Magnetically ordered solids

+ Types of magnetic structure: ferromagnetism,
antiferromagnetism, ferrimagnetism, helical order

+ Experimental observation of magnetic structures:
magnetization, magnetic susceptibility, neutron
scattering, nuclear magnetic resonance

+ Heisenberg and Ising models
+ Spin waves
# Mean field theory, the Curie-Weiss law

+ Ferromagnetic domains



Types of magnetic structure: ferromagnetism,

antiferromagnetism, ferrimagnetism, helical order

(a) Ferromagnetic ordering. (b) Antiferromagnetic ordering.
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[from J. M. Ziman, Principles of the Theory of Solids (Cambridge University Press, 1979)]



Ferromagnetism in the mean-field approximation

In the mean field approximation each magnetic atom experiences effective
field (from exchange with neighbor sites) proportional to magnetization:

B = AM

The magnetization itself is proportional to the total field M = )(p(B,rjl + Bg)

where the paramagnetic susceptibility

is given by the Curie law ), = CIT, = MT = C(B, + AM)

andthetotat _ M __C ¢ .
- mgm X i rr 3 O
susceptibility B, (T — CA) 1 — T,

What is the magnitude of effective exchange field B and of 1?

M N](] 4 l)gng N NPR”% B C » A = 11(: N 3k}31’c
B = 3kyT 3kgT T C Ng®S(S + Duj

Foriron Tc = 1000 K, g =2,and S = 1; => we have A = 5000. With
saturation magnetization M = 1700 we have B = A M =10’G = 1000 T.



Magnitude of exchange interaction

Energy of interaction of atoms i, j bearing U= — 2] S S, 1)
i v

electron spins S;, Sj contains a term,

where J is the exchange integral and is related to the overlap of the charge
distributions of the atoms i, j. Equation (1) is called the Heisenberg model.

We can establish an approximate connection between the exchange integral J and the
Curie temperature Tc. Suppose that the atom has z nearest neighbors, each connected
with the central atom by the interaction J. For more distant neighbors we take J as zero.

The energy need to flip this spinis [/ — 4/-52 — 2uBp == 2p (AM) = 2p (Au/Q),

rie S — cpefiHee 3HaueHHe 8 B HaNpaBJdeHHH HAaMarHUUYeHHOCTH,
Q — o0bem, npuxoasuiuica Ha oaud atoM. CpegHHH MATHHTHBIH
MOMEHT 3JeKTPoHa, OOYCJAOBJEHHBIH €ro CHHHOM, eCcThb U = gSus,

A = #2‘;2? N The mean field J — 3kgT )

g°ng theoryresultis ~ = 225 (S 4 1)
Better statistical approximations give somewhat different results. For the sc, bcc, and fcc
structures with S =1, Rushbrooke and Wood give kT/Jz = 0.28; 0.325; and 0.346, as
compared to 0.500 from (2) for all three structures. If iron is described by the Heisenberg

model with S =1, then the observed Curie temperature corresponds to J = 11.9 meV.




Substance

Fe
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Saturation magnetization
in ferromagnetic crystals

Magnetization M,, in gauss

Room temperature

1707
1400
485

670
620
710
515
410
480

70
135
110

130

0K

1740
1446
510
2060
20920
870
680

Number of Bohr
magnetons

ngx(0 K),

per formula unit

2.22
1.72
0.606
7.63
10.2
3.4
3.52
3.9
2.03
5.0
4.1
2.4
1.3
1.1
6.8
5.0

Curie
temperature,
in K

1043
1388
627
202
88
318
630
o87
386
573
858
858
728
713
69
560



Temperature dependence of magnetization
in ferromagnet below Curie temperature

Above Curie temperature, at T>Tc, — C . T —C) B.=AM
susceptibility of ferromagnetic is T —T7T," ¢ | E

Below the Curie temperature, at T<Tc, .
one would expect magnetization M(T) M = Nu th (nB/ksT)

where the total field B is mainly due to exchange .
field B = AM, so that we obtain an equation on M: M Nu th (“’A‘M/kBT)

2 e B S The mean field theory does not give a good description
N of the variation of M at low temperatures. For T <<Tc the
B argument of tanh is large, and thg ~ 1 — 2¢e-% - ...
G,6 ———"—— —— To lowest order the magnetization deviation
\ | AM = M (0)— M(T) = 2Nuexp (— 2ANu*/kgT)
e
2 | WF i On experiment, AM/M(0) = AT**
| i Fig: Saturation magnetization of nickel as
Y 0.6 -7 a function of temperature, together with

7/ 76 mean-field theoretical curve for S = 1/2.



