Classical theory of elasticity. Deformation.

y Imagine that three orthogonal vectors X, y, z of unit

z A . length are embedded securely in the unstrained solid.
deformation After a small uniform deformation of the solid these
|:> axes x,y,z are distorted in orientation and in length.

/” In a uniform deformation each primitive cell

'7\ .
90 # of the crystal is deformed in the same way.
L{\/;\\‘ v’ Thenewaxes X', y', ' may be written in
o A
/ 90 Y terms of the old axes:

T 2 x'=(1+ €)% + €,y + €2

Fig.1l. Coordinate axes (a) before y' = €%k + (1 + €,)y + €,.2

a deformation and (b) after it. 2 =& + €9 + 1+ ¢e,)2

The coefficients g, called strain tensor, define the deformation; they
are dimensionless and << 1 (if the strain is small). The original axes
were of unit length, but the new axes are not necessarily of unit length:

x'+x'=1 +26xx+ 632cx+€§y+ezz |::>I' = ] 'z €x + -
The length of the unit vector changes




Change of length and volume during deformation
The displacement R due to the deformation is x: B (El ;f’z):::’“’;y :i‘i
R=r'—r=a - +yly — 9+ -2 ~ _ ey +'-°"i’1y+ e

R(r) = (xe,, + ye,, + 26,08 + (€, + Y€, + 26,)7+ (xe,, + ye,, + z€..)2
= u(r)x + o(r)y + wr)z
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The fractional increase of volume associated with a deformation is
called dilation. The dilation is negative for hydrostatic pressure.

The unit cube of edges X, y, z after deformation has a volume
1+ €, €

xy €z
Xy xz' =| €, 1+¢, €: |=1+te,+e, te,
€ €5 1+ €,

Vi-V
Relative volume change during deformation ¢ =

= €y + €yy + e,



Tensors. Definition as multidimensional arrays.

An N-th-rank tensor in m-dimensional space is a mathematical object that has N indices

and M" components and obeys certain transformation rules (its components transform
as a products of the components of n vectors). Each index of a tensor ranges over the
number of dimensions of space. Tensors are generalizations of scalars (0-rank tensor
that have no indices), vectors (that have one index => tensor of rank 1), and matrices
(that have two indices => 2"d-rank tensor) to an arbitrary number of indices.

Tensors may have upper (contravariant) and lower (covariant) indices: Al or A; .
They are related by the metric tensor gy, : A: =0, AX. Usually, g;,, =&, => Al =A.

The tensor product takes two tensors, S and T, and produces a new tensor S @ T,
whose order is the sum of the orders of the original tensors: A;, @ B, =Ciym -

Tensor contraction is an operation that reduces a type (n, m) tensor to a type (n=1,m-1)
tensor. It thereby reduces the total order of a tensor by two. The operation is achieved
by summing components for which one contravariant index is the same as one
covariant index to produce a new component. Components for which those two indices
are different are discarded. (This is like taking the trace of a matrix.) For example, a (1,1)

tensor Al can be contracted to a scalar: AL, =X a.. or A, Bk =%, a, b= C.


https://en.wikipedia.org/wiki/Tensor_product
https://en.wikipedia.org/wiki/Tensor_contraction

Deformation in tensor notations.

The displacement vector ' — I has the components %#; =

x'¢— Xi.

The distance between two points is d/ = 4/(dx;?+ dx2? + dxs?)
It changes due to deformation: d/2 = dx;2, dI"? = dx';2 = (da; + duy)?

Substituting du; = (1] dxy )y,
we rewrite dI’2 as (one may interchange

the suffixes i and | due to summation)

Then after introducing the strain tensor
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dI’2 takes the final form (u, = u,):

) dI'? = dI2+ 2ug du; dag,

In almost all
cases occurring
In practice, the
strain is small.




