were used.
For the data shown in Figs 2 and 3, the following parameters
were used: L=15, dL=0.04. For Figure 5, we used L = 32,

Figure 2. Skyrmion magnetization profiles in Pearl vortex field,
obtained via micromagnetic simulation. All distributions were calcu-
lated for DMI constant ¢ =0.325 and vortex strength y = 0.479,
confirming existence of metastable states in ‘Néel skyrmion—Pearl
vortex’ system. Lengths are measured in units of ¢, (see Eqn (6)).
Color scale indicates z-component of total magnetization mi., while
vector field shows x—y in-plane projection of m. Vortex center is
schematically marked by cross at origin. Top panel illustrates abnor-
mally large-radius skyrmion. Bottom panel shows, from left to right:
medium-size skyrmion, small-radius skyrmion with reversed chirality,
and skyrmion displaced from vortex center.
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Figure 3. (a) Skyrmion angle 0(r) as function of radial coordinate r/4y,
with sign corrected by multiplication by skyrmion chirality y = +£1,
calculated for parameters ¢ = 0.325 and y = 0.479. Solid and dashed
curves represent results obtained via exact solution of ELE (32) and using
the variational method with ansatz of form (33), respectively; symbols
(squares, triangles, and diamonds) are extracted from micromagnetic
simulations (see Fig. 2). Horizontal axis uses quadratic scale. (b, c¢) Free
energy (1) of ferromagnet with skyrmion whose magnetization is described
by ansatz (33), shown as function of parameters R/¢,, and /. Minima
are indicated by same symbols as in top panel, while saddle points are
shown with circles. Color gradient is in arbitrary units.
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dL = 0.2. Figures 6 and 8 were generated using L = 10.05
and dL = 0.015. The data for Fig. 10 were obtained with
L =10, dL =0.02.

3. Coaxial configurations of skyrmion
and vortex

We begin our study of the shape of a Néel-type skyrmion in
the field of a Pearl vortex by considering the simplest case,
where the skyrmion and the vortex are in a coaxial config-
uration. Such configurations were first analytically studied in
Ref. [43].

3.1 Euler—Lagrange equation

In the coaxial configuration, the skyrmion exhibits a centrally
symmetric magnetization; therefore, its profile can be written
in the form of Eqn (4). Minimizing the total free energy from
Eqn (10), we obtain the Euler—Lagrange equation for 6(r):

02 0242

.2
0
TW 0,(r0, 0) — sin 20+ 2¢ s

2r2 r/ly

(32)

Equation (32), supplemented by the boundary condi-
tions (7), can be solved numerically. Note that, unlike the
case of a free skyrmion, where the solution is unique and
possesses a definite chirality y = sgn (¢), the presence of an
external inhomogeneous magnetic field allows multiple
solutions to the ELE, including both chiralities y = +1.
Moreover, some of these solutions may correspond not to
minima of the free energy (10), but to saddle points (see
Fig. 3). In the latter case, the ELE solution does not describe
a stable skyrmion state and should be discarded after proper
verification.

These features lead to additional technical challenges in
numerically determining the stable states. Therefore, it is
convenient to use a variational approach, in which the
skyrmion profile is given by a fixed function containing
several parameters that are determined by the minimization
of the free energy.

3.2 Variational approach

As shown in Ref. [43], the exact solution of Eqn (32) with
boundary conditions (7) can be effectively approximated by
the following expression (hereafter referred to as the coaxial
ansatz):

0(r) = 0}5(r) = Ors(r) + 70, (r) cos Ors(r), (33)
where 6gs is the domain wall ansatz given in Eqn (8), and y
and 0, are defined by Eqns (20) and (25), respectively, and
arise due to the presence of the superconducting vortex.

It is useful to rewrite the ansatz (33) in terms of the
magnetization. Indeed, if we add the vector mgs— which
describes the deviation of the homogeneous magnetization
under the influence of the magnetic field B (see Eqns (12)
and (21)) — to the magnetization vector yp, described by the
domain wall ansatz (8), and then normalize the sum to unit
length, the resulting unit vector (to linear order in y < 1)
corresponds to a skyrmion with profile 0;,(r) from
Eqn (33):

mps + VI

o y
~ e sinlp; +e.cosl;.
Imgs + 7| ‘

(34)

= y(b.sin 0—b, cos 0).

The qualitative idea of the ansatz (33) is as follows. It is
natural to expect that the skyrmion magnetization is, to the
leading order, described by the 360° domain wall ansatz.
However, due to the relatively weak magnetic field (y < 1),
the magnetization at each point is additionally rotated. This
means we can write 0(r) & Ogs(r) + 80(r). To determine the
rotation angle 36(r), we consider the magnetization in three
regions: near the skyrmion center, at » ~ |R|, and far from the
origin. Near the center or far away, the magnetization is nearly
homogeneous (m, =~ +1), and its change is mainly governed
by the vortex field. Thus, 30(r) &~ £y 0y(r), directly following
from the solution to Eqn (22) for the ‘no-skyrmion’ state. In
the intermediate region, m, & cos Ogs(r), so the rotation angle
is naturally smoothed, yielding d0(r) = y0p(r)m. =
70y (r) cos Og;s(r), which gives ansatz (33).

It is important to note that the rotation angle 66 remains
small for y < 1, which makes it seems that the ansatz in
Eqn (33) only describes a slight deviation from a free
skyrmion. Nevertheless, it turns out that, for not-too-small y,
significant changes in the skyrmion radius R can occur, and
even solutions with opposite chirality may emerge [43].
Indeed, the coaxial ansatz (33) should be substituted into the
free energy expression (10) and minimized with respect to the
two parameters R and ¢, without assuming proximity to the
free skyrmion parameters. This variational method proves to
be faster and more efficient than a direct numerical solution
of Eqn (32). Moreover, it yields reliable results over a wide
range of parameters ¢ and y [43].

The upper panel of Fig. 3a shows results from the exact
ELE solution (solid curves), the variational approach (dashed
curves), and micromagnetic simulations for ¢ = 0.325 and
y = 0.479. Thin solid curves show 0(r) = y0y(r) and 0(r) =
1 — 70p(r), closely matching skyrmion profiles at small and
large r. The three approaches are in good agreement.

As seen from the lower panels in Fig. 3b, the normalized
free energy as a function of R and ¢ may exhibit multiple
minima: two with positive chirality, y = +1 (green diamond
and blue square), and one with negative chirality, y = —1 (red
triangle). These minima may correspond to stable skyrmion
states. Notably, the radius of the stable skyrmion (blue
square in Fig. 3c) is R ~ 5.74,, about 14 times larger than
the radius of the skyrmion Ry ~ 0.41/4,, fory = 0. In addition,
the free energy has two saddle points (brown and purple
circles), representing unstable skyrmion states that cannot be
stabilized in micromagnetic simulations.

3.3 Analysis of results

Since the choice of parameters ¢ and y corresponds to a
specific heterostructure, variations in these parameters can
lead to a different number of extrema in the free energy and,
consequently, to a different number of possible stable skyrm-
ion—vortex configurations. To explore this, Fig. 4 shows the
dependence of R on y for several values of ¢. Solid and dashed
curves in the (y, R) plane correspond to minima and saddle
points of the free energy (10) as a function of R and §,
respectively. The region of unstable saddle-point configura-
tions is marked with light gray shading.

Note that even those solutions of the Euler-Lagrange
equation (32) that correspond to a minimum of the free
energy as a function of R and 6 do not necessarily represent
stable skyrmion—vortex configurations. This is because the
derivation of Eqn (32) assumes that the center of the
skyrmion coincides with the center of the Pearl vortex,
which may not correspond to a stable state for certain ¢ and
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Figure 4. Dependence of skyrmion radius |R|/¢, on effective vortex
strength y for several values of DMI parameter ¢ on semi-logarithmic
scale, shown for chiralities y = +1 (a) and —1 (b). Solid and dashed lines
correspond to minima and saddle points of F[R, d], respectively. Region of
unstable coaxial configurations and region of saddle points are shaded in
dark and light gray, respectively. Values of € used in figure are labeled next
to curves. Symbols (square, diamond, and triangle) correspond to stable
skyrmions from Fig. 3, and circles indicate saddle-point solutions.

y values, since the skyrmion center may shift away from the
vortex core. As shown in Refs [41, 42, 44], a skyrmion—vortex
pair can remain stable when the skyrmion is located at a finite
distance a from the Pearl vortex. These displaced configura-
tions are discussed in more detail in Section 4. For now, we
state that coaxial configurations with chirality y = +1 are
unstable for e < e =~ 0.49and y < y_,(¢€) (Fig. 8). In this case,
the skyrmion is repelled by the vortex. If either of these
conditions is not met, the coaxial configuration is stable with
respect to displacement. In Figure 4, unstable configurations
are shaded dark gray, while stable coaxial configurations are
shown on a white background.

