Magnetic resonance (2)

Schematic arrangement for magnetic resonance experiments:

To rf supply and circuit for measuring inductance and losses.

Energy level splitting of a nucleus of spin 1/2 in a static magnetic field B₀.

Magnetic moment of a nucleus $\mu=\gamma\hbar \mathbf{I}$

The energy of interaction with the applied magnetic field is $U = -\mu \cdot \mathbf{B}_a$

For I=1/2 the magnetic resonance frequency

$$\omega_0 = \gamma B_0$$
 where the constant γ depends on the magnetic moment

For proton

$$\gamma = 2.675 \times 10^4 \text{ s}^{-1} \text{ gauss}^{-1} = 2.675 \times 10^8 \text{ s}^{-1} \text{ tesla}^{-1}$$

H ¹ 1/2 = 99.98		For e	verv el	Table ement t		clear ma	to our residence	V Šelbe stove pero	d air a	renaa samaaliin S	udalast.	own.	After								He ³ 1/2 10 ⁻⁶
2.792		Varian Associates NMR Table.																			-2.127
3/2 92 57 3.256	Be ⁹ 3/2 1001 177															C ¹³ 1/2 1.108 0.702	N ¹⁴ 1 99.64 0.404	5. 4 O.	/2 /04 1.893	F ¹⁹ 1/2 100. 2.627	Ne ²¹ 3/2 0.257 -0.662
Na ²³ 3/2 100. 2.216	Mg ²⁵ 5/2 10.05 0.855	Most abundant isotope with nonzero nuclear spin AI^{27} Si^{29} P^{31} S^{33} CI^{35} Nuclear spin; in units of M $5/2$ $1/2$ $1/2$ $3/2$ $3/2$ Natural abundance of isotope, in percent 100. 4.70 100. 0.74 75.4 Nuclear magnetic moment, in units of $eM/2M_pc$ 3.639 0.555 1.131 0.643 0.821															Ar				
K ³⁹ 3/2 93.08 0.391	Ca ⁴³ 7/2° 0.13 -1.315	Sc ⁴⁵ 7/2 100. 4.749	Ti ⁴⁷ 5/2 7.75 0.787	V ⁵¹ 7/2 ~100. 5.139	Cr ⁵³ 3/2 9.54 0.474	Mn ⁵⁵ 5/2 100. 3.461	Fe 1/3 2.2 0.0	2 7/ 245 10		Ni ⁶¹ 3/2 1.25 0.746	3/	u ⁶³ /2 9.09 221	Zn ⁶⁷ 5/2 4.12 0.874	Ga 3/ 60 2.0	2	Ge ⁷³ 9/2 7.61 0.877	As ⁷⁵ 3/2 100. 1.435	1,	e ⁷⁷ /2 = 50 533	Br ⁷⁹ 3/2 50.57 2.099	Kr ⁸³ 9/2 11.55 -0.967
Rb ⁸⁵ 5/2 72.8 1.348	Sr ⁸⁷ 9/2 7.02 1.089	Y ⁸⁹ 1/2 100. 0.137	Zr ⁹¹ 5/2 11.23 1.298	Nb ⁹³ 9/2 100. 6.144	Mo ⁹⁵ 5/2 15.78 0.910	Тс	5/: 16. -0.	2 1/ .98 10		Pd ¹⁰⁵ 5/2 22.23 -0.57	1) 51	g ¹⁰⁷ 2 35 .113	Cd ¹¹ 1/2 12.86 -0.592	9/ 95	2 .84	Sn ¹¹⁹ 1/2 8.68 -1.041	Sb ¹² 5/2 57.25 3.342	1,	125 /2 03)882	5/2 100. 2.794	Xe ¹²⁹ 1/2 26.24 -0.773
Cs ¹³³ 7/2 100. 2.564	Ba ¹³⁷ 3/2 11.32 0.931	La ¹³⁹ 7/2 99.9 2.761	Hf ¹⁷⁷ 7/2 18.39 0.61	Ta ¹⁸¹ 7/2 100. 2.340	W ¹⁸³ 172 14.28 0.115	Re ¹⁸⁷ 5/2 62.93 3.176	0s 3/: 16.	2 3/ 1 61	2 .5	Pt ¹⁹⁵ 1/2 33.7 0.600	3/		Hg ¹⁹⁹ 172 16.86 0.498	17 70	2 .48	Pb ²⁰⁷ 1/2 21.11 0.584	Bi ²⁰⁹ 9/2 100. 4.039	Ś		At	Rn
Fr	Ra	Ac														_					
	শ্বিকার তাত্ত্বর শ্বিকার	TO THE WORLD	7/ - 0.1	2 5/ 10	2 7/ 0. 12	.20	n	Sm ¹⁴⁷ 7/2 15.07 -0.68	5/2 52.: 1.5:	2 3	d ¹⁵⁷ /2 5 64 0.34	3/2 100 1.5	2 5	/2 4.97 0.53	Ho ¹ 7/2 100. 3.31	7/	2 1 .82 1	m ¹⁶⁹ /2 00. 0.20	Yb ¹ 5/2 16.0 -0.6	77.	2 40
			Th	Pa	ı U	Ng		Pu	Am	n C	m	Bk	C		Es	Fm		ld	No	Lr	4.E

