Ковалентная связь

При взаимодействии нескольких, например, двух атомов с не полностью заполненными электронными оболочками электрон имеет возможность переходить с одного атома на другой без существенного увеличения энергии. Возникающие квантовые состояния электрона соответствуют его делокализации между несколькими атомами, и волновые функции этих состояний называют молекулярными орбиталями. Согласно квантовомеханическому принципу неопределенности, при пространственной делокализации электрона его кинетическая энергия понижается. В связи с этим энергия основного состояния молекулы с делокализованными электронами, вообще говоря, меньше суммы энергий составляющих её атомов с локализованными на них электронами. Поэтому среди молекулярных орбиталей всегда есть состояния, заполнение которых приводит к понижению энергии сравнительно со свободными атомами, и это обычно приводит к связыванию атомов в молекулы. Такие орбитали называют связывающими, в то время как аналогичные орбитали, соответствующие состояниям с энергией, большей чем в отдельных атомах, называют антисвязывающими.

H		0 0	Связь	Н-Н	C-C	Si-Si	Ge-Ge	P-P	0-0	TeTe	Cl-Cl
••	C:C:C	O:Si:O:Si:O O O	E_b , эВ	4.5	3.6	1.8	1.6	2.2	1.4	1.4	2.5


Природа ковалентной связи на упрощенном примере молекулы водорода

Напоминание из квантовой механики (задача 2.7 из Галицкого): частица в одномерной δ - яме

определение
$$\delta(t) = \left\{ egin{array}{ll} 0 & t
eq 0 \\ \infty & t = 0 \end{array} \right. \int dt f(t) \delta(t) = f(0) \qquad \delta(t) = \lim_{\sigma o 0} \frac{1}{\sqrt{2\pi}\,\sigma} e^{-t^2/2\sigma^2}$$

Для одной потенциальной δ - ямы уравнение Шредингера имеет вид

для однои потенциальной
$$\delta$$
- ямы уравнение шредингера имеет вид
$$\left(-\frac{d^2}{dx^2} + \kappa^2 \right) \psi_0(x) = g \delta(x) \psi_0(x) \quad \text{где} \\ g = 2mV/\hbar^2, \ \kappa^2 = (-2mE/\hbar^2)$$
 Интегрируя уравнение по х от -0 до +0 и используя определение δ -

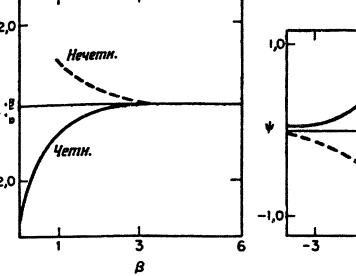
Волновая функция:
$$\psi_-(x)$$
 есть $A \exp(\kappa x)$ $\psi_+(x)$ есть $A \exp(-\kappa x)$ $\Longrightarrow \kappa = g/2 = \kappa_0$,

что соответствует энергии связи $\varepsilon_0 = \hbar^2 \kappa_0^2/2m = mV^2/2\hbar^2$

Объяснение природы ковалентной связи на упрощенном примере молекулы водорода

Для <u>качественного</u> описания молекула водорода дается гамильтонианом одномерного движения электрона в потенциале двух δ -ям (ядер водорода):

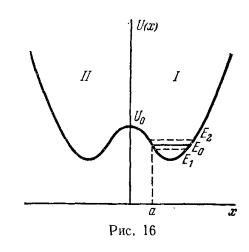
$$\hat{H}\psi = \left\{ -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} - V\left[\delta(x-a) + \delta(x+a)\right] \right\} \psi(x) = E\psi(x).$$


Симметричные и антисимметричные волновые функции в трех областях:

Сшивая волновые функции получим энергии связи двух состояний:

$$arepsilon_s=\hbar^2\kappa_s^2/2m$$
 и $arepsilon_a=\hbar^2\kappa_a^2/2m$:

где
$$\kappa_s = \frac{g}{1 + \operatorname{th}(\kappa_s a)};$$


$$\kappa_a = \frac{g}{1 + \operatorname{cth}(\kappa_a a)}$$

Другое решение задачи о двух ямах (в квазиклассическом приближении)

Ландау & Лифшиц, *Квантовая механика* (3 том), стр. 223-224 (задача 3 после параграфа 50)

3. Поле U(x) представляет собой две симметричные потенциальные ямы (I и II, рис. 16), разделенные барьером. Если бы барьер был непроницаем для частицы, то существовали бы уровни энергии, отвечающие движению частицы только в одной или в другой яме, одинаковые для обеих ям. Возможность перекода через барьер приводит к расщеплению каждого из этих уровней на два близких уровня, соответствующих состояниям, в которых частица движется одновременно в обеих ямах. Определить величину расщепления (поле U(x) предполагается квазиклассическим).

