
Crystal lattices 
Classification  of  Bravais  lattices  

and  crystal structures 

The  reciprocal  lattice 

Experimental  determination  of  crystal  

structure  by X - ray  diffraction 

Most solids have crystal structure, even though they are 
lustreless and not transparent. For example, almost all 
metals are polycrystals (alloy of monocrystals 1-103µm). 

crystal ≠ a clear, transparent mineral or glass resembling ice 

A crystal is a solid material whose constituents, such as 
atoms, molecules or ions, are arranged with high order 
(periodically). The word crystal is derived from the Ancient 
Greek word κρύσταλλος (krustallos), meaning both "ice" 
and "rock crystal", from κρύος (kruos), "icy cold, frost". 



Derivation  of  the  Bravais  classes  from  purely  geometrical 
reasoning  –   Auguste  Bravais (1848-1851); summarized in 1866 

230  space  groups  –   the  full  Euclidean  symmetry  of  periodic 
patterns  in  three  dimensions  –   Fedorov,  Schoenflies,  1890 

Microscopic  symmetry  –   macroscopic  consequences: 
morphology  (the  law  of  rational  indices) 

Ideal  crystals  –   microscopic  structure  has  the  space  group 
symmetry  –   von  Laue,  1912 (from x-ray study) 

Subsequent  developments: Structure determination  based  on  the  
results  of  Braggs (x-ray reflection). 

Some History 

The  14  lattice  classes  –   Frankenheim,  1856 

Lattices  and  their  symmetries  –   Frankenheim, 1835  
The  32  crystals  c lasses  –   Frankenheim  and  Hessel 

Ancient studies – many thousands years. 
Hauy R.J. – periodic array of identical elementary blocks (1784, 1801, 1822) 



[f rom  P.  M.  Chaikin  and  T.  C.  Lubensky,  
Principles  of  Condensed  Matter  Physics 

(Cambridge  Universit y  Press,  2000)] 

A  two-dimensional  crystal  
consisting  of  identical  unit  
cells periodically  repeated  
to  fill  space. Two  sets  of  
primitive translation  
vectors  are  shown. 

The atomic arrangement looks the same when viewed from any  
point r as when viewed from the point  

Periodic crystal structure 

Basic (primitive) translation vectors are denoted a1, a2, a3.  



Translational + point-group symmetry operations (example) 

a 

b 

Fig. a. Portion of a crystal of an 
imaginary protein molecule 
(having no special symmetry of 
its own), in a 2D (two-
dimensional) world. The vectors 
a1 and a2 are primitive translation 
vectors of the 2D lattice. 

Fig. b. Similar to Fig. a, but with 
protein molecules associated in 
pairs. The crystal translation  
vectors are a1 and a2. A rotation 
of π radians about any point 
marked x will carry the crystal 
into itself. 



Scattering  from  parallel  planes  showing  the  origin  of 

Bragg's  law. The  planes  are  separated  by  a  distance  d. 

The  incident  wave  vector  is  k and  the  scattered  wave  vector  

is  k'. The  magnitude  of  both  k and  k'  is 2π λ ,  and 

the  path  difference  between  waves  partially  reflected  from 

successive  planes  is 2d sinθ . 

[from  P.  M.  Chaikin  and  T.  C.  Lubensky,  Principles  of  Condensed  Matter  Physics  (Cambridge  University  Press,  2000)] 



Primitive Lattice Cell 
The parallelepiped defined by translation vectors a1, 
a2, a3 is called a primitive cell (Fig. 1). A primitive cell 
is a type of unit cell. A unit cell will fill all space by the 
repetition of suitable crystal translation operations. A 
primitive cell is a minimum-volume cell.  
 

There are many ways of choosing the primitive axes 
and primitive cell for a given lattice (Fig. 2). However, 
the number of atoms in a primitive cell is always the 
same for a given crystal structure.  Fig. 1 

Fig. 2 



Unit Cell (элементарная ячейка) 

Crystal structure is described in terms of the geometry of arrangement 
of particles in the unit cell ≠ primitive cell.  
 
