Magnetic resonance (2) Schematic arrangement for magnetic resonance experiments: To rf supply and circuit for measuring inductance and losses. Energy level splitting of a nucleus of spin 1/2 in a static magnetic field B₀. Magnetic moment of a nucleus $\mu=\gamma\hbar \mathbf{I}$ The energy of interaction with the applied magnetic field is $U = -\mu \cdot \mathbf{B}_a$ For I=1/2 the magnetic resonance frequency $$\omega_0 = \gamma B_0$$ where the constant γ depends on the magnetic moment For proton $$\gamma = 2.675 \times 10^4 \text{ s}^{-1} \text{ gauss}^{-1} = 2.675 \times 10^8 \text{ s}^{-1} \text{ tesla}^{-1}$$ | H ¹ 1/2 = 99.98 | | For e | verv el | Table
ement t | | clear ma | to our residence | V Šelbe stove pero | d air a | renaa samaaliin S | udalast. | own. | After | | | | | | | | He ³ 1/2 10 ⁻⁶ | |--|---|---|---|----------------------------------|---|-----------------------------------|-------------------------|-----------------------------------|---------------------|--|--|--------------------------------------|---|-----------------------|-------------------------------|--|---|---------------------------------------|-----------------------------------|----------------------------------|--| | 2.792 | | Varian Associates NMR Table. | | | | | | | | | | | | | | | | | | | -2.127 | | 3/2
92 57
3.256 | Be ⁹ 3/2 1001 177 | | | | | | | | | | | | | | | C ¹³ 1/2 1.108 0.702 | N ¹⁴
1
99.64
0.404 | 5.
4 O. | /2
/04
1.893 | F ¹⁹ 1/2 100. 2.627 | Ne ²¹
3/2
0.257
-0.662 | | Na ²³ 3/2 100. 2.216 | Mg ²⁵ 5/2 10.05 0.855 | Most abundant isotope with nonzero nuclear spin AI^{27} Si^{29} P^{31} S^{33} CI^{35} Nuclear spin; in units of M $5/2$ $1/2$ $1/2$ $3/2$ $3/2$ Natural abundance of isotope, in percent 100. 4.70 100. 0.74 75.4 Nuclear magnetic moment, in units of $eM/2M_pc$ 3.639 0.555 1.131 0.643 0.821 | | | | | | | | | | | | | | | Ar | | | | | | K ³⁹ 3/2 93.08 0.391 | Ca ⁴³ 7/2° 0.13 -1.315 | Sc ⁴⁵ 7/2 100. 4.749 | Ti ⁴⁷ 5/2 7.75 0.787 | V ⁵¹ 7/2 ~100. 5.139 | Cr ⁵³ 3/2 9.54 0.474 | Mn ⁵⁵ 5/2 100. 3.461 | Fe
1/3
2.2
0.0 | 2 7/
245 10 | | Ni ⁶¹
3/2
1.25
0.746 | 3/ | u ⁶³
/2
9.09
221 | Zn ⁶⁷
5/2
4.12
0.874 | Ga
3/
60
2.0 | 2 | Ge ⁷³
9/2
7.61
0.877 | As ⁷⁵
3/2
100.
1.435 | 1, | e ⁷⁷
/2 = 50
533 | Br ⁷⁹ 3/2 50.57 2.099 | Kr ⁸³ 9/2 11.55 -0.967 | | Rb ⁸⁵
5/2
72.8
1.348 | Sr ⁸⁷
9/2
7.02
1.089 | Y ⁸⁹ 1/2 100. 0.137 | Zr ⁹¹
5/2
11.23
1.298 | Nb ⁹³ 9/2 100. 6.144 | Mo ⁹⁵
5/2
15.78
0.910 | Тс | 5/:
16.
-0. | 2 1/
.98 10 | | Pd ¹⁰⁵
5/2
22.23
-0.57 | 1)
51 | g ¹⁰⁷
2
35
.113 | Cd ¹¹
1/2
12.86
-0.592 | 9/
95 | 2 .84 | Sn ¹¹⁹
1/2
8.68
-1.041 | Sb ¹²
5/2
57.25
3.342 | 1, | 125
/2
03
)882 | 5/2 100.
