Experimental studies of crystal structure

x-ray, electron and neutron diffraction

10 —~—
N
AN
5
°<
g 1.0 =t H-_L.‘
i = [
e 0.5 |
% > : ]
¥ ; |
‘ ]
. T . " % | - +~,¥
Electron-microscope photograph of atomic | | %
planes of a crystal Al,O, ¢ 4Si0,-H,0. 011 B 10 T 50 100
An increase 3 250 000 times. Photon energy, keV

Neutron energy, 0.01 eV
Electron energy, 100 eV



3 types of x-ray diffraction (1).

(1) A Laue camera. With a non-monochromatic x-ray
beam, the camera produces Laue patterns useful, e.g.,
forthe orientation of single crystals. Angle is fixed.

[from Charles Kittel, Introduction to Solid State Physics (Wiley, 2004)]



Example: the Laue pattern obtained from a single crystal
of the decagonal Al-Ni-Co phase (S1 type superstructure)

incident beam along the A, axis incident beam along the Ay axis

This method mainly gives the symmetry axes of the crystal



3 types of x-ray diffraction. (2) rotating crystal in monochromatic beam
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not reflected from the second crystal.



3 types of x-ray diffraction. (3) powder method.

« G400 1
« J720¢

S 840 =el

N2 580 31/

E g} /gggL 40 337 42227 537 £35

NES i J\ g 333 a4 <9 620 )

o8 ,F BN C20RNA_ A h -

t§ ISV N W RN N NN R SR [ T [N SR TR M RN R S
N z° 20°  40° &0°  Ao° og°  720°  r4p° rE0° 28

Puc. 2.13. PenTreHorpaMMbl KPEMHHS, NOAYYEHHBIE METOI0M NopoIKa (BepXHss)
H € TMOMOIIBIO DPEHTIEHOBCKOro audpakroMerpa (HuxkHss). Bepxussi penrredo-
FpaMMa TONydeHA NyTEM PErHCTPALMH OTPaXKEHHBIX Jy4Yel Ha MICHKY, HHIKHSST —
€ NOMOWbLIO CUeTUHKA OTPaxKeHHHBIX Jayuwed. (W. Parrish.)

Do not need mono-crystal samples



Scattering from parallel planes showing the origin of

Bragg's law. The planes are separated by a distance d.

The incident wave vector is K and the scattered wave vector
is K. The magnitude of both k and K'is 27/1, and
the path difference between waves partially reflected from

successive planes is 2dsiné.
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Derivation of diffraction condition
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r== K [1 — --R—- cos (p, R) + (%)2]%%1? (1 -—-—-j%cos (p, R) + )

gt (B:0+kr) — gikR exp {i [k - o — kp cos (9, R)]}
ko cos (p, R)=k’pcos(p, R)=Fk - p.
pl (Re0+kr) — pikR oxn [{ (R 0 — R+ p)] = e'*R exp (— ip + AR),

iRR | ~iwt
Esc (r)= L R 8 )exP (— i0mnp - Ak),

Amplitude of oy — exp (— f . AR). For point scattering centers:
diffracted wave r%:p P (= 100 ) Omnp = ma + nb + pe,




Derivation of diffraction condition
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|k|=|K’| - elastic X-ray scattering; r=R-p =>

do=exp(ik’R)
¢,=exp(ikp +ik'r)= exp(ik'R) exp (ikp -ik’p)]= ¢, exp(-idkp)

Amplitude of s — exp (— i . AR). For point scattering centers:
diffracted wave n;,o P (= mn; ) Omnp = ma + nb 4 pe,




Derivation of diffraction condition (result) for simple point lattice

For point scattering centers

the scattering amplitude = Z exp [— i (ma + nb -+ pc) - Ak].
map

is maximal ( .7, = M3)if

Omnp * AR = (ma + nb + pc) - AR = 2n - (esoe uuca0)