Figure 4 exhibits several interesting features. First, all
curves for skyrmions with chirality y = +1 (Fig. 4a) lie in the
quadrants formed on the (y,R) plane by the curve with
€ = €ep ~ 0.266 (black line). For € < ¢p, the R(y) curves lie
in the bottom-left and top-right quadrants, while for € > €xp,
they are located in the top-left and bottom-right quadrants.

Second, for 0.3 $e<$0.35, there are values of y for which
two skyrmions with chirality y = +1 can coexist. An example
of such a situation is shown in Figs 2 and 3c, where the lower
panels of the latter shows two free energy minima correspond-
ing to positive chirality.

Third, for every pair of ¢ and y, a skyrmion exists with
chirality y = —1 and a certain radius |R| (see Fig. 4b).
However, for small y and ¢ > 0, the skyrmion radius becomes
extremely small (R/y,). In this case, the expression for the free
energy (1) becomes invalid, and such small-radius solutions are
excluded from Fig. 4. As can be seen in Fig. 4b, the radius | R|
for skyrmions with y = —1 increases monotonically with y.

Finally, for each ¢ and both chiralities y = +1, there is a
critical value yZ (). As y increases and approaches yZ, the
skyrmion radius grows substantially. For |R| > & £y, the
free energy can be approximated as

fferro[R} ~ (1 + 61’5/2)|R‘ -2 JlRl .
SrAdy ™ ™ + 9L, . drrb.(r).

(35)

The first term corresponds to the domain wall energy
separating the inner and outer regions of the skyrmion,
while the second term arises from the energy of the skyrm-
ion’s inner region, where the magnetization m, ~ —1 1is
opposite to the main ferromagnetic state, m, ~ +1. For
by < |R| < A, we approximate b.(r) = —{y/r (see Eqn (19))
and estimate the second term in Eqn (35) as y| R|/¢y,. Thus, the
critical value y can be approximated as

yi(e)zl$ﬂ>0.

5 (36)

If yz7%, the skyrmion radius becomes comparable to or
exceeds the Pearl length, |R| =1 > ¢y, and the minimum of
the free energy is determined by the condition
—b.(|R])|R|/bw =~ yZE /7, which requires taking into account
the Pearl vortex field dependence on A. A more detailed
analysis of such configurations is presented in the next
Section 3.4.

3.4 Skyrmion radius at finite Pearl length

In the previous sections, we assumed that the Pearl length is
much larger than the skyrmion radius, i.e., 4> R. This
assumption is justified when the parameters ¢ and y, which
describe the Dzyaloshinskii-Moriya interaction and the
influence of the superconducting vortex, are relatively small.
As shown in Fig. 4 and discussed at the end of the previous
Section 3.3, increasing these parameters leads to a growth in
skyrmion size, eventually making it comparable to /.
Furthermore, from the perspective of applying theoretical
results to real experiments, one should consider that / is
related to y via

Ay _ M,

= ; (37)

=" 8

where the introduced parameter { depends only on the
material parameters of the ferromagnetic film and is
typically of the order of 10 (see Table). Therefore, in a certain
parameter range, the finite value of 4 must be taken into
account.

It is known in [72] that the magnetic field of the vortex
from Eqn (17) can be well approximated by

Ly Ly

b (NN~ —-——--——-, b. () ——m+— . (38
) ) r[1+r/22)]° G8)

r[L+r/(22)]°

This allows us to write a fairly simple expression for 0Oy,
analogous to Eqn (25):

N r . exp (—r/by)
GW)K(E>_41HAMH_ 2

By using Eqns (38) and (39) in the variational approach
outlined in Section 3.2, we can determine a more accurate
dependence of the skyrmion radius R on the effective vortex
strength 7. Furthermore, to analyze this dependence for a

(39)
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Figure 5. Dependence of skyrmion radius R/¢,, with positive chirality on
effective vortex strength y for ¢ = 0.5, calculated in limits of infinite (green
dashed line) and finite (green solid line) Pearl length, as well as its
asymptotic form (40) for R > A (black dotted line). Results of micro-
magnetic modeling are shown as blue squares. Dependence of Pearl length
2/t = {/y on y is shown as thin red line.

large radius, we can use Eqn (35). As already mentioned, the
free energy minimum is then determined by the condition
—b-(|R|)|R|/tw ~ yZE/y. Using Eqn (38), we find that the
minimum of Fey, 18 reached at a skyrmion radius

, 1
IR| ~ 2/1( - 1) - 2gzw(———) .
V% Ve 7

Note that this expression remains valid for all | R| > £, which
is fulfilled when y 2 7.

Figure 5 shows the dependence of the skyrmion radius
R/{y, of positive chirality for e = 0.5 on the effective vortex
strength y, comparing the cases of infinite and finite Pearl
length with the micromagnetic modeling results and asymp-
totic formula (40).

We also highlight an interesting feature of the | R| versus y
dependence given in Eqn (40): it is nonmonotonic and reaches
a maximum aty = 4yE:

IR |:C£w _ {ly,
maxlo 2pE s 2Fen’

(40)

(41)

which is determined solely by the ferromagnetic parameters
and not by the superconductor. In other words, an upper limit
exists on the skyrmion size that can be achieved in a given
ferromagnetic film due to the influence of a Pearl vortex.

4. Eccentric configurations

In this section, we study the state of an isolated Néel-type
skyrmion placed in an external inhomogeneous magnetic
field. An analytical investigation of such states is signifi-
cantly complicated by the challenge of choosing an appro-
priate magnetization profile m. The exact approach requires
deriving the Euler—Lagrange equations and setting boundary
conditions, m = —e, at the skyrmion center and m = e, far
from the center. However, solving such equations, which are
vector partial differential equations, numerically requires
computational resources comparable to those needed for the
micromagnetic simulations.

The simplest approach to describe an eccentric configura-
tion is to compute the Zeeman contribution to the energy,
which depends on the distance between the skyrmion and

vortex centers, while ignoring the deformation of the sky-
rmion due to the vortex. This approach corresponds to the
theoretical framework developed in this review in the formal
limit y — 0. It was precisely this method that was employed in
Ref. [41], where it was found that a Néel-type skyrmion may
energetically prefer to position itself at a finite distance from
the vortex center. Qualitatively, this behavior arises due to the
following physical reasoning. The nonuniform skyrmion
magnetization induces a supercurrent in the superconduct-
ing film. This current has only an azimuthal component,
which can vanish at a certain distance from the skyrmion
center. Since the supercurrent acts on the superconducting
vortex via the Lorentz force, the vortex can be in equilibrium
only at points where the supercurrent vanishes. It can be
shown [9] that the supercurrent magnitude is determined by
the derivative of the Zeeman energy with respect to the
skyrmion—vortex distance. Therefore, a zero of the super-
current corresponds to a minimum in the Zeeman energy. As
we will see below, the approximation y — 0 used in Ref. [41]
proves to be quite crude, and a more refined theory is required
for an accurate description of eccentric configurations.

As an alternative to an exact numerical solution, we
employ a variational approach similar to that described in
Section 3.2, based on a sufficiently simple analytical ansatz
that accurately approximates exact Euler—Lagrange solutions
or micromagnetic simulation results. Following Ref. [44], we
will introduce, explain, and justify the choice of such an
ansatz for the skyrmion magnetization under a weak,
spatially varying magnetic field B(r) in the general case, and
then apply this variational method to describe eccentric
skyrmion—vortex configurations. Furthermore, based on the
obtained results, Section 5 will analyze the stability of a
vortex—antivortex pair due to interaction with a skyrmion.