2.794 | Xe ¹²⁹ 1/2 26.24 -0.773 | | Cs ¹³³ 7/2 100. 2.564 | Ba ¹³⁷
3/2
11.32
0.931 | La ¹³⁹ 7/2 99.9 2.761 | Hf ¹⁷⁷ 7/2 18.39 0.61 | Ta ¹⁸¹ 7/2 100. 2.340 | W ¹⁸³ 172 14.28 0.115 | Re ¹⁸⁷ 5/2 62.93 3.176 | 0s
3/:
16. | 2 3/
1 61 | 2
.5 | Pt ¹⁹⁵ 1/2 33.7 0.600 | 3/ | | Hg ¹⁹⁹
172
16.86
0.498 | 17
70 | 2
.48 | Pb ²⁰⁷
1/2
21.11
0.584 | Bi ²⁰⁹
9/2
100.
4.039 | Ś | | At | Rn | | Fr | Ra | Ac | | | | | | | | | | | | | | _ | | | | | | | | শ্বিকার তাত্ত্বর
শ্বিকার | TO THE WORLD | 7/
-
0.1 | 2 5/
10 | 2 7/
0. 12 | .20 | n | Sm ¹⁴⁷ 7/2 15.07 -0.68 | 5/2
52.:
1.5: | 2 3 | d ¹⁵⁷
/2
5 64
0.34 | 3/2
100
1.5 | 2 5 | /2
4.97
0.53 | Ho ¹ 7/2 100. 3.31 | 7/ | 2 1
.82 1 | m ¹⁶⁹
/2
00.
0.20 | Yb ¹ 5/2 16.0 -0.6 | 77. | 2 40 | | | | | Th | Pa | ı U | Ng | | Pu | Am | n C | m | Bk | C | | Es | Fm | | ld | No | Lr | 4.E | ## **Equations of motion for magnetic moment** The time evolution of a spin vector ${\bf I}$ is given by $\hbar d{\bf I}/dt = {\bf \mu} \times {\bf B}_a$ or for its magnetic moment $d{\bf \mu}/dt = \gamma {\bf \mu} \times {\bf B}_a$ The evolution of a total magnetization in external field $d\mathbf{M}/dt = \gamma \mathbf{M} \times \mathbf{B}_a$ In thermal equilibrium the population of two energy levels is given by the ratio: $(N_2/N_1)_0 = \exp(-2\mu B_0/k_BT)$ and the total magnetization is given by $M_0 = N\mu \; \tanh(\mu B/k_BT)$ When magnetization is not in equilibrium, it approaches equilibrium $\frac{dM_z}{dt} = \frac{M_0 - M_z}{T_1}$ at a rate proportional to the departure from the equilibrium value M_0 : $\frac{dM_z}{dt} = \frac{M_0 - M_z}{T_1}$ This linear differential equation can be solved easily and gives $$M_z(t) = M_0[1 - \exp(-t/T_1)]$$ T_1 is called the longitudinal relaxation time or the spin-lattice relaxation time. #### Longitudinal magnetization relaxation Figure 4a Some important processes that contribute to longitudinal magnetization relaxation in an insulator and in a metal. For the insulator we show a phonon scattered inelastically by the spin system. The spin system moves to a lower energy state, and the emitted phonon has higher energy by $\hbar\omega_0$ than the absorbed phonon. For the metal we show a similar inelastic scattering process in which a conduction electron is scattered. Figure 4b Spin relaxation from $2 \rightarrow 1$ by phonon emission, phonon scattering, and a two-stage phonon process. The temperature dependence of the longitudinal relaxation time T_1 is shown for the several processes. ### Longitudinal magnetization relaxation (experiment) 0,6 0,4 0,2 ## **Motional Narrowing of NMR line** The effective magnetic field due to magnetic dipole-dipole interaction is $$\Delta \mathbf{B} = \frac{3(\boldsymbol{\mu}_2 \cdot \mathbf{r}_{12})\mathbf{r}_{12} - \boldsymbol{\mu}_2 r_{12}^2}{r_{12}^5}$$ It effectively averages to almost zero when the atoms move fast enough. # The Bloch equations for magnetic moment evolution with time $$dM_x/dt = \gamma(\mathbf{M} \times \mathbf{B})_x - M_x/T_2$$; $dM_y/dt = \gamma(\mathbf{M} \times \mathbf{B})_y - M_y/T_2$; $dM_z/dt = \gamma(\mathbf{M} \times \mathbf{B})_z + (M_0 - M_z)/T_1$ T_2 is called the transverse relaxation time The transverse spin relaxation does not need energy change, => often $T_2 << T_1$ Solving the Bloch equations we find the resonance power absorption in NMR experiments with resonance frequency ω_0 determined by Zeeman energy splitting in B_0 : $$\mathcal{P}(\omega) = \frac{\omega \gamma M_z T_2}{1 + (\omega_0 - \omega)^2 T_2^2} B_1^2$$ The resonance half-width $(\Delta\omega)_{1/2}=1/T_2$ Proton resonance absorption in water.