Crystal lattices

+ Classification of Bravais lattices

and crystal structures

% The reciprocal lattice

4+ Experimental determination of crystal

structure by X-ray diffraction

crystal # a clear, transparent mineral or glass resembling ice

Most solids have crystal structure, even though they are
lustreless and not transparent. For example, almost all
metals are polycrystals (alloy of monocrystals 1-103um).

A crystal is a solid material whose constituents, such as
atoms, molecules or ions, are arranged with high order
(periodically). The word crystal is derived from the Ancient
Greek word kpuoTtaAAog (krustallos), meaning both "ice"
and "rock crystal", from kpuoc (kruos), "icy cold, frost".




Some History
Ancient studies — many thousands years.

Hauy R.J. — periodic array of identical elementary blocks (1784, 1801, 1822)

Lattices and their symmetries — Frankenheim, 1835
The 32 crystals classes — Frankenheim and Hessel

The 14 lattice classes — Frankenheim, 1856

Derivation of the Bravais classes from purely geometrical
reasoning — Auguste Bravais (1848-1851); summarized in 1866

230 space groups — the full Euclidean symmetry of periodic
patterns in three dimensions — Fedorov, Schoenflies, 1890

Microscopic symmetry — macroscopic consequences:
morphology (the law of rational indices)

ldeal crystals — microscopic structure has the space group
symmetry — von Laue, 1912 (from x-ray study)

Subsequent developments: Structure determination based on the
results of Braggs (x-ray reflection).



Periodic crystal structure

A two-dimensional crystal
consisting of identical unit
cells periodically repeated
to fill space. Two sets of
primitive translation
vectors are shown.

The atomic arrangement looks the same when viewed from any

point r as when viewed from the point I’ == r -+ nia -+ nsb + nsc,
where n1, ng, n3 are arbitrary integers.

Basic (primitive) translation vectors are denoted a,, a,, a,.

The operation of displacing a crystal parallel to itselt by n,a +
nsb 4+ ngc 1s called a translation operation. The totality of such
operations, for all values of the integers ni, ms, n3, 1s known as the
translation group of the crystal.



Translational + point-group symmetry operations (example)

Fig. a. Portion of a crystal of an
Imaginary protein molecule
(having no special symmetry of
Its own), in a 2D (two-
dimensional) world. The vectors
a, and a, are primitive translation
vectors of the 2D lattice.

Fig. b. Similar to Fig. a, but with
protein molecules associated in
pairs. The crystal translation
vectors are a, and a,. A rotation
of «t radians about any point
marked x will carry the crystal
Into itself.



Scattering from parallel planes showing the origin of

Bragg's law. The planes are separated by a distance d.

The incident wave vector is K and the scattered wave vector
is K. The magnitude of both k and k' is 27/, and
the path difference between waves partially reflected from

successive planes is 2dsiné.
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Primitive Lattice Cell

The parallelepiped defined by translation vectors a,,

a,, a5 Is called a primitive cell (Fig. 1). A primitive cell
IS a type of unit cell. A unit cell will fill all space by the
repetition of suitable crystal translation operations. A
primitive cell is a minimum-volume cell.

There are many ways of choosing the primitive axes
and primitive cell for a given lattice (Fig. 2). However,
the number of atoms in a primitive cell is always the
same for a given crystal structure.

— g ® e Fig.2

a,

The volume of a parallelepiped with axes a;, a,, a5 is Ve = |a)* a2 x as



Unit Cell (anemeHTapHana auenka)

Crystal structure is described in terms of the geometry of arrangement
of particles in the unit cell # primitive cell.

The unit cell is defined as the smallest repeating unit
having the full symmetry of the crystal structure.

The geometry of the unit cell is defined as a parallelepiped, providing six lattice parameters taken
as the lengths of the cell edges (a, b, c) and the angles between them (o, B, v).

2D

3D



Wigner-Seitz unit cell
The two-dimensional Bravais lattices — construction of the
Wigner-Seitz unit cell for a low symmetry lattice.

Lattice sites — black . ° ¢ #

dots. Solid lines

@ ® &
connect the central
lattice site to other ¢ °
sites; dashed lines are " & "
perpendicular bisectors

& ® P &

of the solid lines.

