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Magnetically ordered solids 

 Types of magnetic structure: ferromagnetism, 
antiferromagnetism, ferrimagnetism, helical order 

 Experimental observation of magnetic structures: 
magnetization, magnetic susceptibility, neutron 
scattering, nuclear magnetic resonance  

 Heisenberg and Ising models 

 Spin waves 

 Mean field theory, the Curie–Weiss law  

 Ferromagnetic domains 
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Types of magnetic structure: ferromagnetism, 
antiferromagnetism, ferrimagnetism, helical order  

(a) Ferromagnetic ordering.  (b) Antiferromagnetic ordering. 

 
[from J. M. Ziman, Principles of the Theory of Solids (Cambridge University Press, 1979)] 



Ferromagnetism in the mean-field approximation 

In the mean field approximation each magnetic atom experiences effective 

field (from exchange with neighbor sites) proportional to magnetization:  BE = M  

where the paramagnetic susceptibility  

is given by the Curie law p=C/T ,  

The magnetization itself is proportional to the total field   

and the total  

susceptibility 

What is the magnitude of effective exchange field BE and of ?  

For iron Tc = 1000 K, g = 2, and S = 1; => we have  = 5000. With  

saturation magnetization MS= 1700 we have BE =  M = 107G = 1000 T. 



Magnitude of exchange interaction 

Energy of interaction of atoms i, j bearing 

electron spins Si, Sj contains a term,  

 

(1) 

where J is the exchange integral and is related to the overlap of the charge  
distributions of the atoms i, j. Equation (1) is called the Heisenberg model.  

We can establish an approximate connection between the exchange integral J and the 

Curie temperature Tc. Suppose that the atom has z nearest neighbors, each connected 

with the central atom by the interaction J. For more distant neighbors we take J as zero. 

The energy need to flip this spin is 

The mean field  

theory result is  

Better statistical approximations give somewhat different results. For the sc, bcc, and fcc 

structures with S = 1, Rushbrooke and Wood give kT/Jz = 0.28; 0.325; and 0.346, as 

compared to 0.500 from (2) for all three structures. If iron is described by the Heisenberg 

model with S = 1, then the observed Curie temperature corresponds to J = 11.9 meV.  

(2) 



Saturation magnetization  

in ferromagnetic crystals 

Number of Bohr 

magnetons 



Temperature dependence of magnetization 

in ferromagnet below Curie temperature 

Above Curie temperature, at T>Tc, 

susceptibility of ferromagnetic is 
BE = M  

Below the Curie temperature, at T<Tc, 

one would expect magnetization M(T) 

where the total field B is mainly due to exchange 

field BE = M , so that we obtain an equation on M: 

Fig: Saturation magnetization of nickel as 

a function of temperature, together with 

mean-field theoretical curve for S = 1/2. 

The mean field theory does not give a good description 

of the variation of M at low temperatures. For T <<Tc the 

argument of tanh is large, and 

To lowest order the magnetization deviation 

On experiment,  
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Spin waves  

The ground state of a ferromagnet – classical picture:  
(a) All spins parallel, (b) An excitation; one spin is reversed, 
(c) The low-lying elementary excitations (spin waves).  

The spin vectors precess on the surfaces of cones.  
Successive spins advanced in phase by a constant angle. 

 

[from Charles Kittel, Introduction to Solid State Physics (Wiley, 2004)] 
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A spin wave on a line of spins:  

(a) The spins viewed in perspective,  

(b) Spins viewed from above, showing one wavelength.  
The wave is drawn through the ends of the spin vectors. 

 

[from Charles Kittel, Introduction to Solid State Physics (Wiley, 2004)] 
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The Heisenberg Hamiltonian is the spin Hamiltonian for the 
two-spin case, summed over all pairs of ions: 

 

   

Hspin = − Jij
i, j
i≠ j

∑ Si ⋅S j − gµB B ⋅Si
i
∑  

The exchange coupling constant  Jij depends on the relative 

positions of the sites i and j.  

Magnetic ions are far enough apart that the overlap of 
their electronic wave functions is small. 

If the angular momentum contains both an orbital and a 
spin part, the coupling may depend on the absolute and the 
relative spin orientations.