The stress tensor and Hooke’s law.
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The component o;, of the stress tensor Is
the i-th component of the force on unit

area perpendicular to the x,-axis. T3,
For instance, the force acting on unit area
perpendicular to the x-axis and normal to the area
(i.e. along the x-axis) is o,,, and the tangential

forces (along the y and z axes) are Oyx and o,,. b2

The total force acting on a solid of volume V is Tlet)

E) €
JFidV = J G dV = 3@0@;‘; dfy, —
OX; F; = 0oy oxg L2

The moment of the forces

on a portion of the body is My = f (Foep— Fixe) AV = fﬁ(ailxk_ orpei) dfs.

For hydrostatic compression O¢g = =— Paik and the moment of forces is M, =0.

T{E-z}




The energy of deformations and Hooke’s law.
The work 8R in terms of the change in the strain tensor is OR == —oyduy

The total work ona body is [OR AV = [(0osx/ Ox)du; AV

Change in the internal energy d& = Td.S 4+ o dugx

Change in the free energy dF = —Sd7T + o dugg

Hence, the stress tensor .

is given by the derivative: ik = (aéo/auik)s — (aﬁ/auﬂf) (3
Hooke’s law in a general form (for crystals).

In equilibrium the Taylor series F(u; ) does not contain terms
linear in uy,, and the free energy of a deformed crystal is
where Ajxm 18 a tensor of rank four, called the elastic modulus tensor.

Hence, the stress tensor g;, Is linear — —
in strain tensor u;, (Hooke’s law): Uik aF/auik Aikl?ﬂul?‘n

F = gimtbartiim,

If the crystal possesses symmetry, relations exist between the various components

of the tensor A, SO that the number of independent components is less than 21.
Tetragonal 6

The least number of non-zero moduli that is Triclinic 18

. . . ) . Rhombohedral 6
possible by suitable choice of the co-ordinate axes Monaoclinic 12 Hexaconal 5
IS the same for all the classes in each system : Orthorhombic 9 J

Cubic 3



Hooke’s law In Isotropic media

The free energy can be expanded in a Taylor series for small strain tensor u,:

F = Fo+ 3 ug?+ pugg? A and p are called Lamé coefficients.
In equilibrium this Taylor series does not contain terms linear in u,, => the stress tensor
is linear in strain tensor uy: oy = (06 /0usx)s = (OF Oy

Any deformation can be represented as the sum 4., - (uik “%Sikuu) + %‘Bz‘kuz 7.
of a pure shear and a hydrostatic compression:
Then the free energy becomes F' = u(ts — $8ix151)% + % Kup?

K is called the bulk modulus of hydrostatic compression (or simply the
modulus of compression) and p is shear modulus or modulus of rigidity.

The stress tensor g;, = 0F/0u,, is linear in the strain tensor

In crystals the Hooke’s law is O = l,-k,mugm



Elastic waves in crystals (from Landau & Lifshitz, Vol. 7)
The general equations of motion (second Newton’s law)

pil; =F; = ank/ 0xy where Oy = A'z'k?m"-‘im

Substituting also the strain tensor " ___1_ 6ug+ 8u,;,+ w 0
(expressed via displacement derivatives): = 2\ 0xr  Oxy "

One o 2s a ) a 0%u,,
. . { k1l Uy} u
obtains Pl; = Ainim ax;n = z2m %z ( 0% oy ) Ainim dxp g;z :

Since the tensor A, IS symmetric with respect to the indices | and m, we can inter-
change these in the first term, which then becomes identical with the second term.
?%u,, 1
ikim Oxg 0x; ( )
Let us consider a monochromatic elastic wave in a crystal.
We seek a solution of the equations of motion in the form: U;
Substituting this to (1) we obtain pm""ui === ?tih zmkkktum
This is a set of three homogeneous equations of the first degree for 3 unknowns u,, u,, u,.
Such equations have non-zero solutions only if the determinant of coefficients is zero.
Thus we obtain the cubic equation on o: 2 —
It has 3 solutions (branchesqof sound). llihzmkkk‘ — PO 6"’“1 T
This equation gives the relation o(k) between frequency
and wave vector of waves, called the dispersion relation.