4.1 Variational approach

In this subsection, we describe the idea behind constructing
an ansatz for the magnetization of a skyrmion subjected to a
weak, spatially inhomogeneous external magnetic field. This
ansatz is defined by three parameters: the radius R, the
effective domain wall width 6, and the position a of the
skyrmion relative to the magnetic field. To justify this
construction, we expand the total free energy (10) to second
order in the small effective field strength y and analytically
minimize it. As a result, we derive the expressions for the
ansatz (see Eqns (42), (45), and (48)) and simplify the full free
energy to the form of one-dimensional integrals (see
Eqns (54), (58), and (61)). These simplified expressions can
then be used to numerically determine the parameters R, 0,
and a that describe the skyrmion magnetization.

It is also useful to outline the key stages of the calculation.
First, in order to determine the parameters R and 0 at a fixed
skyrmion position a, it is sufficient to expand the free energy
only to first order in y < 1, as shown in Eqn (54), and then
minimize it. At this stage, one may ignore skyrmion
deformation and assume that its magnetization remains
radially symmetric. In this case, we obtain the skyrmion
radius and domain wall width as functions of the position,
R(a) and o(a), since the magnetic field is inhomogeneous.

Second, in order to determine a, second-order contribu-
tions in the free energy expansion must be taken into account
(see Eqns (58) and (61)). These contributions capture the
deformation of the skyrmion’s shape. The total free energy
must then be minimized with respect to a, using R and ¢ as
functions of the skyrmion position.
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Note that the stages described above imply that the
minimization procedure can be performed in two different
ways. The direct method involves searching for the
minimum simultaneously with respect to all three para-
meters, R, 0, and a, which yields the stable skyrmion
configuration with minimal energy, similar to micromag-
netic simulations.

The second method involves a two-step procedure. First,
the free energy is minimized only with respect to R and J at
fixed a. Then, the resulting function of a is analyzed to
identify local minima corresponding to metastable skyrmion
positions. This approach differs from micromagnetic model-
ing because it facilitates the identification of multiple
potentially metastable extrema.

A detailed comparison of the analytical results and
micromagnetic simulations will be presented in Section 4.2.

4.1.1 Formulation of magnetization ansatz. For convenience in
the subsequent derivation, we shift the origin of coordinates
to the center of the skyrmion, denoted by the point a. As a
result, the shifted external magnetic field depends on a as a
parameter, B®(r) = B(r,), wherer, =r + a.

The central idea of the ansatz construction is to find a
leading-order approximation for the skyrmion magnetiza-
tion m in the form of a radially symmetric function m (cf.

Eqn (4)):

m = e, sin 0(r) +e. cos 0(r), (42)
where 0(r) is the skyrmion angle.

As will be shown in Section 4.1.2, the angle 0 can be
interpreted as the skyrmion angle in the effective magnetic
field B?, i.e., the angular average of B* around the skyrmion
center, taken over the polar angle ¢, for the radial, azimuthal,
and out-of-plane components:

B* = (B e + (BY)yes, ()= J d¢ (43)

e
Consequently, the angle 0 satisfies the same Euler-Lagrange
Eqn (32) asin the coaxial skyrmion case. The exact solution of
this equation can be approximated by the coaxial ansatz given
in Eqn (33) (see also Ref. [43]):

0(r) ~ 0}5(r) = Ogs(r) + 7054 (r) cos Ogs(r) (44)
where Ogs(r) is the domain wall ansatz from Eqn (8), and
0 (r) is the solution of Eqn (22) with b, = b*. Recall that
b* = B*/B; and b* = B?*/B,, where By is the characteristic
amplitude of the external magnetic field, defined for the Pearl
vortex in Eqn (20).

At the next step of constructing the ansatz, one needs to
incorporate the deformation of the skyrmion relative to the
radially symmetric magnetization m. As previously men-
tioned, this deformation is expected to be small and propor-
tional to the small parameter y associated with the external
field. Therefore, the magnetization of the skyrmion takes the
form

m~ m-+ym. (45)

Within the linear approximation in y, the deformation
vector m must be orthogonal to m, since both m and m are unit
vectors. Thus, m can be written as a cross product,
m =m X ®, where ® can be determined from the following
arguments.

Since m is expressed via 0 from Eqn (44), ie., it
corresponds to a coaxial skyrmion in the averaged field B?,
one can use expression (34). Expanding it to first order in y
yields a linear dependence of m on the vector py. = Oy e,

mpgs + YRge

mr-——
[mps + ypg|

A mpgs + y[Mgs X pgs X mps) . (46)
It is natural to expect that the full skyrmion magnetization in
linear order in y depends on the full magnetic field B? in the

same way:
__ Mps + PPya

o 0 T 47
Imps + Piye| 47

A Mps + P[Mgs X Pya X Mgs) .
Returning to Eqn (45), we finally obtain the expression for
the deformation part of the magnetization:

m = [m X (s — pya) x M) . (48)

Thus, to linear order in 7, the ansatz for the skyrmion
magnetization is fully specified by the set of expressions (42),
(45), and (48). Note that the ansatz remains valid even up to
quadratic order in 7 if one adds the term —y2m22/2 on the
right-hand side of Eqn (45) (see Eqn (57)).

Using the ansatz presented here, one can determine the
optimal skyrmion parameters—radius R, effective domain
wall width 0, and position a— by minimizing the full free
energy (10). Note that the free energy (10) is a double integral
over space, which is computationally expensive to evaluate
numerically. In the following subsections, we derive a
simplified form of the free energy (58), valid to quadratic
orderiny < 1. The corresponding contributions (54) and (61)
are written as integrals over only the radial coordinate, with
the angular integration performed analytically, significantly
speeding up numerical computations.

4.1.2 First-order approximation. In this subsection, we
compute and minimize the free energy up to terms linear in
the effective strength y < 1 of the external magnetic field. In
this case, as indicated in Section 4.1.1, the leading-order
approximation for the skyrmion magnetization m is the
radially symmetric unit vector function m (see Eqn (42)).
The skyrmion deformation described by the vector m appears
only in the first order in 7y (see Eqn (45)).

To determine the unknown skyrmion angle 0 at first order
in y < 1, we substitute the magnetization m in the form (45)
into the full free energy (10) and expand it to linear order in y:

Fferro [m’Ba] ~ Flerro [m>Ba} + 7-7:r£11a)gn [lfl,lfl] ) (49)

where F élla)gn is the first variation of the magnetic energy from
Eqn (1),
F e 0, 1] = =20l [ & r[ A Am + Kin.m.

— D(m.Vin —mVrm.)] . (50)

Note that integration over the polar angle ¢ in the above
expression is only required for the radial and out-of-plane
components of m, since m is radially symmetric. This implies
that, if the angular average of these components is zero,

<n711‘></) = <’hz>(/) =0,

(51)
then the first variation F, [ga)gn will vanish as well. Additionally,
since m must be orthogonal to m and can be written as

m = m X o, this condition simplifies to (wy), = 0.
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On the other hand, if we shift 0 — 0 + y¥ in Eqn (45), then
o should be changed as wg — wy + ¥ to keep m unchanged.
To resolve this ambiguity, we may fix the function w, such
that its angular average vanishes, i.c., <w¢,>¢ =0, and define 0
only up to terms linear in y < 1. This condition for
© = [(my — pp) x m] from Eqn (48) simplifies to (u?), =0,
where

R =y — Py, (52)
and is obvious due to
(yeer)y = Byser = O3 (1). (53)

which can be verified by comparing Eqn (22) for b = b* with
Eqn (13) for b =b?* after multiplication by e, and angular
averaging.

As a result of this choice, only the first term Ferro[m, B?]
in Eqn (49) is retained. Since m is radially symmetric, angular
integration allows replacing the external magnetic field B*
with its angular average B? (see Eqn (43)). Consequently, the
full free energy to linear order in y < 1 becomes

fferro[nhBa} ~ ]:ferro[ﬁlyﬁa] _ fferro[mbvB]
2TCdFA 2TCdFA 27'CdFA
drr ([ 03 sin 20
2w 2
o, )i osafeor 55

+02(8,0)* — 2y {E (54)

- 0
n6—2b*sin* ( = .
s (3)))

Here, Fiero[my, B] is the free energy of the ‘no-skyrmion’
background configuration, which does not depend on any
skyrmion parameters such as the radius R, domain wall
width 0, or position a, and can thus be omitted during
minimization.