Spin waves

The ground state of a ferromagnet - classical picture:
(a) All spins parallel, (b) An excitation; one spin is reversed,

(c) The low-lying elementary excitations (spin waves).

The spin vectors precess on the surfaces of cones.

Successive spins advanced in phase by a constant angle.
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A spin wave on a line of spins:
(a) The spins viewed in perspective,

(b) Spins viewed from above, showing one wavelength.

The wave is drawn through the ends of the spin vectors.
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The Heisenberg Hamiltonian is the spin Hamiltonian for the

two-spin case, summed over all pairs of ions:

——ZJS S,

l?f_]

sp1n

The exchange coupling constant </, depends on the relative

positions of the sites i and ;.

Magnetic ions are far enough apart that the overlap of

their electronic wave functions is small.

If the angular momentum contains both an orbital and a
spin part, the coupling may depend on the absolute and the

relative spin orientations.



Spin waves in ferromagnet
(classical theoretical description, dispersion relation)

Consider N spins each of magnitude S on a line or aring, with ,, 9] i S .S
nearest neighbor spins coupled by the Heisenberg interaction: =~ = ptO9p+1

The effective magnetic field or exchange (.
field that acting on the p-th spin is BP ( QJ/g“B) (SP-—l + Sp+ 1)

The equations of motion for spins are
as, iy 27
ﬁTﬂilprp:ﬂ h SpXBp:_ﬁ_(SpXSp——]+Sp><SQ+I)

In the spin components  dS; 21 y .
these equations are dfp — 7h [Sg (Sz-l =+ Sp+l) — S5 (Sg~1 + S§§+1)],

and similarly for dS¥/dt and dSZ/dt.

These equations involve products of spin components and are nonlinear

If the amplitude of the excitation is small (if il .
S*,SY << S), we may obtain an approximate dSpldt = @JSIR)2Sy — Sp-1 - Syl ;
set of linear equations by taking all =S8 JSy/ds = —(9]S/h)(2S% — S*_, — §%,)
and by neglecting terms ~S*SY which appear

in the equation for dS%/dt. Then one obtains: dS3/dt =0 .



Dispersion relation of spin waves in ferromagnet

By analogy to finding phonon dispersion we S’;’; — ot (PRA=0)

Sy o ei (phka—wt)
] ] L] L] p
substituting the traveling wave solutions

b

to the linearized equations of motion: dSp/dt = (2JSIR)2SY — S¥—1 — S¥41)
(neglecting the time evolution of $2=S) . . .
This gives: dsé’/dt = —(2] S/ﬁ)(2sp . Sp—l . p+])

—tou = 2JS/R)2 — e — %)y = (4JSIR)1 — cos ka)v :

?

—iwv = —(2JSMA)2 — e — e* Yy = —(4JS/R)1 — cos ka)u

These linear equations have a zon-zero
solution for the amplitudes u and v if
the determinant of coefficients is zero:

iw (4JS/R)(1 — cos ka) y
—(4JSA)1 — cos ka)  iw

L o .
ThIS.gIV? the magnon dis ho = 4JS (1 — cos ka)
persion in 1D ferromagnet:

Faf4§)

At long wavelengths ka << 1,and fio =~ (2/Sa®) &*
In 3D crystal /i = 2/S [z — > cos (R - 6)]
vy

where the summation is over the z vectors denoted by 6

which join the central atom to its nearest neighbors. g — l:z’



Quantization of spin waves in ferromagnet. Magnons.

The z-axis projection of total spin S,°t is an integer number. One quantum of spin wave
(magnon) in ferromagnet changes thls projection by 1, => S Y'=NS-n, , where Ny is the

number of magnons. Since forone spin g — (S2 _— ;)" o S _;S"

Nu‘z,, R 28n,,
55 . TH u}‘% ~ T (1)

the quantization of spin waves gives p . R

Zut sin };‘7 Assume that the angle between any two adjacent spins @<<1.
’ This angle is related to the amplitude u and wave vector k of
the spin wave: sin (@/2) == («/S) sin (ka/2)

or cos ==l -— 2(u/S)*sin* (ka/2)

The exchange interaction energy is than reduced by NJ (1- cose) :

S 7 e B

U=—9 Z 8, 8pp1 /v — 2INS? + 42 sin? (ka/2) =

= — 2JNS? + 2/ Nu? (1 — cos ka)