The diffraction

condition: a- AR = 231:/}',, b-AkR—= 275;3: C: AR = 2nl

is satisfied for any vector of reciprocal lattice G — 44 +~ &B -+ [

bXe = Boon. X4 o __g, aX?
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a b xXc a-bXe a-bXc
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© . ° Mocrpoenne Isanpaa. Mmeworea asa ycl1oBHa audpakuud: moep-
o o  BOe-— YCJOBHE AJ 4acTOTbl, BTOPOE — YCJOBHE AJS BOJHOBOI'O BEK-
© o © o Topa. OObeiuHeHHe 3THX [ABYX YCJIOBHH NPHBOAHT K Haubosee
© , ©  YRauHOMY TFeOMETPHYCCKOMY BHPaXKEHHIO YCIOBHS — AHPPAKUKH.
o o / A k
o o) fl(}) = ﬁ(;) ‘ k ==
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e, kB =k4+Gmk.- G+ G*=0
(h,k,l) denote the reflection peak

construction



The Ewald construction for the Laue method. The incident

X-ray beam is non- monochromatic, i.e., Ko<k <K,. The
Ewald spheres for all incident K fill the shaded region
between the spheres
centered on the tips
of the vectors K, and

K,, respectively.
The Laue classes.
[from P. M. Chaikin and T. C. Lubensky,

Principles of Condensed Matter Physics .,
(Cambridge University Press, 2000)] o . o . .




Structure factor of the basis

M Electron concentration from
c C — ; —
- each atom is given by / (O p" pmn‘o)
X BN -
A where Omnp == Ma + nb + pc
7 and p;:x1a+y10+210,
The total electronsconcentration is
a 5

< S =2 X (0 — 07— Omap)
RH\J/ mnp j=1

Puc. 2.29. [Tonoxkenne f-ro atoMa B aJe-

T T S e oy =\ dV n(p)exp (— ip - Ak) =

Konerant = ( 2. exXp(— iPpn, - Ak)) (2}, frexp(— ip; - /—\-k))

mnp

where the atomic form factor |, = 3 dVc;(0")exp(— ip” - AR),

The sum P = 2, [;exp (— ip; - G) is called structural factor of the basis

I e ° °
P (hk]) = exD [— 197 (x.h 4 .k L >y lt8ives the relative amplitudes of
kil Z}: f} a ( gk A2 different Bragg reflection peaks.



Crpysrypuoid ¢gaxrop OLK pewerxu. baszuc OLK peweTku

COCTOUT M3 ABYX OJAMHAKOBbIX aTOMOB. MX KoopauHaThl B OOBIYHOH
1 1

seMeHTapHoi KyOuueckoi suedke paBHb 000 # 5 5 —12— T. €. JAJ4
OJTHOTO H3 aTOMOB X| =y, =21 =0, a LI JAPYIOro x; = yo ==
= zo = 1/y. Torpa (2.61) npuHuMacr BuUzx

F(hk)=T{l F+expl—in{h+ &+ D]}, (2.62)

rpe [— pacceuBaioillass coCoOOHOCTH OTAEJbHOro aTtoma. BeJanuuHa
& paBHa HYJI0 B TeX CJyvasiX, KOI'J1a 3HaueHue 3KCHOHEHTL PaBHO
—1, T. €. BO BceX TeX cJayuyasX, KOrJla ee NMoKasaTeJb eCTh HeYeTHOE
UHCJI0, TIOMHOXKeHHOe Ha —Iim. Torga uMeeM:

# =0, ecau cymma h -+ k-1 paBHa HEeUeTHOMY IeJOMY YHCAY;

¥ = 2f, ecay 3Ta cymMMa paBHAa YETHOMY ULEJIOMY UHCAY.

B nudpakmHoHHON KapTHHE METaJJIHUeCKOro HaTpHUSsl, HMEIOLLero
OLLK pelnneTky, oTCYTCTBYIOT OTpaKeHHUsi, OOYCJOBJEHHBEe IJIOCKO-
ctamu (100), (300), (111), (221), oaHAKo OTpakeHHUsl, ONpeaessie-
Mble maockocTsaMH (200), (110) u (222), OyayT NPHUCYTCTBOBATD;
yKa3aHHble HHAEKChl mjockocted (Ak[) coOTBeTCTBYIOT KyOHUECKOH
sTyeHKe.




Explanation of the absence of a (100) reflection from a body-centered cubic lattice.

Figure 16 Explanation of the absence of a (100} reflection from a body-centered cubic lattice. The

phase difference 'between successive planes is 77, so that the reflected amplitude from two adjacent
planesis 1 + e '"=1~-1= 0.



Structure Factor of the fcc Lattice

The basis of the fcc structure referred to the cubic cell has identical atoms
at 000; Oz3; 203; £20. Thus (46) becomes

S(v1vgta) = f{1 + exp[—im(ve + va)] + exp]—im(v, + 03)]

+ exp|—im(v; + vo)]} . (48)

If all indices are even integers, S = 4f; similarly if all indices are odd integers.
But if only one of the integers is even, two of the exponents will be odd multi-
ples of —iz and S will vanish. If only one of the integers is odd, the same
argument applies and S will also vanish.