Minimizing the free energy (54) with respect to the
skyrmion angle 0(r) yields the Euler-Lagrange equation,

02 N

sin2 0
6 (r0,0) 52

/by

sin (20) + 2¢

=9(b*sin0 — b?cos0), (55)

which is identical in form to Eqn (32) for coaxial skyrmions,
but with ba replacing b,,.. This equation must be supple-
mented w1th bounddry conditions analogous to Eqn (7), with
the corresponding physical meaning:

0(r - o0)=0, 0(r=0)=yn. (56)

Note that the exact solution of Eqn (55) can be accurately
approximated using the ansatz (44), just as in the coaxial case
described in Section 3.2, by substituting b into b?.

Finally, we emphasize that the free energy expression (54)
can be formally minimized, not only with respect to 0, but also
with respect to the skyrmion position a. However, it can be
shown that the resulting a is accurate only to zeroth order in
the small parameter y (see Ref. [44] for details). This is because
the skyrmion position is highly sensitive not only to its size,
determined by the parameters R and o, but also to the shape
deformation caused by the external field, which appears in
both 0 and 7i1. To properly account for this and determine a
more accurately, we must compute the free energy to second
order in y <€ 1, which is done in the next section.

4.1.3 Second-order approximation. To accurately determine
the dependence of the skyrmion position a on the effective
field strength y < 1, it is necessary to evaluate the total
energy Frerro[m, B*] up to second order in 7y, and then
minimize it with respect to a. For this purpose, we must
extend the expansion of m to include second-order terms
in y. Formally, we add a term y%) to Eqn (45), where X is
an arbitrary vector function of order 7°, and then normal-
ize m to unit length. This yields the following expansion up
to order y:

2mn712

m ~ m + ym — +72[mx A xm]. (57)

Substituting this form of m into Eqn (10), we obtain the
total energy:

-,/tferro[mvBa] ~ fferro [Ifl Ba} + -7:(2> [Iﬁ, ﬁl7 a] ) (58)
where the first term is defined in Eqn (54), and the second-
order correction takes the form

F@m,

_ _ _mn?
m7a} = yszlerro[mVBa] - szlnggn |:m7?1| : (59)

Here, the prime in the first term indicates that, when
computing Fmaen according to Eqn (1), the constant term K
in the integrand of the full free energy (10) is excluded.

Among the y? and higher-order contributions omitted in
Eqn (59), one particular term deserves attention:

p2FN) L [ ox & x m .
nngn{m [ }} _ zyzjﬂ D\' % m}
2ndr A 02 ¢
02 N sin? 0
- 0,(r0,0) — 5,7 sin (20) + 2¢ T } . (60)

At first glance, this term appears to be of order y2, but the
expression in square brackets is actually of order y because
it corresponds to the left-hand side of Eqn (55). Therefore,
the entire term is of order y> and can be disregarded.
Consequently, the determination of the unknown vector
function X is not required to compute the free energy up to
order y2.

It is also important to note that 0, which enters the
expression Frero[m, B?] in Eqn (58), should be calculated
only to first order, as glven by Eqns (44) and (55). Any
corrections to 0 of order y2 can be interpreted as modifica-
tions of A in Eqn (57), and thus contribute to the energy at
order 73, making them negligible.

Now, using Eqn (48) for m, we can perform angular
averaging over ¢ in Eqn (59) and derive an explicit
expression for F

F[m,m, a] ., Jdrr

Trde A 2 {Zb sin? 0 4 b sin (20)
¥

“‘ﬁ

2] 62(0,0)° - 2 L (€3 +r?) sin® (20)

(61)
sin (49)} } ,

+ [R*sin® 0 —

- R A T
— 2¢| 124,00 20) + -
¢ {'u‘b + 2r /by sin (20) 4r /Ly,
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where the following auxiliary functions are introduced, which
result from the external magnetic field and depend on the
skyrmion position a:

. 02 Ap? le\’
bA(r) = { p? (b2 + () B2
2(r) <u, (r+ 5 >>¢ (r) B

2 ~a ~a
A
= (urb2) ) = (1)) B3 = (1)),
urx¢( r) = It R+ (4 0pug — 1g0pnt) -

4.2 Optimal positions of skyrmion and vortex

In this section, we present the results of applying the
previously described variational approach to study stable
eccentric configurations of a Néel-type skyrmion subjected
to the stray field of a Pearl vortex. A comparison with
micromagnetic simulations is also provided.

It is important to note that the obtained results indicate
that eccentric configurations can only be realized for skyrm-
ions with positive chirality, y = +1. For a nearly free sky-
rmion (y — 0), this phenomenon was predicted in Ref. [41].
Let us provide a qualitative explanation. In the limit y — 0,
the skyrmion’s shape is independent of the distance « to the
vortex center, and its free energy for chirality y can be written
as F = F, — yF_, where F. are monotonic functions of the
distance. When y = —1, the function F(«) is monotonic, and
the only minimum is at ¢ = 0. In contrast, for y = +1, the
subtraction of two monotonic functions may yield a function
with multiple minima. This qualitative behavior persists for
arbitrary 7, although the skyrmion’s size and shape begin to
depend on the distance.

To minimize the total free energy (58) with the corre-
sponding contributions (54) and (61), one must first evaluate
the functions associated with the shifted vortex
field B*(r) = By(r,), where r, =r + a (see Eqn (14) and the
explanation about the origin of the shift in Section 4.1.1).
Under the assumptions in (18), some of these functions can be
evaluated analytically:

b — - /*; = O(ra) e, , (63)
b* = b (r)e, +b2(r)e-, pya = Opa(r)e,, (64)
o O(r—a) ... K[4ar/(a+1)7]
b’(r)__rTw’ bz(”)——m’ (65)
Ql’ja(}") = {Ig(%)Kl (é) - 6]_‘;\/:| @(I” - a)
_KO(FW)11<€W>@(a—r) (66)

(see also Eqns (19) and (25)). Here, e, = ry/r, is the unit
radial vector with respect to the shifted vortex center. The
function I,(z) denotes modified Bessel functions of the first
kind, K [z] is the complete elliptic integral of the first kind, and
@( ) is the Heaviside step function. The remaining functions,

bl ity and i 4. are computed numerically according to
Eqn (62% Once these are known, the total free energy can be
minimized using the full form given in Eqn (58), along with
explicit expressions from Eqns (54) and (61), substituting 0 as
per Eqn (44).

Due to the radial symmetry of the Pearl vortex, the
skyrmion position a enters the total free energy only through
its magnitude «, i.e., the distance between the centers of the
skyrmion and the vortex. Thus, the minimization is carried
out over three skyrmion parameters: the radius R, the
effective domain wall width 0, and the distance a from the
vortex center. The stable solution with @ = 0 corresponds to
the coaxial configuration discussed in Section 3 and Ref. [43].
Eccentric configurations of the skyrmion, where a # 0, are
discussed below.

4.2.1 Skyrmion radius and distance in eccentric configuration.
Figure 6 shows the distance a between the centers of the
skyrmion and the vortex (Fig. 6a) and the skyrmion radius R
(Fig. 6b) in stable eccentric configurations as functions of the
effective vortex strength y for different values of the DMI
parameter ¢. Solid lines correspond to the results obtained
from minimizing Eqn (58) using the ansatz (44), while dots
represent results from micromagnetic simulations (see Sec-
tion 2.3).

All curves start with a gentle slope at small y and end with
a sharp increase in radius R as well as a rapid decrease in
distance a. This behavior corresponds to a square-root-type
dependence near a certain critical value y/:

R(ye) = R(y) oca(y) —a(yg) o< /od — 7,

for |yt —y| <yd. As discussed in Section 4.1, accurate
determination of the distance a critically depends on the
second-order contributions in y (see Eqn (61)). The precision
of these contributions is reflected in the good agreement
among the a (y) curves (obtained with the help of analytical
ansatz and micromagnetic modeling) in Fig. 6a, although
some quantitative deviation is observed near y;. This arises

(67)

Distance a//ly

Skyrmion radius R//,,

0 0.2 0.3 0.6
Vortex effective strenght y

Figure 6. Dependence of distance a//,, between the skyrmion and vortex
centers (a) and skyrmion radius R/¢y (b) on effective vortex strength v,
obtained by minimizing total free energy, Eqn (58), using ansatz for 0,
Eqn (44). Different curves correspond to various DMI parameters:
¢=0.25, 0.3, 0.35, 0.4, 0.45, and 0.48 (top to bottom in panel a and
bottom to top in b). Dots connected by dashed lines indicate analogous
dependences obtained from micromagnetic simulations.
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because the parameters R, J, and « are formally defined only
to linear order in y. Nevertheless, Fig. 6 shows that, even
near y;, the qualitative (and even quantitative, for y < 1 and
¢ > 0.4) behavior described by Eqn (67) is well reproduced.
Moreover, the distance a is particularly sensitive to small
changes in the free energy, so unaccounted effects contribut-
ing at order y? may affect the experimentally observable
separation between the skyrmion and the vortex.