The Wigner-Seitz cell is shaded. All Wigner-Seitz cells,
except those of the square and rectangular lattices, are
hexagonal.



Construction of Wigner-Seitz unit cell

The five two-dimensional Bravais lattices: (a) square,

(b) oblique, (c) rectangular, (d) centered rectangular, and
(e) hexagonal lattice; a; and &, are primitive translation
vectors and ¢ is the angle between a; and a,.

(d)

[from P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 2000)]



Point group crystal symmetries

In addition to translations, crystals are also invariant under point group operations
consisting of rotations, reflections, and inversions about special symmetry points.

Molecules and finite size objects can have symmetry axes of arbitrary order. The
requirement that a crystal be invariant under translations through any vector

In its direct lattice, which, as we have seen, contains no vector shorter than
some minimum length vector, places severe restrictions on possible rotational
symmetries. For example, the symmetry axes can only be 1,2,3,4,6-th order.

|
For example, 5-th or 7-th order rotation symmetry
IS incompatible with periodic crystal structure: 22 \
a +ay
The set of all crystal symmetries
determines the class of crystal lattice. / > 8
. /

In 2D there are 5 different classes of crystal lattice,
while in 3D there are 14 different symmetry classes. Y



9 of the 14 Bravais lattices in three dimensions

simple body-centered  face-centered

Othorhobic

[from P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 2000)]



The remaining 5 of the 14 Bravais lattices

The lengths a, b and ¢ and

angles a, £/ and y define the unit

cell.

Trigonal Trigonal and hexagonal

Triclinic

[from P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 2000)]



The 14 Bravais lattices in three dimensions

Number of Restrictions on
lattices Lattice conventional cell
System in system symbols axes and angles
Triclinic 1 P a+b+eg
& By
Monoclinic 2 50 & d=+=b &
=y =00"=p
Orthorhombic 4 Pl.LE a£hb+#ec
= ﬁ == )) — 9()D
Tetragonal 2 Pl a=>b=c¢
g=§ =9 =80°
Cubic 3 P or SC a=b=¢
lorBOC ' g=0=7=9F
F ool FCC
Trigonal 1 R da=Dhh=c
g= 0 =7« 120F, =91
Hexagonal 1 P a=bs¢E
&= =90
= 1 20)°

[from P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 2000)]



The hierarchy of symmetries among the seven crystal
systems. Each Bravais lattice point group contains all
those that can be reached from it by moving in the

direction of the arrows.

Cubic

l

Hexagonal Tetragonal

royo ‘oo
Trigonal Orthorhombic
| '

> Monoclinic

i

Triclinic




Space group —the group of all translations and rotations

that leave a crystal invariant.

Often the space group consists only of point group
operations about symmetry points and translations by

vectors in the direct lattice.

In this, the symmorphic case, the space group is a direct

product of the point group and the translation group.

Glide planes and screw axes.

Nonsymmorphic space groups — space groups with glide

planes or screw axes.



Point and space groups of Bravais lattices and crystal

structures
Bravais lattice Crystal structure
(basis of spherical (basis of arbitrary
symmetry) symmetry)
Number of 7 32

point groups:

("the 7 crystal systems")

("the 32 crystallographic

point groups")

Number of

space groups:

14
("the 14 Bravais lattices")

230
("the 230 space groups")




Table 2 Characteristics of cubic lattices™

Simple Bodv-centered Face-centered
Volume, conventional cell a’ a a’
Lattice points per cell 1 2 4
Volume, primitive cell 8 id ia®
Lattice points per unit volume la® ofa® 4/’
Number of nearest neighbors® 6 8 12
Nearest-neighbor distance a 3Y2q/2 = 0.866a al2V? = 0.707a
Number of second neighbors 12 6 6
Second neighbor distance 212q a a
Packing fraction” :TT 1aV3 1:\/2
=0.524 =(.680 =(.740
simple body-centered  face-centered
K e 3 3 4
\.\:}a,
5 8 ,4"/, \\ \\‘*,«'




Point groups (Schoenflies notations)