Решение. Приближенное решение уравнения Шредингера в поле U(x), отвечающее пренебрежению вероятностью перехода через барьер, строим с помощью квазиклассической волновой функции $\psi_0(x)$, описывающей движение (с некоторой энергией E_0) в одной яме (скажем, в яме I), т. е. экспоненциально затухающей в обе стороны от границ этой ямы; функция $\psi_0(x)$ предполагается нормированной так, что интеграл от ψ_0^2 по области ямы I равен единице. При учете малой вероятности туннелирования уровень E_0 расщепляется на уровни E_1 и E_2 . Правильные волновые функции нулевого приближения, отвечающие этим уровням, представляют собой симметричную и антисимметричную комбинации

$$\psi_1(x) = \frac{1}{\sqrt{2}} \{ \psi_0(x) + \psi_0(-x) \}, \quad \psi_2(x) = \frac{1}{\sqrt{2}} [\psi_0(x) - \psi_0(-x)].$$

Другое решение задачи о двух ямах (продолжение) (в квазиклассическом приближении)

Пишем уравнения Шредингера

$$\psi_0'' + \frac{2m}{\hbar^2} (E_0 - U) \psi_0 = 0,$$

$$\psi_1'' + \frac{2m}{\hbar^2} (E_1 - U) \psi_1 = 0,$$

умиожаем первое на ψ_1 , второе на ψ_0 , вычитаем почленно и интегрируем по dx

Имея в виду, что

при x = 0: $\psi_1 = \sqrt{2}\psi_0$, $\psi_1' = 0$

$$\mathsf{N} \quad \int\limits_0^\infty \psi_0 \psi_1 \, dx \approx \frac{1}{\sqrt{2}} \int\limits_0^\infty \psi_0^2 \, dx = \frac{1}{\sqrt{2}}$$

находим

$$E_{1} - E_{0} = -\frac{\hbar^{2}}{m} \psi_{0} (0) \psi_{0}' (0)$$

и аналогично

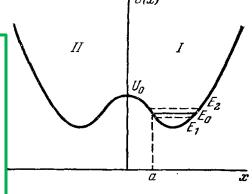
$$E_2 - E_1 = \frac{2\hbar^2}{m} \,\psi_0 \,(0) \,\,\psi_0' \,(0).$$

В квазиклассическом приближении

$$\psi_{0}(0) = \sqrt{\frac{\omega}{2\pi v_{0}}} \exp\left(-\frac{1}{\hbar} \int_{0}^{u} |p| dx\right)$$

$$\psi_{0}'(0) = \frac{mv_{0}}{\hbar} \psi_{0}(0), v_{0} = \sqrt{2(U_{0} - E_{0})/m}.$$

 $(a - \text{точка поворота, отвечающая энергии } E_0$ $\omega = 2\pi/T - \text{частота классического периодического движения.}$


Получаем ответ:

$$E_{2} - E_{1} = \frac{\omega \hbar}{\pi} \exp \left(-\frac{1}{\hbar} \int_{-a}^{a} |p| dx \right)$$

$$p = \sqrt{2m(E - U)}$$

Применение этих формул к описанию ковалентной связи молекулы водорода – возможная тема

курсовой работы!

Возможные темы курсовой работы

1.Применение этих двух простых методов и полученных формул к описанию ковалентной связи молекулы водорода – возможная тема курсовой работы! Нужно определить параметры потенциала (для δ -ямы) по известным значениям уровней атома водорода, и для этих параметров найти энергию связи $\epsilon(r)$ как функцию расстояния между атомами, и минимизируя ее найти оптимальное расстояние и энергию связи, а затем сравнить с известными данными. Для квазиклассического подхода потенциал известен: e^2/r . Надо лишь использовать написанные формулы для вычисления энергии связи $\epsilon(r)$ как функции расстояния между атомами, и минимизируя ее найти оптимальное расстояние и энергию связи.

Связь	Н-Н	C-C	Si–Si	Ge–Ge	P-P	0-0	TeTe	Cl-Cl
$\overline{E_b}$, эВ	4.5	3.6	1.8	1.6	2.2	1.4	1.4	2.5

Межъядерное расстояние молекулы Н₂ R= 0,7416 Å

2. Метод Гайтлера – Лондона описания ковалентной связи молекулы водорода (метод линейной комбинации атомных орбиталей): параграф 3.2 из книги Вакс В. Г. - Межатомные взаимодействия и связь в твердых телах.