Note also an interesting feature in Fig. 6: the skyrmion
radius and the distance between the centers of the skyrmion
and the vortex converge as y approaches y .. This feature can
be explained physically as follows. As the vortex strength y
increases, the skyrmion radius R grows due to the influence of
the stray magnetic field. A larger radius requires a smaller
distance a, which can be confirmed by evaluating the Zeeman
energy, Eqn (9), as a function of radius for a free skyrmion.
When R < a, the skyrmion only contacts the vortex center
with its ‘tail’, where the magnetization is approximately
vertical, m = e,. However, when the skyrmion radius R
becomes comparable to the distance a, the domain wall—
where the magnetization significantly deviates from the
vertical —begins to overlap with the vortex center. This
configuration is energetically unfavorable, and the skyrmion
relocates directly above the vortex core, meaning the eccentric
configuration transitions into a coaxial one.

4.2.2 Free energy vs. distance: multiple minima. Let us analyze
the dependence of the free energy on the distance « in detail to
determine which configuration—eccentric or coaxial —is
energetically favorable for given values of ¢ and y. To this
end, we define the function §(a) as

. Fferrolm, B?
B(a) = min iz B (68)
which represents the total free energy Fremo[m, B?*] from
Eqn (58), with 0 taken from Eqn (44), normalized by 2ndg A
and minimized with respect to the skyrmion’s geometric
parameters: radius R and effective domain wall width J. A
minimum §(a) at @ = ap;, indicates a possible stable skyrm-
ion configuration in the stray field of a Pearl vortex.

Figure 7 illustrates the behavior of F(a) for ¢ = 0.45 and
several values of 7y, representing the typical types of behavior
classified by three critical values: y (€), 7..(¢), and yf(¢), as
discussed below.

Fore < ¢; = 0.488andy < y; (¢), the function F(a) hasa
single minimum at a = ay, > 0, indicating that the only
stable skyrmion—vortex configuration is eccentric.

When y > yi(e) or € > el ~0.493, the function F(a)
has a single minimum at ¢ = 0, meaning that the coaxial
skyrmion—vortex configuration is the only possible stable
state.

In the intermediate regime, ., (¢) < 7 <y, (€), the system
can support both coaxial and eccentric skyrmion—vortex
configurations, as §(a) possesses at least two minima: one at
a = 0 and another at a = an, > 0. However, the free energy
values for these configurations differ: the global minimum
occurs for the coaxial configuration when y..(¢) < y <y (e),
and for the eccentric configuration when y;; (€) <y < y.(¢).

Remarkably, there is no fundamental restriction on §(a)
having more than two minima. In particular, we have found
an additional local minimum at a = a,qq ~ 0.2¢,,. However,
for all values of ¢ and y considered, this minimum remains
local and its small depth falls outside the precision of our

—1 | (Y
0 1 2

afly

Figure 7. Plot of 100[F(a) — &(0)], obtained from total free energy,
Eqn (68), for DMI parameter ¢ = 0.45 and several values of effective
vortex strength y: 7, ~0.106, 0.119, 7. ~0.138, 0.147, 7% = 0.156
(bottom to top). Circles, diamonds, and squares indicate minima,
maxima, and inflection points, respectively. The dashed curve traces
the locations of minima and maxima as y is varied continuously. All
plotted functions increase monotonically for a > 2.5(, beyond the

visible range.

second-order expansion in y <€ 1. Consequently, the varia-
tional analytical approach alone cannot guarantee the
existence of such a stable configuration. Furthermore,
micromagnetic simulations did not confirm its presence.

The dashed line in Fig. 7 shows the evolution of the
minima and maxima as y is varied continuously. Near y ~ y},
the location of the minimum ay,;, changes rapidly with y,
approaching the maximum point an.x and merging at an
inflection point aj, precisely at y = yt. This rapid change
leads to a sharp decrease (increase) in the distance a (skyrm-
ion radius R), as shown in Fig. 6.

4.2.3 Phase diagram. The results of the previous section are
summarized in the phase diagram on the (¢, y) plane shown in
Fig. 8. This diagram identifies four distinct phases of skyrm-
ion—vortex configurations (indicated by solid monotonic
curves corresponding to the critical values y;; (¢), y..(€), and
7 (€)), as well as the phase of stable skyrmion—vortex—
antivortex configurations (shown as a solid nonmonotonic
line), which will be discussed in more detail in Section 5. The
two unshaded regions indicate phases where only eccentric
(y < p5(e)) or only coaxial (y > yt(e)) configurations are
possible. The solid shaded areas between the curves y (e),
er(€), and pt (€) represent phases in which both eccentric and
coaxial configurations are theoretically allowed within the
same heterostructure, since the free energy exhibits two
minima with respect to the distance a. In practice, both
configurations were observed in micromagnetic simulations
near y Xy, as described in Section 2.3 and illustrated in
Fig. 2.

Note that the curves y;(¢) and y.(¢) approach the
asymptotic line yf (¢) = 1 — ne/2 for € $0.3. As the effective
vortex strength y approaches the critical threshold yf, the
radius R of the coaxial skyrmion increases significantly,
becoming comparable to the Pearl length 4, which is much
larger than ¢, (see the details in Section 3.3 and in Ref. [43]).
Since the free energy of such an enlarged coaxial skyrmion
turns out to be substantially lower than that of any eccentric
configuration, the value of y} is always higher than both
7o (€) and y.(€), which characterize the transition points
between coaxial and eccentric configurations.
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Figure 8. Phase diagram based on total free energy from Eqn (58) with
variational ansatz for @ from Eqn (44). Blue, green, and red solid
monotonic curves (from bottom to top) represent y..(¢), 7. (€), and
y&:(€), respectively, delineating phase boundaries for skyrmion—vortex
configurations. Shaded regions between them denote phases where both
coaxial and eccentric states can coexist. Black dashed line denotes 71 (¢),
indicating condition under which radius of coaxial skyrmion becomes
comparable to Pearl length (see Eqn (36)). Violet solid nonmonotonic
curve shows 7% (¢), which bounds phase (shaded region below curve) of
stable skyrmion—vortex—antivortex configurations (see Section 5). Dots
and diamonds indicate values of y, and y}, obtained from micromagnetic
simulations.

The green dots in Fig. 8 represent the values of y..(¢)
obtained from micromagnetic simulations, confirming the
analytical predictions with a high degree of agreement.

5. Stabilization of vortex—antivortex pair
by skyrmion

In this section, we discuss a more complex configuration,
where a skyrmion is placed in the field of a Pearl vortex—
antivortex pair, whose magnetic fields are oriented in
opposite directions. We refer to the vortex defined by
Eqn (14) as the vortex, and the second one with reversed
magnetic field as the antivortex. To define the magnetic field
of the antivortex, the sign in Eqn (14) must be reversed:

d*q exp (—qlz| +iq(r — a))
(2n)? q(1+2q2)

Here, we have also accounted for the fact that the antivortex is
located at r = a, while the vortex is assumed to be at the
origin, r = 0 (cf. Eqn (14)).

It is worth noting that the interaction between a skyrmion
and a single antivortex is less interesting than the interaction
of a skyrmion with a vortex or with a vortex—antivortex pair.
The reason is that a skyrmion is generally repelled by an
antivortex over a wide range of parameters. Indeed, let us
consider very small y, when the shape of the skyrmion can be
considered unperturbed. As already noted in Section 4.2, in
this case, the skyrmion energy as a function of @ is monotonic
for negative chirality, y = —1, and may be nonmonotonic for
positive chirality, y = +1. In the first case, the energy
decreases monotonically and the skyrmion is repelled by the
antivortex for any a, meaning that no stationary state can
form. In the second case, the skyrmion is attracted to the
antivortex only if their centers are sufficiently close (see
Section 5.2 and Fig. 9) for details; otherwise, it is also
repelled. Moreover, the energy minimum at ¢ =0 can be

By = —¢,sgn (z)VJ . (69)

lower than the energy at a — oo for € < €, &~ 0.387 only. In
this work, we do not analyze in detail these coaxial skyrmion—
antivortex states and instead proceed to the more interesting
skyrmion—vortex—antivortex configurations.