Thus the equations of motion are  pii; = A

— uo;‘:ei (kr—w?)



Dispersion relation and group velocity of sound waves

Equation (p®?8im — AipimkrRy) Uy = O determines eigenvectors u
(polarization) and eigenvalues (k) (dispersion) of the sound waves.

The velocity of propagation of the wave (the group velocity) Is given by
the derivative of the frequency with respect to wave vector: U = dw/dk

In an isotropic body, the frequency is proportional to the magnitude of k,
and the direction of the velocity is the same as that of k. Then the sound
velocity c is constant (independent of k) and directed along k.

In crystals the direction of wave velocity is, generally,
not the same as of its wave vector

Example: Dispersion relation for elastic waves propagating in hexagonal crystal.
Poxxx = Myyyy =  Auyay =10, Auxyy=0a— 2b,

Hexagonal crystal has 5
independent elastic modules:  Ayuzy = Ayyzz = € Agzyz = Aypyz = d, Apy=1.

Take finite angle 6 between k and z: k, — ksin 0, &y = 0, &, = R cos 0,
Solving equation | MpimBrR; — P®? 851, | = O we find pwi = &2 (b sin? O 4- d cos® 0),
and PO3,3 = 1/:k? la sin2 O 4 fcos? 04 d -

+ [((@ — d) sin? 0 4 (d — f) cos® B)? + 4 (¢ + d)® sin® § cos? 0]'/2},



Equations of motion and relation between
strain and stress tensors in isotropic media

In an isotropic body, the free energy
] : K E 2 o 2
F = 3 (uih — -—g-ﬁiku”) +-—'2— u%z =79 (1 + 0) (uik } 1 — 926 ulf)
K is the modulus of hydrostatic compression and W is shear modulus,
the modulus of extension (Young's modulus:) £ = 9Ku/(3K -+ p)

The ratio of transverse compression to longitudinal 1 3K —2u
extension, called Poisson's coefficient, is 2 3K + I

The stress tensor o;, = 0F/0U; is then given in terms of strain tensor by

—

E 0 1
O = (uih | T—750 uzlﬁtk) or uy = [(1+40) gy — 00,04]

140
aﬁih ___ Eo ouy; E 6uih
Then %, (14 0a) ({1 —~20) 0x; T 140  Oxp

Substituting this to theEequation of motion pi; =F j = 0o ik/ ox};
p— g’rad divu.

we obtain pu-"Q(l_i_G) Au E 2(140)(



Dispersion relation and group velocity
of sound waves in isotropic media

Equation ddiva. )
of motion

Consider a plane elastic wave in an infinite isotropic medium, i.e. a wave in which
the deformation u is a function only of one coordinate (x) and of the time. All
derivatives with respect to y and z in equation (1) are then zero, and we obtain

o, 1 %, P11y I d%uy
Ox? ¢ Of® 0, and Ox? ¢; Ot? 0

longitudinal wave transverse wave

where the sound ., _ J E(1— o) o = J E
. y - .
velocities are P(l + 0»)(1 — 20) 2P(1 _|_0)
Equations (2) are ordinary wave equations in one dimension, and the quantities ¢, and c;

which appear in them are the velocities of propagation of the wave. We see that the
velocity of propagation for the component u, is different from that for Uy and u,.

The velocity of longitudinal waves is greater than of transverse waves: ¢; > (4/3)1/2¢;.

The velocities and C; are often called the /ongitudinal and
transverse velocities of sound.

H=—r Au- = 512
=gt To T 20 Fo(l—20 ©

(2)




Surface waves (Rayleigh waves).

Equation of motion (where u is any component 0%u 0.
of the vectors u, or u;, and c Is ¢, or C;): 012 ’

has a solution & = constef (kx—etg where % = (k? — @’[c%)!/2

For k* — @%/c? < () this gives usual plain wave.
However, for £2 — @2/¢g2 ~ () this solution gives a surface wave.
The amplitude of surface wave is exponentially damped toward media.