Equations of motion for magnetic moment

The time evolution of a spin vector ${\bf I}$ is given by $\hbar d{\bf I}/dt = {\bf \mu} \times {\bf B}_a$ or for its magnetic moment $d{\bf \mu}/dt = \gamma {\bf \mu} \times {\bf B}_a$

The evolution of a total magnetization in external field $d\mathbf{M}/dt = \gamma \mathbf{M} \times \mathbf{B}_a$

In thermal equilibrium the population of two energy levels is given by the ratio: $(N_2/N_1)_0 = \exp(-2\mu B_0/k_BT)$ and the total magnetization is given by $M_0 = N\mu \; \tanh(\mu B/k_BT)$

When magnetization is not in equilibrium, it approaches equilibrium $\frac{dM_z}{dt} = \frac{M_0 - M_z}{T_1}$ at a rate proportional to the departure from the equilibrium value M_0 : $\frac{dM_z}{dt} = \frac{M_0 - M_z}{T_1}$

This linear differential equation can be solved easily and gives

$$M_z(t) = M_0[1 - \exp(-t/T_1)]$$

 T_1 is called the longitudinal relaxation time or the spin-lattice relaxation time.

Longitudinal magnetization relaxation

Figure 4a Some important processes that contribute to longitudinal magnetization relaxation in an insulator and in a metal. For the insulator we show a phonon scattered inelastically by the spin system. The spin system moves to a lower energy state, and the emitted phonon has higher energy by $\hbar\omega_0$ than the absorbed phonon. For the metal we show a similar inelastic scattering process in which a conduction electron is scattered.

Figure 4b Spin relaxation from $2 \rightarrow 1$ by phonon emission, phonon scattering, and a two-stage phonon process. The temperature dependence of the longitudinal relaxation time T_1 is shown for the several processes.

Longitudinal magnetization relaxation (experiment)

0,6

0,4

0,2

Motional Narrowing of NMR line

The effective magnetic field due to magnetic dipole-dipole interaction is

$$\Delta \mathbf{B} = \frac{3(\boldsymbol{\mu}_2 \cdot \mathbf{r}_{12})\mathbf{r}_{12} - \boldsymbol{\mu}_2 r_{12}^2}{r_{12}^5}$$

It effectively averages to almost zero when the atoms move fast enough.

The Bloch equations for magnetic moment evolution with time

$$dM_x/dt = \gamma(\mathbf{M} \times \mathbf{B})_x - M_x/T_2$$
;
 $dM_y/dt = \gamma(\mathbf{M} \times \mathbf{B})_y - M_y/T_2$;
 $dM_z/dt = \gamma(\mathbf{M} \times \mathbf{B})_z + (M_0 - M_z)/T_1$
 T_2 is called the transverse relaxation time

The transverse spin relaxation does not need energy change, => often $T_2 << T_1$

Solving the Bloch equations we find the resonance power absorption in NMR experiments with resonance frequency ω_0 determined by Zeeman energy splitting in B_0 :

$$\mathcal{P}(\omega) = \frac{\omega \gamma M_z T_2}{1 + (\omega_0 - \omega)^2 T_2^2} B_1^2$$

The resonance half-width $(\Delta\omega)_{1/2}=1/T_2$

Proton resonance absorption in water.