Возможные темы курсовой работы

2. Метод Гайтлера – Лондона описания ковалентной связи молекулы водорода (метод линейной комбинации атомных орбиталей, вариационный метод): параграф 3.2 из книги Вакс В. Г. - Межатомные взаимодействия и связь в твердых телах.

Берется уже трехмерное уравнение Шредингера с гамильтонианом
$$\hat{H}\psi = \left[\hat{T}_1 + \hat{T}_2 + e^2\left(\frac{1}{R} - \frac{1}{r_{1A}} - \frac{1}{r_{1B}} - \frac{1}{r_{2A}} - \frac{1}{r_{2B}} + \frac{1}{r_{12}}\right)\right]\psi = E\psi$$

Волновая функция берется в виде $\psi = \sum_i c_i \psi_i$ линейной комбинации атомных ВФ

Полная энергия
$$E = \frac{\sum_{ij} c_i^* c_j H_{ij}}{\sum_{ij} c_i^* c_j S_{ij}}$$
 где $H_{ij} = \int d\Gamma \ \psi_i^* \hat{H} \psi_j, \ S_{ij} = \int d\Gamma \ \psi_i^* \psi_j$

Минимизируем полную энергию по коэффициентам c_i : $\delta E/\delta c_i = 0$ или $\delta E/\delta c_i^* = 0$.

This gives a system of linear equations: $\sum_{j} (H_{ij} - ES_{ij})c_j = 0, \quad || \det ||H_{ij} - ES_{ij}|| = 0$

With symmetric and anti-symmetric wave functions one obtains the energy shift

$$\Phi^{(0)} = \Phi_s(\mathbf{r}_1, \mathbf{r}_2) = \Phi_\alpha + \Phi_\beta; \qquad \Phi^{(1)} = \Phi_a(\mathbf{r}_1, \mathbf{r}_2) = \Phi_\alpha - \Phi_\beta. \quad E_s = \frac{H_{ss}}{S_{ss}}; \qquad E_a = \frac{H_{aa}}{S_{aa}}$$

Межъядерное расстояние молекулы H_2 R=0.7416 Å, энергия связи **4.5** eV.

Ковалентная связь

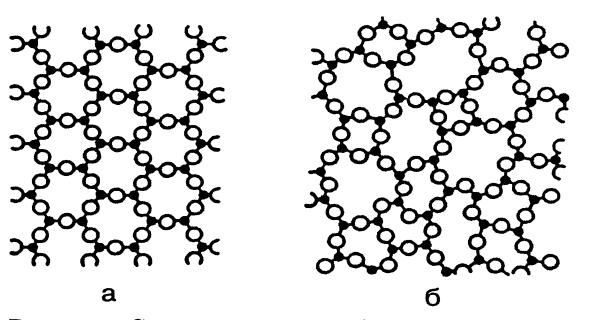
При взаимодействии нескольких, например, двух атомов с не полностью заполненными электронными оболочками электрон имеет возможность переходить с одного атома на другой без существенного увеличения энергии. Возникающие квантовые состояния электрона соответствуют его делокализации между несколькими атомами, и волновые функции этих состояний называют молекулярными орбиталями. Согласно квантовомеханическому принципу неопределенности, при пространственной делокализации электрона его кинетическая энергия понижается. В связи с этим энергия основного состояния молекулы с делокализованными электронами, вообще говоря, меньше суммы энергий составляющих её атомов с локализованными на них электронами. Поэтому среди молекулярных орбиталей всегда есть состояния, заполнение которых приводит к понижению энергии сравнительно со свободными атомами, и это обычно приводит к связыванию атомов в молекулы. Такие орбитали называют связывающими, в то время как аналогичные орбитали, соответствующие состояниям с энергией, большей чем в отдельных атомах, называют антисвязывающими.