The unit cell is defined as the smallest repeating unit 
having the full symmetry of the crystal structure.  
 

The geometry of the unit cell is defined as a parallelepiped, providing six lattice parameters taken 
as the lengths of the cell edges (a, b, c) and the angles between them (α, β, γ).  

2D 
3D 



The  two- dimensional  Bravais  lattices  –   construction  of  the 
Wigner- Seitz  unit  cell  for  a  low  symmetry  lattice. 

Lattice  sites  –   black 
dots. Solid  lines 
connect  the  central 
lattice  site  to  other 
sites;   dashed  lines  are 
perpendicular  bisectors 
of  the  solid  lines. 

[f rom  P.  M.  Chaikin  and  T.  C.  Lubensky,  Principles  of  Condensed 
Matter  Physics  (Cambridge  Universit y  Press,  2000)] 

The  Wigner- Seitz  cell  is  shaded.   All  Wigner- Seitz  cells, 
except  those  of  the  square  and  rectangular  lattices,  are 
hexagonal. 

Wigner- Seitz  unit  cell 



The  five  two- dimensional  Bravais  lattices:  (a)  square, 
(b)  oblique,  (c)  rectangular,  (d)  centered  rectangular,  and 
(e)  hexagonal  lattice;   a1   and  a2  are  primitive  translation 
vectors  and  φ is  the  angle  between  a1   and  a2. 

[from  P.  M.  Chaikin  and  T.  C.  Lubensky,  Principles  of  Condensed  Matter  Physics  (Cambridge  University  Press,  2000)] 

Construction of Wigner- Seitz  unit  cell 



Point group crystal symmetries 
In addition to translations, crystals are also invariant under point group operations 
consisting of rotations, reflections, and inversions about special symmetry points.  

Molecules and finite size objects can have symmetry axes of arbitrary order. The  
requirement that a crystal be invariant under translations through any vector  
in its direct lattice, which, as we have seen, contains no vector shorter than  
some minimum length vector, places severe restrictions on possible rotational  
symmetries. For example, the symmetry axes can only be 1,2,3,4,6-th order.  

For example, 5-th or 7-th order rotation symmetry 
is incompatible with periodic crystal structure: 

The set of all crystal symmetries 
determines the class of crystal lattice. 

In 2D there are 5 different classes of crystal lattice, 
while in 3D there are 14 different symmetry classes.  



9  of  the  14  Bravais  lattices  in  three  dimensions 

[from  P.  M.  Chaikin  and  T.  C.  Lubensky,  Principles  of  Condensed  Matter  Physics  (Cambridge  University  Press,  2000)] 



The  remaining  5  of  the  14  Bravais  lattices 

The  lengths  a,  b  and  c  and 

angles  α,  β and  γ define  the  unit 

cell. 

[from  P.  M.  Chaikin  and  T.  C.  Lubensky,  Principles  of  Condensed  Matter  Physics  (Cambridge  University  Press,  2000)] 



The  14  Bravais  lattices  in  three  dimensions 

[from  P.  M.  Chaikin  and  T.  C.  Lubensky,  Principles  of  Condensed  Matter  Physics  (Cambridge  University  Press,  2000)] 



The  hierarchy  of  symmetries  among  the  seven  crystal 

systems. Each  Bravais  lattice  point  group  contains  all 

those  that  can  be  reached  from  it  by  moving  in  the 

direction  of  the  arrows. 

[f rom  N.  W.  Ashcrof t   and  N.  D.  Mermin,  S olid  S tate  Physics 

(S ounders  College  Publishing,  Fort   Wort h,  1976)] 



Space  group  —  t he  group  of  all  translations  and  rotations 

that  leave  a  crystal  invariant. 

Often  the  space  group  consists  only  of  point  group 

operations  about  symmetry  points  and  translations  by 

vectors  in  the  direct  lattice. 