Substituting (1) one obtains L
the energy of the spin wave: &2 — HS (L — cos ka) Iy == H’kh(’)k:

where in a 3D crystal /20 = 2N) [2 — sz cos (k - 6)]



Thermal Excitation of Magnons

In thermal equilibrium the average number of magnons
excited in the mode k is given by the Planck
distribution (Bose-Einstein distribution at u=0) :

1
<nk> - exp (lwyfkpT) — 1

The total number of magnons Z:n _ S do D (@) in (o
excited at a temperature T is k (@) {12 ( )>*

Magnons have a single polarization for each value of'k. In three dimensions
the number of modes of wavevector less than k is (1/27)%(4#7k>/3) per unit vol-
ume, whence the number of magnons D{w)dw with frequency in dw at w is

(2mPdmk)dkido) do o 4JSa*k _ 2( 2]Sa2)”2wy2 =

The magnon dispersion gives dk 5

The density of magnon D(w) = 1 ( h )mwuz =)

modes in ferromagnet is 4772 \ 2]Sa*

The total 2 1 ( h )3’2 r o 1 (kBT )3"2 r p xl/2
number of & = % o \or542 TePe 1 4 \gse) b oo
magnons

and the temperature dependence of the 23 . 0.0587 (kBT )3’ 2
deviation from saturation magnetization }\7(0) SQ oIS



Ferromagnetic domains

In real ferromagnetic samples the magnetization at zero temperature is much less
than in mean-field theory because of the creation of ferromagnetic domains.

Fig. Ferromagnetic domain pattern
on a single crystal platelet of nickel.
The domain boundaries are made
visible by the Bitter magnetic
powder pattern technique. The
direction of magnetization within a
domain is determined by observing
growth or contraction of the
domain in a magnetic field.

Domains
reduce the
energy of
magnetic
field

2 ) jﬂVBZ/Sﬂ'-




M

Ferromagnetic domains (2)

Magnetization
rotation

.

Irreversible
boundary
displacements

Reversible boundary displacements

Representative
magnetization
curve, showing
the dominant
processes in
the different
regions of the
curve.

R

Applied field —

The technical magnetization curve.

The coercivity Hc is the reverse field

that reduces B to zero.

Reversible boundary displacements
of magnetic domains in iron.
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Ferromagnetic domains

Domain structure is a consequence of the various

contributions to the energy of a ferromagnetic sample:

+ Exchange
+ Anisotropy

+ Magnetic

The energy of a ferromagnetic sample in a (multi) domain
configuration is lower than that of a uniformly magnetized

ferromagnetic sample in single domain configuration.

Coercive force and hysteresis



Magnetic anisotropy in crystals
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Fig. 1. Magnetization curves for single crystals of iron, nickel, and cobalt. From the
curves for iron we see that the [100] directions are easy directions of magnetization and
the [111] directions are hard directions The applied field is B,,. (After Honda and Kaya.)

~. Asymmetry of the overlap of
.’ electron distributions on
neighboring ions provides
one mechanism of magneto-
crystalline anisotropy.




Strip domains, domains of closure
Bubble domains
Domains in antiferromagnets (MnF,)

Magnetocrystalline or anisotropy energy (the spin interacts

with orbital motion via the spin-orbit coupling).
Anisotropy energy density:
+ Hexagonal U, = K/sin’0+ K,sin" 0

. _ 2,2 2,2 2,2 2 .2 2
+ Cubic U, =K, ((xloc2 + ool + oo )+ K, o oa;



Domain walls

Neel walls - exchange and g M
anisotropy energies. -

Bloch walls - also magnetic

energy, because divM 0.

The free energy density

2 2
o(z)=Ksin’0+ A [8—9} +sin29(a—¢) ,

0z

where K is the anisotropy parameter and A is the exchange
parameter. For the Néel wall ¢ =7/2, for the Bloch wall

@ =0.