Spin waves in ferromagnet 

(classical theoretical description, dispersion relation) 

Consider N spins each of magnitude S on a line or a ring, with 

nearest neighbor spins coupled by the Heisenberg interaction:  

The effective magnetic field or exchange  

field that acting on the p-th spin is  

The equations of motion for spins are 

In the spin components 

these equations are 

These equations involve products of spin components and are nonlinear 

If the amplitude of the excitation is small (if 

Sx,Sy << S), we may obtain an approximate 

set of linear equations by taking all Sz = S 

and by neglecting terms ~SxSy which appear 

in the equation for dSz/dt. Then one obtains: 



Dispersion relation of spin waves in ferromagnet 

By analogy to finding phonon dispersion we 

substituting the traveling wave solutions  

to the linearized equations of motion: 

(neglecting the time evolution of Sz=S) 
This gives: 

These linear equations have a zon-zero 

solution for the amplitudes u and v if 

the determinant of coefficients is zero:  

This give the magnon dis-

persion in 1D ferromagnet: 

At long wavelengths ka << 1, and  

In 3D crystal 

where the summation is over the z vectors denoted by  

which join the central atom to its nearest neighbors.  



Quantization of spin waves in ferromagnet. Magnons. 

The z-axis projection of total spin Sz
tot is an integer number. One quantum of spin wave 

(magnon) in ferromagnet changes this projection by 1, => Sz
tot=NS-nk , where nk is the 

number of magnons. Since for one spin 

the quantization of spin waves gives 

Assume that the angle between any two adjacent spins <<1.   

This angle is related to the amplitude u and wave vector k of 

the spin wave: 

The exchange interaction energy is than reduced by NJ (1- cos) : 

or 

(1) 

Substituting (1) one obtains 

the energy of the spin wave: 

where in a 3D crystal 



Thermal Excitation of Magnons 

In thermal equilibrium the average number of magnons 

excited in the mode k is given by the Planck 

distribution (Bose-Einstein distribution at =0) : 

The total number of magnons  

excited at a temperature T is  

The magnon dispersion gives 

The density of magnon 

modes in ferromagnet is  

The total  

number of  

magnons   

and the temperature dependence of the 

deviation from saturation magnetization  



Ferromagnetic domains 

Fig. Ferromagnetic domain pattern 

on a single crystal platelet of nickel. 

The domain boundaries are made 

visible by the Bitter magnetic 

powder pattern technique. The 

direction of magnetization within a 

domain is determined by observing 

growth or contraction of the 

domain in a magnetic field.  

In real ferromagnetic samples the magnetization at zero temperature is much less 

than in mean-field theory because of the creation of ferromagnetic domains.  

Domains 

reduce the 

energy of 

magnetic 

field 

dVB2/8. 



Ferromagnetic domains (2) 

Representative 

magnetization 

curve, showing 

the dominant 

processes in  

the different 

regions of the 

curve.  
Reversible boundary displacements 

of magnetic domains in iron. 

The technical magnetization curve.  

The coercivity Hc is the reverse field 

that reduces В to zero.  
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Ferromagnetic domains 

Domain structure is a consequence of the various 
contributions to the energy of a ferromagnetic sample: 

 Exchange 

 Anisotropy 

 Magnetic 

The energy of a ferromagnetic sample in a (multi) domain 
configuration is lower than that of a uniformly magnetized 
ferromagnetic sample in single domain configuration.  

Coercive force and hysteresis 



Magnetic anisotropy in crystals 

Fig. 1. Magnetization curves for single crystals of iron, nickel, and cobalt. From the 

curves for iron we see that the [100] directions are easy directions of magnetization and 

the [111] directions are hard directions The applied field is В„. (After Honda and Kaya.)  

Asymmetry of the overlap of 

electron distributions on 

neighboring ions provides 

one mechanism of magneto-

crystalline anisotropy.  



Lectures 62 

Strip domains, domains of closure 

Bubble domains 

Domains in antiferromagnets (MnF2) 

Magnetocrystalline or anisotropy energy (the spin interacts 
with orbital motion via the spin-orbit coupling). 

Anisotropy energy density: 

 Hexagonal   UK = ′K1 sin2θ + ′K2 sin4θ  

 Cubic 
  
UK = K1 α1

2α2
2 +α2

2α3
2 +α3

2α1
2( ) + K2α1

2α2
2α3

2 
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Domain walls 

Néel walls – exchange and 
anisotropy energies. 

Bloch walls – also magnetic 
energy, because   div M ≠ 0. 

The free energy density 

 
  

σ (z) = K sin2θ + A
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where K is the anisotropy parameter and A is the exchange 
parameter.  For the Néel wall  ϕ = π 2, for the Bloch wall 

 ϕ = 0.   

y

x
M
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The wall structure is 
  
θ(z) = 2arctan exp K A z( )⎡

⎣⎢
⎤
⎦⎥
 . 