In   this,  the  symmorphic  case,  the  space  group  is  a  direct 

product  of  the  point  group  and  the  translation  group. 
 
Glide  planes  and  screw  axes. 

Nonsymmorphic  space  groups  –  space  groups  with  glide 

planes  or  screw  axes. 



Point  and  space  groups  of  Bravais  lattices  and  crystal 
structures 

Bravais  lattice 

(basis  of  spherical 

symmetry) 

Crystal  structure 

(basis  of  arbitrary 

symmetry) 

Number  of 

point  groups: 

7 

("the  7  crystal  systems") 

32 
("the  32  crystallographic 

point  groups") 

Number  of 

space  groups: 

14 

("the  14  Bravais  lattices") 

230 

("the  230  space  groups") 





Point groups (Schoenflies notations) 
 
In three dimensions, there are an infinite number of point groups, but all of them 
can be classified by several families. 
•Cn (for cyclic) has an n-fold rotation axis. 

•Cnh is Cn with the addition of a mirror (reflection) plane perpendicular to the axis 
of rotation (horizontal plane). 
•Cnv is Cn with the addition of n mirror planes containing the axis of rotation 
(vertical planes). 

S2n (for Spiegel, German for mirror) contains only a 2n-fold rotation-reflection axis. 
The index should be even because when n is odd an n-fold rotation-reflection axis is 
equivalent to a combination of an n-fold rotation axis and a perpendicular plane, 
hence Sn = Cnh for odd n. 
•Dn (for dihedral, or two-sided) has an n-fold rotation axis plus n twofold axes 
perpendicular to that axis. 

•Dnh has, in addition, a horizontal mirror plane and, as a consequence, also n 
vertical mirror planes each containing the n-fold axis and one of the twofold 
axes. 
•Dnd has, in addition to the elements of Dn, n vertical mirror planes which pass 
between twofold axes (diagonal planes). 

https://en.wikipedia.org/wiki/Cyclic_group
https://en.wikipedia.org/wiki/Mirror
https://en.wikipedia.org/wiki/Rotation-reflection_axis
https://en.wikipedia.org/wiki/Dihedral_group


Point groups (continuation) 
•T (the chiral tetrahedral group) has the rotation axes of a tetrahedron (three 2-fold 
axes and four 3-fold axes). 

•Td includes diagonal mirror planes (each diagonal plane contains only one 
twofold axis and passes between two other twofold axes, as in D2d). This addition 
of diagonal planes results in three improper rotation operations S4. 
•Th includes three horizontal mirror planes. Each plane contains two twofold axes 
and is perpendicular to the third twofold axis, which results in inversion center i. 

•O (the chiral octahedral group) has the rotation axes of an octahedron or cube 
(three 4-fold axes, four 3-fold axes, and 6 diagonal 2-fold axes). 

•Oh includes horizontal mirror planes and, as a consequence, vertical mirror 
planes. It contains also inversion center and improper rotation operations. 

•I (the chiral icosahedral group) indicates that the group has the rotation axes of an 
icosahedron or dodecahedron (six 5-fold axes, ten 3-fold axes, and 15 2-fold axes). 

•Ih includes horizontal mirror planes and contains also inversion center and 
improper rotation operations. 

https://en.wikipedia.org/wiki/Tetrahedron
https://en.wikipedia.org/wiki/Octahedron
https://en.wikipedia.org/wiki/Cube
https://en.wikipedia.org/wiki/Icosahedron
https://en.wikipedia.org/wiki/Dodecahedron


Hermann–Mauguin notations (international notation) 