In general, determining the stable configurations of the
skyrmion—vortex—antivortex system is similar to the problem
solved in the previous subsection. However, there is one
essential difference: the additional parameter — the distance
a = |a| between the centers of the vortex and antivortex —
affects not only the energy of the ferromagnet but also that of
the superconductor. Therefore, we first describe the simpler
problem of determining and analyzing the energy of the ‘no-
skyrmion’ state, assuming a fixed vortex—antivortex separa-
tion a. Then, based on that result, we will use a variational
approach to determine stable skyrmion—vortex—antivortex
configurations under variations in all distances between the
elements of the configuration.

5.1 ‘No-skyrmion’ configuration

in magnetic field of vortex—antivortex pair

We begin by considering the case where the distance between
the centers of the vortices is comparable to the magnetic
length and is small relative to the Pearl length,

E<ly~a<i. (70)

This condition also explicitly assumes that the magnetic
length £y, is much greater than the coherence length & in the
superconductor. Under these conditions, the supercurrents
and magnetic field of the vortex—antivortex pair can be
treated as a superposition of two individual vortices.

The total free energy of a superconductor—ferromagnet
heterostructure containing such a vortex—antivortex pair
consists of the sum of the superconducting and ferromag-
netic energies:

-7:tol [m7 5} = fsuper[ﬁ] + ]:ferro [m7 BV + BV} . (71)

Assuming that the effective vortex strength y is small (see
Eqn (11)) and the magnetization m deviates only slightly from
the vertical direction (cf. Eqn (12)),

m=e: + (1, — My2) , (72)

the ferromagnetic free energy can be calculated in leading
order in y:
-,Fferro[maBV+B\7} — 2 J dzr

Srded 573 (my — mys)(b—Db*) . (73)

Here, b = By/By and b* = —By/By denote the normalized
fields of the vortex and antivortex, respectively, and p, and
s are the corresponding vectors describing the magnetiza-
tion tilt due to the magnetic fields (see Eqns (20), (21), and
(63)). Note that Eqn (73) includes not only the Zeeman
energy, but also other necessary terms, which reduce the
Zeeman contribution exactly by half. Under condition (70),
one can use the approximations (19), (25), and (65) to obtain
an explicit dependence of the energy on a:

— 22K a 1 @
’ [ °<ew>+“zexp<—vﬁ>ew ’
(74)

fferro [m7 BV + BV]
ZTE(IFA

where y ~ 0.577 is Euler’s constant.
The interaction energy of Pearl vortex—antivortex pairs at
separation a was calculated in Ref. [59]. When the distance is
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small compared to the Pearl length, this energy equals

b

_ a
Fapald] = gz 10 7

(75)

Normalizing it by the same factor as the magnetic energy, we
obtain

]:%uper [f_l]

Zwerl® _ gy 1n

ZﬁdFA (76)

a
E )
where the dimensionless parameter f is expressed via material
parameters of the heterostructure as

b0 445

b= as i, ~ wd 02M?

(77)

and is small for experimentally relevant values [18-20].

Comparing Eqns (74) and (76), we conclude that, for
p <1 and under condition (70), the superconducting con-
tribution to the energy can be ignored, and the total energy
can be approximated by the ferromagnetic part alone. Note
that Ferro, Eqn (74), is a decreasing function of @, indicating a
repulsion between the vortex and antivortex. Physically, this
repulsion arises because the magnetic field of nearby vortices
creates an unfavorable magnetization pattern in the ferro-
magnet.

Importantly, vortices attract when a does not satisfy
condition (70). Indeed, for a < ¢, the ferromagnetic energy
(74) becomes small and can be comparable to or smaller than
the superconducting energy (76), causing the vortex and
antivortex to annihilate, as would happen in the absence of
a ferromagnet.

In the opposite limit @ > A, the interaction energy of
supercurrents takes the form [59]

ﬂ =C —_ 2/3"/2

A
= Lsuper ) 78
2TEdFA P ( )

a
where Cqyper 1 @ constant independent of the distance a@. For
large distances, a > /, the ferromagnetic energy (73) should
be calculated relying on expressions (17) and (24). In this
regime, the ferromagnetic energy is given by

329273

F ferro
= Cferro + -3
a

27'CdFA

(79)

where Crerro 18 also independent of a. Minimizing the total
energy yields the stationary distance between vortex and
antivortex dmi, = 44/+/f/3, which satisfies @min > .

5.2 Variational approach

for skyrmion—vortex—antivortex configuration

Let us now consider a configuration consisting of a vortex—
antivortex pair and a skyrmion with positive chirality, and
assume that the system parameters are such that this
configuration is stable for distances between the centers of
the objects comparable to 4. As we will see below, there is a
fairly wide range of parameters where this holds (see Fig. 4).
In Figure 9, we show the dependence of the normalized free
energy [F(a) — F(a=0)]/(2ndrAy?) for three pairwise
configurations: vortex—antivortex (solid curve, labeled V-
V), skyrmion—vortex (dashed curve, labeled Sk-V), and
skyrmion-antivortex (dashed-dotted curve, labeled Sk-V),
where a denotes the distance between the centers of the

4
0,.—.\0\
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-/ \'\/
Sk-V .
2~ / 2 :
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Figure 9. Normalized free energy F for vortex—antivortex (solid curve),
skyrmion—vortex (dashed curve), and skyrmion—antivortex (dotted curve)
pair configurations as function of distance a between object centers. Inset:
total energy (in arbitrary units) of skyrmion—vortex—antivortex config-
uration as function of displacements ay (vortex) and ay (antivortex)
relative to skyrmion. Vertical and horizontal lines indicate energy minima
in pair configurations; dot marks actual minimum. Parameters: ¢ = 0.41,
y=0.1.

respective objects. From the presented dependences, it is
clear that the vortex and antivortex repel each other, as
shown in the previous section. The skyrmion tends to
position itself at a certain distance from the center of the
vortex (see Section 4.2), and coaxially with the antivortex.
Also, for other parameters, the skyrmion may tend to
position itself directly above the center of the vortex and
repel from the antivortex, but in this case the configuration is
obviously not stable.

Since in the considered configuration the skyrmion
attracts both the vortex and the antivortex, while the vortex
and antivortex repel each other, the centers of all three objects
will lie on a single line, with the skyrmion located in the
middle between the two vortices. We denote the distances
from the skyrmion center to the centers of the vortex and
antivortex by ay and ay, respectively, and seek the minimum
of the free energy as a function of these two distances, as well
as the skyrmion radius R and effective domain wall width o,
following the approach developed in Section 4.1. In the inset
of Fig. 9, we show (in arbitrary units) the dependence of the
total energy F of such a configuration as a function of the
displacements ay of the vortex and ay of the antivortex
relative to the skyrmion. It can be seen that the minimum of
the function, marked by a white dot, is reached at values of ay
and ay that differ from the minima in the corresponding
pairwise configurations skyrmion—vortex and skyrmion—
antivortex (marked by dashed and dashed-dotted lines,
respectively). Next, we analyze the stable skyrmion—vortex—
antivortex configurations in more detail.

5.3 Stable configurations

Figure 10 shows the dependence of the distances ay and ay
from the skyrmion center to the centers of the vortex and
antivortex, as well as the skyrmion radius R, as functions of y
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Figure 10. Dependence of displacements of vortex center ay (a) and
antivortex center ay (b) relative to skyrmion center, as well as skyrmion
radius R (inset), on effective vortex strength y for several values of DMI
parameter ¢ = 0.35; 0.41; 0.46; 0.475; 0.485 (curves from top to bottom in
panels a, b and from bottom to top in inset). Solid curves show results from
variational approach, and points are extracted from micromagnetic
simulations.

for several values of the DMI parameter ¢. The solid curves
are obtained using the variational approach, and the dots are
the result of micromagnetic simulations. Two distinct regimes
can be identified, which can be qualitatively described as
follows:

(1) For € < ¢, = 0.46, the vortex moves away from the
skyrmion—antivortex pair as y increases.

(2) For € > ¢}. = 0.46, the antivortex moves away from
the skyrmion—vortex pair as y increases.