Boundary condition at the surface o1 =  gives the relation

between various components of the displacement vector U of the wave.
Together with equation of motion this gives the dispersion o(k):

w2 \4 w2 .
(2.&:2 cg) — 16k (kz—?) (k2 c%) <[ = gRE

z ¢

- 2 2
where the number &~0.9 gt 1 ge2 (3 2__;_ 16 (l ____z_) _
]
&

satisfies the equation

The ratio of longitudinal and transverse velocity depends _
only on the Poisson’s coefficient, being material constant: ¢ — 2 (1 — 0)




Notations in the Kittel’'s book (1)

Stress Components. The force acting on a unit area in the solid is defined as the
stress. There are nine stress components: X,, X,,, X;, Y,, Y, Y., Z,, Z,, Z..
The capital letter indicates the direction of the force, and the subscript indicates the
normal to the plane to which the force is applied. The stress component X, represents a
force applied in the x direction to a unit area of a plane whose normal lies in the x direc-
tion; the stress component X,, represents a force applied in the X direction to a unit area
of a plane whose normal lies in the y direction(Fig.1). The number of independent stress
components is reduced from nine to six by applying to an elementary cube (as in Fig. 2)
the condition that the angular acceleration vanish, => the total torque must be zero.

In tensor | 9z OTay Oz =
notations | o, 0y Oy .
) o RIg2
\\ ; z L ﬂ'zj_' I:rzy Jzz | Xy--w-mm-
\ : / 3
A\ i /
N\ | 4 | Thecomponento; ofthe =
\ i o . . g
e R stress tensor is the i-th | ?"
7\ 3 ¥ o
/ ) component of the force | x
onunitarea L to x,-axis. y,:




Notations in the Kittel’s book (2)
The Hooke’s law aix = OF / Ouix = AskimMim in Kittel's notations is
X, = Cpe,y + Croey, + Crae,, + Crse,, + Cise, + Creyy
Y, = Coiey + Case,,, + Cose, + Cosey, + Cose . + Coglyy
Z, = Caie,, + Caze,,, + Caze,, + Casey, + Cas, + Csebay
Y, = Cye,, + Cype,, + Cyze,, + Cyae,, + Cusey + Cuelyy
Z, = Cse,, + Csge,,, + Cxse; + Csye,, + Css€, + Cselyy
X, = Cg16,, + Cgoeyy, + Coaeyy + Cosey, + Cosr T Coplny



Bulk Modulus and Compressibility He
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Stiffness constants,

Stiffness constants in 107 dynefem® (10" Nim’)
- Crystal C C C Te ture, K
Of CUDIC CrystalsS s ——————
W 5.326 2.049 1.631 0
Adiabatic elastic stiffness constants S e i =
of several cubic crystals at room Ta 24058 L 0
9.609 1.574 0.818 300
temperature or 300 K.
Stiffness C()nstantsi 1.684 1.214 0.754 300
. 12 2 H 2
in 10™ dynefem® or 10 N/m Ag 1.315 0.973 0.511 0
G Cyo Cas 1.240 0.937 0.461 300
e ——— Au 9.016 1.697 0.454 0
Na 0.073 0.062 0.042
i 0.1% 0114 0088 | Al 1.143 0.619 0.316 0
= e 0,483 0,680 1.068 0.607 0.282 300
Si 1.66 0.639 0.79% | K 0.0416 0.0341 0.0286 4
GaSh 0.885 0.404 0.433 0.0370 0.0314 0.0188 995
InSh 0.672 0.367 0-222 Pb 0.555 0.454 0.194 0
Mg& (2)-227 3?;4 (1)- =) 0.495 0.493 0.149 300
Na ' : ' Ni 9.612 1.508 1.317 0
9.508 1.500 1.235 300
Pd 9.341 1.761 0.712 0
2.971 1.761 0.717 300
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