Thus in the fcc lattice no reflections can occur for which the indices are
partly even and partly odd. The point is beautifully illustrated by Fig. 17: both
KCl and KBr have an fcc lattice, but KCl simulates an sc lattice because the K+
and Cl™ ions have equal numbers of electrons.
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Fig. 17. Comparison of x-ray reflections from KCI and KBr powders. In KCI the
numbers of electrons of K* and CI- ions are equal. The scattering amplitudes f(K*)
and f(CI') are almost exactly equal, so that the crystal looks to x-rays as if it were a
monatomic simple cubic lattice of lattice constant a/2. Only even integers occur in
the reflection indices when these are based on a cubic lattice of lattice constant a.
In KBr the form factor of Br- is quite different than that of K*, and all reflections of

the free lattice are present.



Atomic form-factor [,= S dV ¢c(r)e—ir¢

0 Sin Gf
Gr

iGr __ e-—iGr

fGEQ:n:Srza’rd(cosa)c(r)e‘“fG’wS“:QnSa'rrzc(r)e o

For spheri.call_y symmetric fG -— 41 g dr c (f) r
electron distribution in atom A

If the electron density was located (sin Ur)/Gr =1 andforall G
only in the center of the atom, then Fo = 4m S dre(r)ri=2

where Z is the number of atomic electrons. Therefore f; is the ratio of
the radiation amplitude scattered by the actual electron distribution in
an atom to that scattered by one electron localized at a point.



Temperature dependence of reflection line intensity
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Inst?\pt atom 0(l)=0y+ u (1),

position is
The average scattering amplitude is

(#) = oty {exp (— iu - G)),
(— it G)= I —-i(u-G)-—-é-((u‘GV)‘!‘

using the averages

(-G =10 {(u- G)2>-— - W) G2,

and the. ox [__ LN ]_ { — ~ <u2> G? -

expansion

we obtain the intensity the Debye-Waller factor of temperature damping:

[ == [,exp [-——- —;—(uz) GQ],

where I, is the intensity
without atom motion.
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The reciprocal lattice

Consider a set of points R constituting a Bravais
lattice, and a plane wave, e,

The set of all wave vectors K that yield plane waves
with the periodicity of a given Bravais lattice is
known as its reciprocal lattice.

A reciprocal lattice is defined with reference to
a particular Bravais lattice.

The Bravais lattice that determines a given reciprocal
lattice is often referred to as the direct lattice, when

viewed in relation to its reciprocal.



Reciprocal lattice

The reciprocal lattice is itself a Bravais lattice but in momentum space

Let a,, a, and a, be a set of primitive vectors for the direct lattice.

Then the three primitive vectors
a, Xa
bl — 272- - ° y
al ¢ (a.2 X 8.3)
d,; X a
b2 — 272- ’ - y
al ¢ (a2 X a3)

can generate the reciprocal lattice.

The reciprocal of the reciprocal lattice is the original
direct lattice.



30HbI BPUJJIOZHA

Jorna bpuaarwsna npedcraganer coboi aveliky Buenepa — Jetir-
ua 6 obparnou peuwterxe. (flueilka BurHepa — 3eflTma npsiMoin pe-
meTkH nokaszaua Ha puc. 1.8.) Onpenenentaa takum oOpasom 30Ha
bpuaniosia ABAfgeTCA HArJAAAHON r¢OMeTpUUYecKOH HHTeplperaluei

2-G+ G?=0. C 0 -
yCJAOBHA AUPPAKUHU -+ HauyaJa yaA00HO B 3TO yCJI0
Biie foJgcTapuTh —G BMecTO G, uTOOK 3anucaTh ycaopue aAundpax-

iy B hopme
2k - G = G~. (2.41)

JTa MOJACTAHOBKA He MeHsleT CYLLeCTBO YCJAOBHS AHPPaKUHH, NO-
CKOJbKY, ccaH G — BekTop obOpatHo@t petleTkH, 1o U —G TakxKe
ABJasiecTcd BEKTOpoM oOpaTHo# peltetku. [lepennuiem (2.41) cae-

Avioutim o0pa3oi:
k- ([:G) = ([,G). (2.42)

[TocTpouM NJOCKOCTb, NMePHeHAHKYJASAPHYI0O K BeKTOpYy & U npoxo-
ASIHLYIO Yepe3 ero cepeauny; roraa (puc. 2.21) npoussoasusill sek-
T0p k, npogedentnositi 00 3TOU NAOCKOCTU U3 TOUKU, 8bIOPAHHOL 30
Fauanro KoopouHar, Oyder yooBACTBOPATL YCAOBUIO OUPparyuu.
ITocTpoeHHass TakuM 00pa3oM NJOCKOCTb 00pas3yeT 4acTh I'PaHUILb]

30HBI DpHJAMI03HA.