In three dimensions, there are an infinite number of point groups, but all of them
can be classified by several families.
*C_(for cyclic) has an n-fold rotation axis.
oC . is C_ with the addition of a mirror (reflection) plane perpendicular to the axis
of rotation (horizontal plane).
eC is C with the addition of n mirror planes containing the axis of rotation
(vertical planes).
S,, (for Spiegel, German for mirror) contains only a 2n-fold rotation-reflection axis.
The index should be even because when n is odd an n-fold rotation-reflection axis is
equivalent to a combination of an n-fold rotation axis and a perpendicular plane,
hence S, =C  for odd n.
D _(for dihedral, or two-sided) has an n-fold rotation axis plus n twofold axes
perpendicular to that axis.
*D_, has, in addition, a horizontal mirror plane and, as a consequence, also n
vertical mirror planes each containing the n-fold axis and one of the twofold
axes.
*D . has, in addition to the elements of D _, n vertical mirror planes which pass
between twofold axes (diagonal planes).



https://en.wikipedia.org/wiki/Cyclic_group
https://en.wikipedia.org/wiki/Mirror
https://en.wikipedia.org/wiki/Rotation-reflection_axis
https://en.wikipedia.org/wiki/Dihedral_group

Point groups (continuation)

oT (the chiral tetrahedral group) has the rotation axes of a tetrahedron (three 2-fold
axes and four 3-fold axes).
T, includes diagonal mirror planes (each diagonal plane contains only one
twofold axis and passes between two other twofold axes, as in D,,). This addition
of diagonal planes results in three improper rotation operations S,.
T, includes three horizontal mirror planes. Each plane contains two twofold axes
and is perpendicular to the third twofold axis, which results in inversion center i.
*O (the chiral octahedral group) has the rotation axes of an octahedron or cube
(three 4-fold axes, four 3-fold axes, and 6 diagonal 2-fold axes).
0, includes horizontal mirror planes and, as a consequence, vertical mirror
planes. It contains also inversion center and improper rotation operations.
¢/ (the chiral icosahedral group) indicates that the group has the rotation axes of an
icosahedron or dodecahedron (six 5-fold axes, ten 3-fold axes, and 15 2-fold axes).
e/, includes horizontal mirror planes and contains also inversion center and
improper rotation operations.



https://en.wikipedia.org/wiki/Tetrahedron
https://en.wikipedia.org/wiki/Octahedron
https://en.wikipedia.org/wiki/Cube
https://en.wikipedia.org/wiki/Icosahedron
https://en.wikipedia.org/wiki/Dodecahedron

Hermann-Mauguin notations (international notation)

H-M

Schoenflies 3 4 5 6 7 8 9 10 11 12 o0
= | symbol
Ch n 3 4 5 6 7 8 9 10 11 12 =
nm 3m 5Sm m O9m 11m
Chv °m
nmm dmm 6mm 8mm 10mm 12mm
Son _ 3 5 7 9 11 .
n m
S, 4 8 12
Cn = TR
oh 6 10
C n 4 6 8 10 12
nh m m m m m m
n2 32 52 72 92 (11)2
n22 422 622 822 (10)22 (12)22
(11) =
Dhg nz | 32 52 72 92 2 m
m m
Dn _ " . PP
29 n2m = 42m 82m (12)2m
2 _ _
b, nm 6m?2 (10)m2
42 62 82
D n?2?2 mm mm mm 102 2 122 2
nh mmm 2 2 2 mmm mmm
m m m




Hermann-Mauguin (HM) notation (international notation)

The Hermann—Mauguin notation, compared with the Schoenflies notation, is
preferred in crystallography because it can easily be used to include
translational symmetry elements, and it specifies the directions of the
symmetry axes. Rotation axes are denoted by a numbern—1, 2, 3, 4, 5, 6,
7, 8 ... (angle of rotation ¢ = 360°/n). The rotoinversion axes are represented
by the corresponding number with a macron, n. If the symbol contains three
positions, then they denote symmetry elements in the X, y, z direction,
respectively. The direction of a symmetry element corresponds to its position
In the Hermann—Mauguin symbol. If a rotation axis n and a mirror plane m
have the same direction (i.e. the plane is perpendicular to axis n), then they
are denoted as a fraction n/m. 1 and 1 (triclinic crystal system), 2, m, and
2/m (monoclinic), and 222, (2/m 2/m 2/m) and mm2 (orthorhombic). The
short form of (2/m 2/m 2/m) is mmm. Plane groups can be depicted using
the HM system. The first letter is lowercase p or c to represent primitive or
centered unit cells. The next number is the rotational symmetry, as given
above. The glide reflections are denoted g.