The Néel wall 

 

The Bloch wall 

 
[from Robert M. White and Theodore H. Geballe, Solid State Physics Advances in Research: Long Range 
Order in Solids (Solid state physics: Supplement 15) (Academic Press, New York, 1979)]
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Ground state of the Heisenberg ferromagnet, spin waves 

The ferromagnetic Heisenberg Hamiltonian: 

 

   

H = −1
2

J(R − ′R )
R, ′R
∑ S(R) ⋅S( ′R )− gµBH Sz(R)

R
∑ ,

J(R − ′R ) = J( ′R −R) ≥ 0.

 

Ground state of the Heisenberg antiferromagnet  

The antiferromagnetic Heisenberg Hamiltonian:  

 
   
H = 1

2
J(R − ′R )

R, ′R
∑ S(R) ⋅S( ′R ). 

One-dimensional array of spin 1/2 ions (Bethe, 1931) 
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Magnetic susceptibility of an antiferromagnet:  

(a) 
  χ → 0; (b)  χ⊥ ≈ const; (c) 

  
χ = 1

3
χ

+ 2

3
χ⊥   

 
[from J. M. Ziman, Principles of the Theory of Solids (Cambridge University Press, 1979)] 
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Antiferromagnetic MnBr2·4H20:   χ3(T ) and   Cp(T ) 

  



Lectures 50 

 

Ferrimagnetic ordering: 

 
[from J. M. Ziman, Principles of the Theory of Solids (Cambridge University Press, 1979)] 



Ferrimagnetism in the  

mean-field approximation 

The mean exchange fields acting on the A and В spin sublattices may be written as  

To show that antifferomagnetic exchange may result to ferrimagnetism, we take all 

mean field constants ,,  to be positive. The interaction energy density is  

This is lower when МA is antiparallel to MB than when МA is parallel to MB. The energy 

when antiparallel should be compared with zero, because a possible solution is МA = 

МB = 0. Thus the ground state will have МA directed oppositely to МB when  

(Under certain conditions there may be 

noncollinear spin arrays of still lower energy.) 

Large  >> ,  is  reasonable, because the distance between 

A and B spins is smaller than between two A or two B spins. 



Magnetic susceptibility of ferrimagnetic above Tc 

At ==0, i.e. when interaction is 

only between nearest neighbours 

Then we have in the mean field approximation (where BA is the applied field):  

These equations have a nonzero solution 

for МA  and МB in zero applied field if 

Magnetic susceptibility  

Reciprocal susceptibility  

of magnetite, FeOFе2О3 
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Inelastic neutron scattering 

 
[from Charles Kittel, Introduction to Solid State Physics (Wiley, 2004)] 

In an inelastic scattering event a neutron may create or 
destroy a magnon. 

Conservation of crystal momentum; conservation of energy. 
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Experimental observation of magnetic structures: neutron 
magnetic scattering 

The magnetic moment of 
the neutron interacts with 
the magnetic moment of 
the electron.   

Diffraction of neutrons by 
a magnetic crystal allows 
us to determine the order 
of the magnetic moments.  

 
[from Charles Kittel, Introduction to Solid State Physics (Wiley, 2004)] 
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(a) Band ferromagnetism 

Stoner model: 

   
   
Hint =

U
N

nk+
k, ′k
∑ n ′k − . 

  
  

χH→0,T→0 =
µ0

2n EF( )
1 − 1

2
Un EF( ) . 

Transition to FM: 
  
1
2
Un EF( ) >1 

(b) Electronic specific heat  
of a ferromagnetic metal 
[from J. M. Ziman, Principles of the Theory  
of Solids (Cambridge University Press, 1979)] 
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Antiferromagnetic helical order (terbium and dysprosium) 

Tb and Dy order ferromagnetically below 219 and 85 K, resp.   

Above  TC  these two elemental metals slip into a helical 

antiferromagnetic state, in which all the atomic moments in 
a basal plane layer are parallel, and oriented at a certain 
angle to the moments of adjacent layers.   

In a transect along the hexagonal axis the moments would 
be observed to rotate around the transect line in a helical 
pattern.  There is no net spontaneous magnetization. 

Transitions from a helical antiferromagnetic state to a 
paramagnetic state occur at 230 and 179 K, respectively.  

Павел Григорьев
Штамп
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Helical or conical ferromagnetism 

Erbium below 19.5 K also exhibits a helical magnetic order. 

Each atom, however, has a component of magnetization 
parallel to the hexagonal axis, and, consequently, there is a 
net magnetic moment.  

Between 19.5 and 80 K erbium displays modulated 
antiferromagnetism (hex. axis components vary continuously 
in magnitude in a sinusoidal pattern from layer to layer). 

Sinusoidal AF ordering (thulium between 32 and 56 K).  

Modulated ferromagnetism (thulium below 32 K).  
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