Brillouin zones

Brillouin gave the statement of the diffraction condition that is most widely used in
solid state physics, which means in the description of electron energy band theory
and of the elementary excitations of other kinds.

A Brillouin zone is defined as a Wigner-Seitz primitive cell in the reciprocal lattice.

Brillouin zone gives a vivid geometrical interpretation of the diffraction condi-
tion 2k - G = G” of Eq. (23). We divide both sides by 4 to obtain

k-(:6)= (BG) 26)

We now work in reciprocal space, the space of the ks and G’. Select a
vector G from the origin to a reciprocal lattice point. Construct a plane normal
to this vector G at its midpoint. This plane forms a part of a zone boundary
(Fig. 9a). An x-ray beam in the crystal will be diffracted if its wavevector k has
the magnitude and direction required by (26). The diffracted beam will then
be in the direction k — G, as we see from (19) with Ak = —G. Thus the
Brillouin construction exhibits all the wavevectors k which can be Bragg-
reflected by the crystal.



Figure 9a Reciprocal lattice points near the point O at , '
the origin of the reciprocal lattice. The reciprocal lattice 7 A //.2
’ L -
vector G connects points OC; and Gp connects OD. : -
Two planes 1 and 2 are drawn which are the perpendic- _ el
ular bisectors of G and Gp, respectively. Any vector -7
from the origin to the plane 1, such as k,, will satisty the | * X ° | . .
diffraction condition k; * (3 G¢) = (3 G¢)*. Any vector - g 1, ki |
from the origin to the plane 2, such as ko, will satisfy the | -7 p 277 |
diffraction condition k, (2 Gp) = (3 Go . P> 2, Moot
760
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Square reciprocal lattice with reciprocal lattice
vectors shown as fine black lines. The lines
shown in white are perpendicular bisectors of
he reciprocal lattice vectors. The central square
is smallest volume about the origin which is
bounded entirely by white lines. This square is
the Wigner-Seitz primitive cell of the reciprocal

lattice. It is called the first Brillouin zone.




The central cell in the reciprocal lattice is of special importance in the
theory of solids, and called the first Brillouin zone. The first Brillouin zone
is the smallest volume entirely enclosed by planes that are perpendicular
bisectors of the reciprocal lattice vectors drawn from the origin.

@
Construction of the first Brillouin s po T
zone for an oblique lattice in two ¢ ¢
dimensions. We first draw a number Crystal and reciprocal lattices in 1D. The
of vectors from O to nearby points  basis vector in the reciprocal lattice is

in the reciprocal lattice. Next we b=2n/a. The shortest reciprocal lattice
construct lines perpendicular to vectors from the origin are b and -b. The
these vectors at their midpoints. perpendicular bisectors of these vectors

The smallest enclosed area is the form the boundaries of the first Brillouin
first Brillouin Zzone. zone. The boundaries are at k = *r/a.
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Primitive basis vectors of the First Brillouin zone of the body-
body-centered cubic (BCC) lattice centered cubic lattice. Figure is
1 - - a regular rhombic dodecahedron
a, = ) (x + y — Z), . .
1 Reciprocal lattice vectors of BCC correspond to FCC:

b =5 a(—x-+y+ 2), A:Eg(;+§), B,__z.?g_(§+g), C=%?—(i+£)

=5a(*—g+2, GehA+hrB+IC=L2(h+0x+(h+Eg+E+D3

+
a
0 ~ ~ 251 ~ ~ 2
12 shortest vectors %(j: %+ 1), ?(i g+ 2), _(Z_‘(i X +

of reciprocal lattice:
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FCC o' =
lattice

Primitive basis vectors of the face- Brillouin zones of the face-centered cubic
centered cubic (FCC) lattice. lattice. The cells are in reciprocal space,
A — 2;_ (x4 g — 2), and the reciprocal lattice is body centered.

2 2 ~ ~
B="(—x+y+2, G=""lh—k+Dz+h+h—0g+(—h+k+0)7
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