In the indicated regimes, once a certain critical value
y > pk(c) is exceeded, the vortex (or antivortex) moves away
from the skyrmion—antivortex (or skyrmion—vortex) pair to a
distance amin = 44/1/B/3 > A > by (see the previous Sec-
tion 5.2), and its influence on the skyrmion effectively
vanishes. However, there is a qualitative difference between
these regimes at y =~ y.(€).

In the first regime, the vortex moves away from the
skyrmion—antivortex pair gradually, i.e., the distance ay
can take arbitrary intermediate values depending on 7. In
the second regime, the antivortex moves away from the
skyrmion—vortex pair only within limited bounds, i.e., the
distance ay is bounded from above by a value ay ., of the
order of ¢, corresponding to a maximum of the energy as
a function of the distance ay. The presence of this
maximum can be understood as follows. For small 7,
where the change in the skyrmion size can be ignored, the
energy dependence on ay enters only through two terms:
Fysklay) and Fy_y(ay + ay). The first of these energies is
of order y and reaches a maximum at a finite value of ay,
while the second is of order > and decreases monotoni-

cally with increasing ay (see Fig. 9). This means that their
sum also has a maximum. As 7y increases, the role of the
second term becomes more significant, and, in addition,
the dependence on ay appears via the change in the size
and shape of the skyrmion. However, the maximum
persists up to yl. For larger values of y, the maximum in
the energy dependence on ay disappears, and the anti-
vortex is forced to jump directly to the distance
amin > A > Ly, skipping intermediate positions.

In the lower part of Fig. 8, the region of parameters (¢, y) is
shown where stable skyrmion—vortex—antivortex configura-
tions can exist. It is easy to see that the region has a
characteristic triangular shape, where the two sloped lines
correspond to the two regimes described above. Diamonds
mark the critical values y; extracted from micromagnetic
simulations. It is seen that the analytical prediction agrees
well with the simulation results.

6. Higher-order skyrmions
in magnetic field of Pearl vortex

In this section, following Refs [65, 73], it is shown that the
stray fields of a superconducting Pearl vortex can give rise to
stable configurations involving higher-order skyrmions
(HOSs) due to the orbital effects of the inhomogeneous
magnetic field. The skyrmions considered in the previous
sections possessed a topological charge |Q| =1 (see the
definition of the topological charge in Eqn (26)). Here, we
focus on HOSs characterized by n = |Q| > 2 (see Eqn (27)).

6.1 Three-spin interaction

To study such states, one must take into account an
additional contribution to the free energy of the ferromag-
netic film, caused by the so-called scalar chiral or three-spin
interaction [64]:

Fic= | @k -al), (80)

where p(r) denotes the topological charge density (see
Eqn (26)), and the explicit form of the kernel /C,

na(jr — a)
% ] ’ ®)

K(|r — al) = Ko sin {
can be derived from the Hubbard model in the strong
correlation regime within third-order perturbation theory
accounting for orbital effects [64]. Here, Ky is a constant,
¢, is the magnetic flux of the B. component of the Pearl
vortex field through an elementary plaquette of the
triangular ferromagnetic lattice, and the vortex center is
located at the point a. Almost everywhere, except near the
vortex core, the argument of the sin in Eqn (81) is small and
the sine can be replaced by its argument. The influence of
the vortex core region turns out to be negligible, as shown
by numerical results [65]; thus, one may use the simplified
expression implying direct proportionality between the
kernel K and the transverse component B, of the magnetic
field: K « B..

Substituting the magnetization of a higher-order skyrm-
ion, given by Eqn (27) for n > 2, into Eqns (1), (9), and (80),
representing the energies of the free ferromagnet, Zeeman
interaction, and the three-spin interaction, respectively, and
performing azimuthal integration around the skyrmion
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center, one obtains

00 . e 242
=], (5 )t dear]. e
F 0 W

Fz Cdrrf-, . a2 (0
:_2«/J g—z{br’”smf)—Zb: sin <§>}7 (83)

0 w

Fx__ —m/nro drb2(r)d,[ cos 0(r)] . (84)

0

Here, h?(r) is the z-component of the normalized magnetic
field of a vortex shifted to point a and averaged over the
azimuthal angle ¢ around the skyrmion center (see Eqn (65)),
while b_ffn(r, ¢,) denotes the corresponding radial projection
averaged with the weight cos ¢ () (see Eqn (27)),

n COS (I’l — 1)¢0

b, (r o) = (1) 1 O(r—a). (85)
’ (/) (r/a)"!
The dimensionless parameter  in Eqn (84) is given by
2
LT (86)
2Ms¢()dF

where d is the lattice constant of the ferromagnet.

Note that, in expression (82) for the free energy of the
ferromagnet, terms due to the Dzyaloshinskii—-Moriya inter-
action (DMI) are absent. This is because, for a radially
symmetric skyrmion with n > 2, described by Eqn (27), this
contribution vanishes due to the cos¢ factor, which
averages to zero over the azimuthal angle. Therefore, within
the approximation considered in Ref. [65], the DMI does not
influence the total energy of the skyrmion—vortex system.
However, deviations from radial symmetry in the HOS,
similar to those discussed in Section 4.1.1, may yield a
contribution of order 72 and affect the skyrmion’s position
a. Moreover, Ref. [74] demonstrates that a superconducting
film can induce an effective, spatially dispersive DMI in the
ferromagnetic layer. This effective DMI may contribute more
significantly to the HOS configurations, even though the
‘ordinary’ DMI remains weak.

6.2 Stable configurations

To determine stationary HOS—vortex configurations, one
should minimize the total energy. In such a configuration,
an optimal value of helicity exists, determined by the angle ¢,
which depends only on the skyrmion order # and is given by
the relation cos (n — 1)¢, = (—1)". This condition arises from
minimizing the first term in Eqn (83) for an eccentric
configuration (in the coaxial configuration, ¢, can take
arbitrary values due to symmetry).

Next, following Ref. [65], we restrict ourselves to an
approximate expression for the skyrmion angle in the form
of a domain-wall ansatz. This approach may lead to
quantitative inaccuracies, since it does not account for shape
deformation of the skyrmion, but it provides a qualitative
description of the variation in the skyrmion radius R, domain
wall width ¢, and position a relative to the vortex.

To analyze the stability of the coaxial configuration, we
perform calculations in the limit of the small, ¢ < ¢y, and
dominant, 4 > Ky ~ K, exchange interaction. In this approx-
imation, the total energy can be expressed as

Frot & Fo — Fra™ + Fra?, (87)

where Fy 1, >0 are constants determined by the system
parameters and the optimal values of R and ¢ at a = 0. The
second term originates from the Zeeman energy. For n = 2,
the exponent o,—, = 1, and the coaxial state is always
unstable, since the free energy decreases with increasing « at
small a. For n = 3,4, the exponent is «,—3 4 = 2, so the second
and third terms compete. In this case, determining the stable
configuration requires a more detailed analysis, partially
carried out in [73], and also accounting for shape deforma-
tions of the skyrmion induced by the vortex magnetic field. In
the case n > 5, formation of coaxial configurations of HOS
with a Pearl vortex is expected [73], though numerical
simulations are necessary to verify this effect.

7. Discussion

7.1 Experimental studies

It turns out that the experimental observation of coupled
vortex—skyrmion pairs formed due to stray magnetic fields in
a superconductor—chiral magnet heterostructure is a
challenging task [80]. The coexistence of superconducting
vortices and Néel-type skyrmions was first observed in a
multilayer magnetic structure [Ir; Feg sCog sPt;]10/Nb, where
thesubscriptlOindicatesthattheheterostructurelr; Feyg sCog 5Pt
was repeated 10 times [18]. A dielectric MgO layer was used
to suppress the superconducting proximity effect. Néel-
type skyrmions in the structure were stabilized using an
external magnetic field and imaged by magnetic force
microscopy (MFM). Based on the nonlinear dependence
of sample magnetization on the applied magnetic field, the
authors concluded that the presence of skyrmions leads to
the spontaneous formation of antivortices in the super-
conductor [18]. Here, an antivortex is defined as a super-
conducting vortex whose core magnetic field is oriented
opposite to the applied external magnetic field. Such
spontaneous antivortex generation is consistent with the
predictions of Ref. [41] and with the results presented
above. Later, using a similar structure with a different
Fe/Co composition, [Ir;Fey3Cog7Pt;],,/NbPt, MFM mea-
surements of Néel skyrmion radii were carried out at two
temperatures: above and below the superconducting transi-
tion temperature 7T, [19]. It was found that, in the super-
conducting state, the radius of some skyrmions increased by
approximately 3%, which the authors attributed to the
spontaneous creation of superconducting antivortices. This
increase in skyrmion radius agrees with the predictions of
Ref. [41] and with the results discussed in this review.