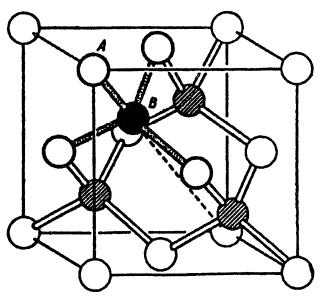
H		0 0	Связь	Н-Н	C-C	Si-Si	Ge-Ge	P-P	0-0	TeTe	Cl-Cl
••	C:C:C	O:Si:O:Si:O O O	E_b , эВ	4.5	3.6	1.8	1.6	2.2	1.4	1.4	2.5

Валентность химических элементов и ковалентная связь

Приставка ко- часто имеет то же значение, что и со-: совместность, совместимость

Table 1 Cohesive energies


Li 158. 1.63 37.7	Be 320. 3.32 76.5	Energy required to form separated neutral atoms in their ground electronic state from the solid at 0 K at 1 atm. The data were supplied by Prof. Leo Brewer in units keal per mole, revised to May 4, 1977, after LBL Report 3720 Rev.										B 56 5.8 134	1	C 711. 7.37 170.	N 474. 4,92 113.4		61 60 0.03	F 81.0 0.84 19.37	Ne 1.92 0.020 0.46			
Na 107. 1,113 25,67	Mg 145. 1.51 34.7	←				LOUPER Ses men	kJ/mo eV/ato keal/m	m	- Ada	S. Southern Co.				$\overset{\rightarrow}{\longrightarrow}$	AI 327 3.3 78.	9	Si 146. 1. 6 3 106.7	P 331. 3.43 79.16	\$ 27 2.8 65		CI 135. 1.40. 32.2	Ar 7.74 0.080 1.85
K 90.1 0.934 21.54	Ca 178. 1.84 42.5	Sc 376 3.90 89.9	Ti 468. 4.85. 111.8	V 512 531 122.4	Cr 395. 4.10 94.5	Mn 28: 2:9 67.	2. 4	e 13. .28 8.7	Co 424 4.39 101	4	Ni 28. .44 02.4	Cu 336 3.4 80.	5. 9	Zn 130 1.35 31.04	Ga 271 2.8 64	. ; 	Ge 372 3.85 38.8	As 285.3 2.96 68.2	Se 23 2. 56	7 46	Br 118. 1.22 28.18	Kr 11.2 0.116 2.68
Rb 82.2 0.852 19.64	Sr 166 1.72 39.7	Y 422 4,37 100.8	Zr 603. 6.25 144.2	Nb 730. 7.57 174.5	Mo 658 6.82 157.		1. 6 5 6	tu 50. 574 55.4	Rh 554 5,75 132	3	d 376. 1.89 19.8	Ag 284 2.9 68.	1. 5	Cd 112 1,16 26.73	In 243 2.5 58.	3.	Sn 303 3.14 72.4	Sb 265. 2.75 63.4			1 107. 111 25.62	Xe 15.9 0.16 3.80
Cs 77.6 0.804 18 54	Ba 183. 1,90 43.7	La 431. 4,47 103.1	Hf 621. 6.44 148.4	Ta 782. 8.10 186.9	W 859. 8.90 205.	Re 775 8,0 2 185	5. 7 3 8	0 s 788. 3.17 88.4	1r 670 6.94 160	5	64. 684 34.7	Au 368 3.8 87.	3.	Hg 65. 0.67 15.5	TI 182 1.8 43.	8	Pb 196. 2.03 46.78	Bi 210. 2.18 50.2			At	Rn 19.5 0.202 4.66
Fr	Ra 160 1.66 38.2	Ac 410 4.25 98.	Ce 41 4.3 99	7. 35 32 3.	70 S	Nd 328. 3.40 78.5	Pm	Sr 20 2.	6 14	Eu 179 1.86 42.8		0.	Tb 391 4.05	3.		Ho 302 3.14 72.3	3.3	7. 2 29 2	7 m 233 242 55.8	Yb 15	4. 428 60 4.4	8 3
			Th 59 6.2 14	8.		U 536. 5.55 128.	Np 456 4.73 109.		7. 60	Am 264 2,73 63		5 99	Bk	C		Es	Fn		/ld	No		


Ковалентные связи в кристаллах

Приставка ко- часто имеет то же значение, что и со-: совместность, совместимость

•		,	0	энергия связ	ви Ge	Si	C	SiO_2
,,, - , , ,	C:C 0:S	i:0:	:Si:O	E_c , э $\mathrm{B}/\mathrm{мол}$.	3.9	4.6	7.4	17.6

Схематическое изображение ковалентных связей в метане, алмазе и оксиде кремния (кварце).

Тетраэдрические ковалентные связи в структуре алмаза[†]

Рис. 8.3: Схематическое изображение кристаллической и аморфной структуры из ковалентно связанных атомов (двумерные аналоги кристаллического и аморфного кварца): a – кристалл, δ – стекло.