
Classical theory of elasticity. Deformation.
Imagine that three orthogonal vectors x, y, z of unit 
length are embedded securely in the unstrained solid. 
After a small uniform deformation of the solid these 
axes x,y,z are distorted in orientation and in length. 

The coefficients εαβ, called strain tensor, define the deformation; they 
are dimensionless and << 1 (if the strain is small). The original axes 
were of unit length, but the new axes are not necessarily of unit length:

In a uniform deformation each primitive cell 
of the crystal is deformed in the same way. 
The new axes x', y', z' may be written in 
terms of the old axes: 

deformation

Fig.1. Coordinate axes (a) before 
a deformation and (b) after it.

The length of the unit vector changes



Change of length and volume during deformation

The displacement R due to the deformation is

Strain 
components 

The fractional increase of volume associated with a deformation is 
called dilation. The dilation is negative for hydrostatic pressure. 
The unit cube of edges x, y, z after deformation has a volume

Relative volume change during deformation



Tensors. Definition as multidimensional arrays.

An n-th-rank tensor in m-dimensional space is a mathematical object that has n indices 
and mn components and obeys certain transformation rules (its components transform 
as a products of the components of n vectors). Each index of a tensor ranges over the 
number of dimensions of space. Tensors are generalizations of scalars (0-rank tensor 
that have no indices), vectors (that have one index => tensor of rank 1), and matrices 
(that have two indices => 2nd-rank tensor)  to an arbitrary number of indices. 
Tensors may have upper (contravariant) and lower (covariant) indices: Ai or Ai . 
They are related by the metric tensor gik : Ai =gik Ak. Usually, gik =δik , => Ai =Ai

The tensor product takes two tensors, S and T, and produces a new tensor S ⊗ T, 
whose order is the sum of the orders of the original tensors: Aik ⊗ Blm =Ciklm .

Tensor contraction is an operation that reduces a type (n, m) tensor to a type (n−1,m−1) 
tensor. It thereby reduces the total order of a tensor by two. The operation is achieved 
by summing components for which one contravariant index is the same as one 
covariant index to produce a new component. Components for which those two indices 
are different are discarded. (This is like taking the trace of a matrix.) For example, a (1,1) 
tensor Ai

k can be contracted to a scalar: Ai
i =Σ i ai

i . Or Aik Bik = Σ ik aik bik = C.

https://en.wikipedia.org/wiki/Tensor_product
https://en.wikipedia.org/wiki/Tensor_contraction


Deformation in tensor notations.
The displacement vector r' — r has the components  
The distance between two points is
It changes due to deformation:  

Substituting

Then after introducing the strain tensor

we rewrite dl’2 as (one may interchange 
the suffixes i and I due to summation) 

dl’2 takes the final form (uik= uki): 

In almost all 
cases occurring 
in practice, the 
strain is small.



The stress tensor and Hooke’s law.

Stress 
tensor

The component σik of the stress tensor is 
the i-th component of the force on unit 
area perpendicular to the xk-axis. 
For instance, the force acting on unit area 
perpendicular to the x-axis and normal to the area 
(i.e. along the x-axis) is σxx, and the tangential 
forces (along the y and z axes) are σyx and σzx.

The total force acting on a solid of volume V is

The moment of the forces 
on a portion of the body is

For hydrostatic compression and the moment of forces is Mik=0.



The energy of deformations and Hooke’s law.
The work δR in terms of the change in the strain tensor is 

The total work on a body is
Change in the internal energy
Change in the free energy
Hence, the stress tensor 
is given by the derivative: 

Hooke’s law in a general form (for crystals).
In equilibrium the Taylor series F(uik) does not contain terms 
linear in uik, and the free energy of a deformed crystal is

Hence, the stress tensor σik is linear 
in strain tensor uik (Hooke’s law):

If the crystal possesses symmetry, relations exist between the various components 
of the tensor λikim, so that the number of independent components is less than 21.

The least number of non-zero moduli that is 
possible by suitable choice of the co-ordinate axes 
is the same for all the classes in each system :

Triclinic 18 
Monoclinic 12 
Orthorhombic 9 

Tetragonal 6 
Rhombohedral 6 
Hexagonal 5 
Cubic 3



Hooke’s law in isotropic media
The free energy can be expanded in a Taylor series for small strain tensor uik:

In equilibrium this Taylor series does not contain terms linear in uik, => the stress tensor 
is linear in strain tensor uik: 

Any deformation can be represented as the sum 
of a pure shear and a hydrostatic compression: 
Then the free energy becomes

K is called the bulk modulus of hydrostatic compression (or simply the 
modulus of compression) and µ is shear modulus or modulus of rigidity. 