The Hermann–Mauguin notation, compared with the Schoenflies notation, is 
preferred in crystallography because it can easily be used to include 
translational symmetry elements, and it specifies the directions of the 
symmetry axes. Rotation axes are denoted by a number n — 1, 2, 3, 4, 5, 6, 
7, 8 ... (angle of rotation φ = 360°/n). The rotoinversion axes are represented 
by the corresponding number with a macron, n̅.  If the symbol contains three 
positions, then they denote symmetry elements in the x, y, z direction, 
respectively. The direction of a symmetry element corresponds to its position 
in the Hermann–Mauguin symbol. If a rotation axis n and a mirror plane m 
have the same direction (i.e. the plane is perpendicular to axis n), then they 
are denoted as a fraction n /m. 1 and 1 (triclinic crystal system), 2, m, and 
2/m (monoclinic), and 222, (2/m 2/m 2/m) and mm2 (orthorhombic). The 
short form of (2/m 2/m 2/m) is mmm. Plane groups can be depicted using 
the HM system. The first letter is lowercase p or c to represent primitive or 
centered unit cells. The next number is the rotational symmetry, as given 
above. The glide reflections are denoted g.  
The symbol of a space group is defined by combining the uppercase letter 
describing the lattice type with symbols specifying the symmetry elements.     

Hermann–Mauguin (HM) notation (international notation) 

https://en.wikipedia.org/wiki/Macron_(diacritic)
https://en.wikipedia.org/wiki/Triclinic_crystal_system
https://en.wikipedia.org/wiki/Monoclinic_crystal_system
https://en.wikipedia.org/wiki/Orthorhombic_crystal_system
https://en.wikipedia.org/wiki/Wallpaper_groups
https://en.wikipedia.org/wiki/Unit_cell
https://en.wikipedia.org/wiki/Glide_reflection
https://en.wikipedia.org/wiki/Glide_reflection
https://en.wikipedia.org/wiki/Space_group
https://en.wikipedia.org/wiki/Bravais_lattice


These are the Bravais lattice types in three dimensions:  
P — Primitive 
I — Body centered (from the German "Innenzentriert") 
F — Face centered (from the German "Flächenzentriert") 
A — Base centered on A faces only 
B — Base centered on B faces only 
C — Base centered on C faces only 
R — Rhombohedral 

https://en.wikipedia.org/wiki/Bravais_lattice
https://en.wikipedia.org/wiki/Bravais_lattice
https://en.wikipedia.org/wiki/Bravais_lattice


Miller indices (to determine crystal planes) 

If a plane cuts an axis on 
the negative side of the 
origin, the corresponding 
index is negative, indicated 
by placing a minus sign 
above the index: (hkl).  

For cubic lattice 
the Miller indices 
give the vector, 
normal to plane. 



Пример гранецентрированной кристаллической решетки 
и представители кристаллов,  
имеющих структуру типа NaCl: 



Структура алмаза. 

Пространственная решетка алмаза является 
кубической гранецентрированной. С каждым 
узлом решетки связан примитивный базис, 
состоящий из двух одинаковых атомов с 
координатами (000) и (1/4, 1/4, 1/4) 

Изображение кристаллической структуры алмаза,  
показывающее тетраэдрическое расположение связей: 



Пример объёмоцентрированной кристаллической решетки 

и представители кристаллов, 
имеющих структуру типа CsCl:  



Hexagonal structures 1. 

Examples of crystals with tight-packed hexagonal structure:  

1. Tight-packed hexagonal structure 

Packages of spheres: 



Гексагональные структуры 2: кристаллическая решетка графита 

Кристаллическая решетка графита бывает гексагональная и ромбоэдрическая. Гексагональная 
состоит из параллельных слоев (базисных плоскостей), образованных правильными 
шестиугольниками из атомов С. Углеродные атомы каждого слоя расположены против центров 
шестиугольников, находящихся в соседних слоях (нижнем и верхнем); положение слоев 
повторяется через один, а каждый слой сдвинут относительно другого в горизонтальном 
направлении на 0,1418 нм.  

Рис. 1: кристаллическая решетка α-графита. 
А, В-углеродные слои; пунктирными линиями 
показана элементарная кристаллическая ячейка 
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