The symbol of a space group is defined by combining the uppercase letter
describing the lattice type with symbols specifying the symmetry elements.



https://en.wikipedia.org/wiki/Macron_(diacritic)
https://en.wikipedia.org/wiki/Triclinic_crystal_system
https://en.wikipedia.org/wiki/Monoclinic_crystal_system
https://en.wikipedia.org/wiki/Orthorhombic_crystal_system
https://en.wikipedia.org/wiki/Wallpaper_groups
https://en.wikipedia.org/wiki/Unit_cell
https://en.wikipedia.org/wiki/Glide_reflection
https://en.wikipedia.org/wiki/Glide_reflection
https://en.wikipedia.org/wiki/Space_group
https://en.wikipedia.org/wiki/Bravais_lattice

These are the Bravais lattice types in three dimensions:
P — Primitive

| — Body centered (from the German "Innenzentriert")

F — Face centered (from the German "Flachenzentriert")
A — Base centered on A faces only

B — Base centered on B faces only

C — Base centered on C faces only

R — Rhombohedral

c c C c
a\ a\ a a\
b

b b b

Primitive, P Base centered, C Face centered, F Body centered, /

Rhombohedral in
hexagonal setting, R


https://en.wikipedia.org/wiki/Bravais_lattice
https://en.wikipedia.org/wiki/Bravais_lattice
https://en.wikipedia.org/wiki/Bravais_lattice

Miller indices (to determine crystal planes)

i

R,
1

e

s

TR

If a plane cuts an axis on
the negative side of the
origin, the corresponding
index is negative, indicated
by placing a minus sign
above the index: (hkl).

For cubic lattice
the Miller indices
give the vector,

normal to plane.

Figure 153 This plane intercepts the a;, a;, a3 axes at 3a,, 2a,, 2a;. The
reciprocals of these numbers are 3, %, §. The smallest three integers having
the same ratio are 2, 3, 3, and thus the indices of the plane are (233).



Mpumep rpaHeLLEHTPUPOBAHHON KPUCTAN/INUECKOMN pEeLLETKMU

U npeactaBuTesiu KPUCTasnnos,

Kpucrtaan a A Kpucrtaaa a, A
umetowmx cTpyktypy tuna NaCl:
LiH 4,08 AgBr 5,77
NaCl 5,63 MgO 4,20
KCI 6,29 MnO 4,43
5,92 KBr 6,59

5:51."og623ﬁa£§§eﬂ[b20]ﬂ%§;gpbl xn0-  Puc. 1.24. Kpucraminueckas CTPYKTYpa
oo Jarpia paw'e 1 { Hatpus  Xjopucroro marpud. lTpocrparcrsentoit
fEp, SMEDHL  4eM WOHBL  pellleTKOll SBAAETCA TpaneuedTpHpOBaH-
. Hasg KyOu4ecKasd perierxa, a 6asiuc co-
CToMT u3 Hona Nat ¢ koopauuatamu 000

- 1 1 1
H HoHa Cl ¢ ko I e
OpAHHATAMH 55 g



CTpyKTypa anmasa.

Puc 1.28 PacnoaoskeHie aroaon 8 ane-
MEHTapHOR Kyduueckoli suciike aamaza
(npoeknua Ha rpaib Kyda) 3uadcenusd
apoleff  YKasbplBAIOT BBICOTY AaTOMOB
Han 0a3HCHOH NMJAOCKOCTLIO (3a eMUIHHHY
nauusl npniusato pedpo kyGa) Touku
¢ suicoroft 0 w !y cocraBasioT rpaue-
HEHTPHPOBAHNYIO KYOITYCCKV 10 PeLIeTKY;
TOuKH ¢ BHcoToll '/, u 3/, olpasywor
TAKYI0 K€ PCLICTKY, CMEUIeHHYI0 BI0Mb
IPOCTPAHCTBEHHON JiarodaaTn kKyda Ha
yeTBepTh ec  JauHn  Dasuc cocrout
13 ABYX OJHHAKOBLIX ATOMGB, HMeEIO-

i1

i
ux koopauuatrnt 000 1 — T

[pocTpaHCTBEHHAA peleTKa anmasa ABnAeTcs
KyOu4eCcKon rpaHeLleHTpMPOBaHHOMU. C KaxabIim
Y35IOM peLeTKu CBA3aH NPUMUTUBHLIN 6a3suc,
COCTOSAILLUM M3 ABYX OQMHAKOBbLIX aTOMOB C
koopauHatamu (000) u (1/4, 1/4, 1/4)