The stress tensor σik = ∂F/∂uik is linear in the strain tensor 
(Hooke’s law ): 

In crystals the Hooke’s law is



Elastic waves in crystals (from Landau & Lifshitz, Vol. 7)

where

Since the tensor λiklm is symmetric with respect to the indices l and m, we can inter-
change these in the first term, which then becomes identical with the second term. 

The general equations of motion (second Newton’s law) 

Substituting also the strain tensor 
(expressed via displacement derivatives):

One 
obtains

Let us consider a monochromatic elastic wave in a crystal.
We seek a solution of the equations of motion in the form:
Substituting this to (1) we obtain 

(1)

This is a set of three homogeneous equations of the first degree for 3 unknowns ux, uy, uz. 
Such equations have non-zero solutions only if the determinant of coefficients is zero. 
Thus we obtain the cubic equation on ω:
It has 3 solutions (branches of sound).
This equation gives the relation ω(k) between frequency 
and wave vector of waves, called the dispersion relation. 

Thus the equations of motion are



Dispersion relation and group velocity of sound waves 
Equation determines eigenvectors ui
(polarization) and eigenvalues ω(k) (dispersion) of the sound waves. 
The velocity of propagation of the wave (the group velocity) is given by 
the derivative of the frequency with respect to wave vector: 
In an isotropic body, the frequency is proportional to the magnitude of k, 
and the direction of the velocity is the same as that of k. Then the sound 
velocity c is constant (independent of k) and directed along k.
In crystals the direction of wave velocity is, generally, 

not the same as of its wave vector 
Example: Dispersion relation for elastic waves propagating in hexagonal crystal. 

Hexagonal crystal has 5 
independent elastic modules:
Take finite angle θ between k and z:

Solving equation we find
and



Equations of motion and relation between 
strain and stress tensors in isotropic media 

The stress tensor σik = ∂F/∂uik is then given in terms of strain tensor by 

Then

Substituting this to the equation of motion
we obtain

K is the modulus of hydrostatic compression and µ is shear modulus, 

In an isotropic body, the free energy

The ratio of transverse compression to longitudinal 
extension, called Poisson's coefficient, is 

or

the modulus of extension (Young's modulus:)



Dispersion relation and group velocity 
of sound waves in isotropic media 

Equation 
of motion

Consider a plane elastic wave in an infinite isotropic medium, i.e. a wave in which 
the deformation u is a function only of one coordinate (x) and of the time. All 
derivatives with respect to y and z in equation (1) are then zero, and we obtain

(1)

and

longitudinal wave transverse wave

where the sound 
velocities are

Equations (2) are ordinary wave equations in one dimension, and the quantities cl and ct
which appear in them are the velocities of propagation of the wave. We see that the 
velocity of propagation for the component ux is different from that for uy and uz. 

(2)

The velocity of longitudinal waves is greater than of transverse waves:
The velocities cl and ct are often called the longitudinal and 
transverse velocities of sound.



Surface waves (Rayleigh waves). 
Equation of motion (where u is any component 
of the vectors ul or ut , and c is cl or ct ):

has a solution where

Boundary condition at the surface gives the relation 
between various components of the displacement vector u of the wave.

For this gives usual plain wave. 
However, for this solution gives a surface wave. 
The amplitude of surface wave is exponentially damped toward media.

Together with equation of motion this gives the dispersion ω(k):

(1)

<=>
where the number ξ≈0.9
satisfies the equation 

The ratio of longitudinal and transverse velocity depends 
only on the Poisson’s coefficient, being material constant:



Notations in the Kittel’s book (1)
Stress Components. The force acting on a unit area in the solid is defined as the 
stress. There are nine stress components:
The capital letter indicates the direction of the force, and the subscript indicates the 
normal to the plane to which the force is applied. The stress component Xx represents a 
force applied in the x direction to a unit area of a plane whose normal lies in the x direc-
tion; the stress component Xy represents a force applied in the X direction to a unit area 
of a plane whose normal lies in the у direction(Fig.1). The number of independent stress 
components is reduced from nine to six by applying to an elementary cube (as in Fig. 2) 
the condition that the angular acceleration vanish, => the total torque must be zero. 

Fig. 1

Fig. 2

In tensor 
notations 

The component σik of the 
stress tensor is the i-th
component of the force 
on unit area ⊥ to xk-axis.



Notations in the Kittel’s book (2)

The Hooke’s law in Kittel’s notations is



Bulk Modulus and Compressibility 



Stiffness constants 
of cubic crystals

Adiabatic elastic stiffness constants 
of several cubic crystals at room 
temperature or 300 K. 



Temperature dependence 
of stiffness constants

Silver (Ag) BaF2

Stiffness 
constants
decrease 

with 
increasing 

temperature
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