More recently, a similar MFM experiment at tem-
peratures above and below 7. was conducted on the
[Ta/Ir/CoFeB/MgO],/Nb heterostructure [20]. The authors
discovered that applying a weak magnetic field opposite to the
direction of uniform magnetization in the ferromagnet leads,
at temperatures below T, to the emergence of skyrmions with
radii nearly twice as large as those observed above T..
Conversely, for the opposite field direction, skyrmions of the
same radius as above T, reappeared. The authors of [20]
explained this behavior by noting that, in the first case, a
superconducting vortex (referred to as an antivortex in
Refs [18, 19]) is generated and forms a coaxial configuration
with the skyrmion, increasing its radius, while in the second
case an antivortex appears and is repelled by the skyrmion.
This behavior is in full qualitative agreement with the
theoretical results presented in the review. However, for
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Table. Experimental data for exchange stiffness (4), magnetic anisotropy constant (K ), DMI strength (D), and saturation magnetization (M;). Based on
these parameters, we also compute characteristic scale ¢, — (see Eqn (6)), dimensionless DMI constant ¢—(see Eqn (6)), and dimensionless

ferromagnetic film parameter {— (see Eqn (37)).

A4,1072 m™ | K 105Tm™3 | D,103Im2 | M, 105Am! £y, 107 m ¢ ¢
[IrFeCoPt]yq [18] 13.9 1.4 2.1 1.45 3.15 024 | 86
[Ta/It/CoFeB/MgOl, [20] 19 0.164 1.7 1.37 11 048 | 58
Pt/Co/AlO, [75] 16 0.39 22 1.1 6.4 044 | 56
Ir/Co/Pt [76] ~ 10 0.17 1.9 0.96 ~38 ~06 | ~8
[Co/Pd], [77] 10 0.24 2.0 0.88 6 0.6 7.8
Ta/CoFeB/MgO [78] 10 1.3 0.22 12 7 003 | 39
Pt/Co/Ni/Co [79] 20 0.6 3 0.6 6 043 | 23

quantitative comparison, it is important to consider that the
superconducting film used was relatively thick, and thus the
magnetic field of the vortex is not accurately described by
the Pearl approximation. Additionally, the multilayer
nature of the real heterostructure leads to more complex
stray field distributions than those used in our theoretical
model.

In summary, the Table presents values of various
constants for chiral magnets known to support Néel-type
skyrmions. Our analysis shows that the characteristic scale £y,
lies in the range of 5-10 nm, while the dimensionless
parameter  is between 2 and 9 nm. A large { allows efficient
tuning of the coupling constant y = (/1 = Cwawds/)LE
over a wide range by varying the thickness ds of the
superconducting film. For example, in experiments [18, 20]
with Nb as the superconductor, the London penetration
depth is A ~ 40 nm [81], so the Pearl length for an Nb film
of thickness dg ~ 10 nm is A~ 160 nm. Accordingly, the
coupling parameter y for the materials listed in the Table will
vary in the range of 0.1-0.4.

7.2 Further avenues of theoretical research

In this review, we focused on the case of a thin super-
conducting film. However, the developed theory is applic-
able to any spatial profile of an inhomogeneous magnetic
field, including that created by a vortex in a thick super-
conducting film. In Ref. [39], the influence of a superconduct-
ing antivortex in a thick superconducting film on a skyrmion
was studied numerically, and it was found that the skyrmion
is stabilized in a coaxial configuration with an increased
radius. This indicates that the physical effects discussed
above — such as an increase in skyrmion radius and a change
in chirality in a coaxial configuration, deformation of the
skyrmion in an eccentric configuration, and skyrmion-
mediated stabilization of a vortex—antivortex pair —are also
possible in thick superconducting films. Naturally, verifying
this requires further detailed investigations.

An interesting problem concerns the dynamics of a
skyrmion—vortex pair when either the vortex or the skyrmion
begins to move under the influence of an applied current in a
superconducting or ferromagnetic film, respectively. The first
case was numerically studied in Ref. [39] for a skyrmion—
antivortex pair. It was found that, beyond a critical super-
current threshold, the pair breaks apart and the antivortex
continues to move without the skyrmion. A promising
direction would be to determine this threshold current,
accounting for possible skyrmion shape deformation during
pair motion.

We also note that skyrmion size can change when it moves
near various defects, as shown in [82] using a simple domain-
wall ansatz. However, it would be of interest to apply the
variational method developed here, using a more accurate
ansatz, to study shape distortions and refine the results
obtained in [82].

A powerful tool for probing magnetic states is the study of
spin waves. In recent years, significant progress has been made
in controlling and manipulating spin waves using external
(magnetization gradients [83]) or internal (domain walls [84—
87], skyrmions [88-90]) inhomogeneities in the magnetization
profile. In a superconductor—ferromagnet heterostructure, the
magnon spectrum is influenced by the superconducting film.
Several mechanisms underlie this effect: (i) changes in stray
fields due to the superconducting film [91-97], (ii) the
presence of a vortex lattice in the superconductor [98, 99],
and (iii) the spin-torque transfer mechanism [100]. It is known
that skyrmions can support localized magnon states [89].
Similar localized magnon states can also be induced by the
magnetic field of a Pearl vortex and its induced distortion of
the magnetization profile [101]. It would be interesting to
explore which localized magnon states arise in skyrmion—
vortex and skyrmion—vortex—antivortex complexes.

As shown in Section 5, the presence of a skyrmion affects
the interaction between a vortex and an antivortex in a
superconducting film. This raises the intriguing question of
the interaction between skyrmion and vortex lattices.
Recently, Ref. [102] addressed this problem via numerical
simulations of the equations of motion for superconducting
vortices and skyrmions. A rich variety of phases was found.
However, in that paper, the skyrmions were treated as rigid
particles whose parameters do not change in the presence of
vortices. It would be interesting to go further and incorporate
skyrmion shape deformations during vortex interactions. For
lattice systems, this could be done using the stereographic
projection approach developed in Refs [90, 103, 104].

It is well known [105-107] that a nonuniform magnetiza-
tion profile in ferromagnets can lead to a magnetoelectric
effect, i.e., the generation of an electric polarization
P« (mV)m—m(Vm). In an external electric field E, this
results in an additional term in the free energy of the
ferromagnetic film, fdz rPE/2. This opens the possibility of
controlling inhomogeneous magnetic textures via external
electric fields. For example, this was demonstrated experi-
mentally in Refs [108-110]. It would be interesting to apply
the theoretical framework developed in this review to explore
the effect of external inhomogeneous electric fields—e.g.,
generated by a charged tip as in experiments [108—110]—on
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the shape and chirality of a skyrmion. Given that a skyrmion
can be bound to a superconducting vortex, this opens the way
to indirectly controlling a superconducting vortex via a local
electric field.

8. Conclusion

This review presents the results of a theoretical study on the
effect of the inhomogeneous magnetic field of a super-
conducting vortex on a Néel-type skyrmion in thin super-
conductor—chiral ferromagnet heterostructures. An analytic-
al variational approach is described in detail, based on an
ansatz for the skyrmion magnetization profile that accounts
for deformations due to the magnetic field of the vortex. This
method allowed us to analyze the stability conditions for
coaxial vortex—skyrmion configurations and to explain and
predict a number of new effects induced by the inhomoge-
neous magnetic field of the vortex. In the coaxial case, the
superconducting vortex can induce a change in the skyrm-
ion’s chirality or significantly increase its radius (up to the
maximum possible value) while preserving the chirality. For
eccentric configurations, the inhomogeneous magnetic field
of the vortex leads to a distortion of the cylindrically
symmetric skyrmion profile, which is crucial for accurately
calculating the equilibrium distance between the centers of the
skyrmion and the vortex. The developed approach has also
been applied to analyze the stability of a vortex—antivortex—
skyrmion triple complex. All theoretical predictions are
confirmed by micromagnetic simulations. The review also
briefly discusses the effect of the superconducting vortex on
high-order skyrmions, recent experiments on the influence of
superconducting vortices on Néel skyrmions, and possible
avenues for future theoretical research.
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