The wall structure is 6(z) = Zarctan[exp(\/K/A z):| :

The Neel wall

L ECEA R
: \ * \ \ , \\\ \:\\ \\\\\\\ \. \\v\\ \ ‘\?\
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The Bloch wall
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[from Robert M. White and Theodore H. Geballe, Solid State Physics Advances in Research: Long Range
Order in Solids (Solid state physics: Supplement 15) (Academic Press, New York, 1979)]



Ground state of the Heisenberg ferromagnet, spin waves

The ferromagnetic Heisenberg Hamiltonian:

H=- LY JR-R)SR)-SR)- guBHES (R),
R,R’
JR-R)=JR -R)2>0.
Ground state of the Heisenberg antiferromagnet

The antiferromagnetic Heisenberg Hamiltonian:

-~ T IR-R)SR) SR

One-dimensional array of spin 1/2 ions (Bethe, 1931)



Magnetic susceptibility of an antiferromagnet:

(a) x,—0; (b) x, =const; (c) (x)=1yx,+27,
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Ferrimagnetic ordering:

@
@ @

[from J. M. Ziman, Principles of the Theory of Solids (Cambridge University Press, 1979)]



Ferrimagnetism in the I x I I I I
mean-field approximation ' | ! } |
The mean exchange fields acting on the A and B spin sublattices may be written as

BA:_—?*‘MAHMMBE BB:“_P«MA‘_\’,’igg;

To show that antifferomagnetic exchange may result to ferrimagnetism, we take all
mean field constants A,u,v to be positive. The interaction energy density is

1 Y |
U= — '"Q_(BA M, - Bg - MB)E”Q" AMG -+ M- My "2_\7‘1'41?3;

This is lower when M, is antiparallel to Mg than when M, is parallel to Mg. The energy
when antiparallel should be compared with zero, because a possible solution is M, =
Mg = 0. Thus the ground state will have M, directed oppositely to M; when

I : 2y (Under certain conditions there may be
WM Mg > 2 (%MA + VMB) noncollinear spin arrays of still lower energy.)

Large 1 >> A,v is reasonable, because the distance between
A and B spins is smaller than between two A or two B spins.



Magnetic susceptibility of ferrimagnetic above Tc

At .=v=0, i.e. when interactionis p __ __ M o
only between nearest neighbours A e L B B uM A>

Then we have in the mean field approximation (where B, is the applied field):
M =C, (B, — uMp), Mgl =Cpg(B,— nuMy,)

These equations have a nonzero solution r ne ,

for M, and Mg in zero applied field if nC, T

so that the ferrimagnetic Curie temperature is given by T, = u(C,Cp)
M,+ M,  (Cu+Cp)T—2uC,C,

= 0

1/2

Magnetic susceptibilit === = f
g P y X B T2 _ Tf,
&40
| e
1’ 2,0 f}/ |
\::{* g
70
.| Reciprocal susceptibility

W @ —w @ s of magnetite, FeOeFe,0,

A



Inelastic neutron scattering

Neutron
Neutron

Magnon

In an inelastic scattering event a neutron may create or

destroy a magnon.

Conservation of crystal momentum; conservation of energy.



Experimental observation of magnetic structures: neutron

magnetic scattering

The magnetic moment of

111 311 331 511
Jool jatn G CHFAGD

o
ﬂ a,=885R

the neutron interacts with =

601

the magnetic moment of ol

20

the electron.

100

Intensity (neutrons/min)

Diffraction of neutrons by

801

a magnetic crystal allows

us to determine the order

L ! i
10° 20° 30° 40° 50°

of the magnetic moments.



(a) Band ferromagnetism A

Stoner model: L

U
= T el e 7
k. k’ =

H—0,T—0 . 1l G u—_a
l—éUn(EF)
4 (a)
Transition to FM: %Un(EF)>1
(b) Electronic specific heat Cnk 1}

of a ferromagnetic metal




Antiferromagnetic helical order (terbium and dysprosium)

Tb and Dy order ferromagnetically below 219 and 85 K, resp.

Above T, these two elemental metals slip into a helical

antiferromagnetic state, in which all the atomic moments in
a basal plane layer are parallel, and oriented at a certain

angle to the moments of adjacent layers.

In a fransect along the hexagonal axis the moments would
be observed to rotate around the transect line in a helical%

pattern. There is no net spontaneous magnetization. %

&
Transitions from a helical antiferromagnetic state foa <>
paramagnetic state occur at 230 and 179 K, respectively. « >

>
>


Павел Григорьев
Штамп


Helical or conical ferromagnetism
Erbium below 19.5 K also exhibits a helical magnetic order.

Each atom, however, has a component of magnetization
parallel to the hexagonal axis, and, consequently, there is a

net magnetic moment.

Between 19.5 and 80 K erbium displays modulated
antiferromagnetism (hex. axis components vary continuously

in magnitude in a sinusoidal pattern from layer to layer).
Sinusoidal AF ordering (thulium between 32 and 56 K).

Modulated ferromagnetism (thulium below 32 K).
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