N

— -, ]

' e i Ve i - — A
-_— e

M306paxeHne KpUCTannmuyeckon CTpYKTYpbl anmasa,
nokasblBatoLLlee TETPAdAPUYECKOE PaCTONOXEHNE CBA3EN:



Mpumep 06BLEMOLEHTPUPOBAHHON KPUCTANINYECKOU PELLETKU

Pue. 1.26. Kpucrannnueckas crpyx-
Typa XJ0pHCTOro nesua. [lpocrpan-
CTBEHHOH DEUIeTKOH dABAfeTCs npo-
cTas KyOuueckas penletka, a Gasuc
COCTOHMT u3 HoHa Cs+t ¢ xoopmuna-
TaMH OOOlH lHOHa Cl— ¢ koopnnua-

TaMu DR

U NpeacTaBUTENIN KPUCTAIIOB,
umerownx cTpykrypy tuna CsCl:

Kpucraan a, A L Kpuecraona a, A
CsCl 411 | CuZn (Pnaryun) | 2,91
TIBr 3,97 | AgMg 3,28
TII 4,20 | L.iHg 3,29
NH.CI 3,87 || AINi 2.88
CuPd 299 || BeCu 270




Hexagonal structures 1.
1. Tight-packed hexagonal structure

Examples of crystals with tight-packed hexagonal structure:

A y o
‘ -3._',\ T _ Kpuctaaan cla ;l Kpiderata cla Kpueraan cla
N hd 1
B N \_ \\\\\\ ——
“ \\ He 1,633 Zn 1,861 Zr 1,594
Be 1,581 Cd 1,886 Gd 1,592
. Mg 1,623 Co 1,622 Lu 1,586
A ‘ o Ti 1,586 Y 1,570

Puc. 1.278. T'excaronanbHag CTpPyK- Packages of spheres:

Typa ¢ NMJ0THOH ynakoBKo#H. Pacmo- 6
JOKEHHE ATOMOB B 3TOH CTPYKType
He OTBeYaeT NPOCTPAHCTBEHHOH pe-
meTke. IlpocTpaHCTBeHHOH pellleT-
KOM siBJSIeTCs1 MpPoCcTasli rekcaroHaJib-
Has perueTka, 0asuc KoOTopoH Co-
CTOMT M3 JIBYX OJUHAKOBBLIX ATOMOB,
CBA3AHHBIX C Ka»AOH TOYKOH pe-
LICTKH.




[eKcaroHasbHble CTPYKTYPbI 2: KpUCTaNMyeckan pelwueTka rpadpuTa
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1.006 .c;
nm
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0,3354 um

0.1418 uu
Puc. 1: Kpucmannuyeckas pewemka a-a2pagpuma. W

A, B-yrnepogHble Crnow; NyHKTUPHLIMUA NIMHNAMK
rnokKasaHa afieMeHTapHas KpUucTannuyeckas siueika \

A A

Kpuctannuyeckas pewetka rpachuta ObiBaeT rekcaroHanbHas u pOMGZp,quecxaﬂ. ekcaroHanbHas
COCTOMT U3 NapannenbHbIX cnoes (6a3nCHbIX NNOCKOCTEN), 00pa3oBaHHbIX NPaBUIILHbIMM
WwecTUyronbHMKamm u3 atomoB C. YrnepoaHble aTOMbl KaXXA0ro Crosi pacnosnoXeHbl MPOTUB LIEHTPOB
LWEeCTUYTONbHUKOB, HAXOAALWMXCA B COCEAHMX CNOAX (HUKHEM U BepXHEM); NOJOXEeHMe CroeB
NOBTOPAETCA Yepe3 OAWH, a KaXAablW COW CABUHYT OTHOCUTENbHO APYroro B ropM3oHTaNbHOM
HanpasneHuu Ha 0,1418 Hm.
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