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Classical theory of the harmonic crystal  

 Normal modes of a Bravais lattice 

 Normal modes of a lattice with a basis 

 Relation to the theory of elasticity 

 The number of independent elastic constants 

 Elastic isotropy and transverse elastic isotropy 
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Normal modes of a Bravais lattice  

We will now examine the normal modes of a crystal lattice 
in the harmonic approximation.   

The harmonic Hamiltonian is quadratic in the displacements 
and momenta.  It represents a special case of the general 
classical problem of small oscillations that can be solved 
exactly.   

The motion of N atoms can be represented as a linear 
combination of 3N normal vibrational modes, each with its 
own frequency.  The set of frequencies of the 3N normal 
modes allows us, for example, construct all energy levels 
and to apply considerations of statistical mechanics.  
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We first discuss the normal modes of a one-dimensional 
monatomic Bravais lattice.  

Consider a set of atoms of mass M that are equidistantly 
distributed along a line.  Let the spacing of atoms in the 
chain be a.  The vectors of the one-dimensional Bravais 
lattice are   R = na  with integer n.  
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Assume that the displacement of an atom is possible only 
along the line, and that only nearest neighbors interact.  
Let  una be the displacement of the atom, which oscillates 
about na, from its equilibrium position. 

The kinetic and potential energies of the atomic chain are  

 
   
T = 1

2
M una

2

n
∑   

and  

 
  
U = 1

2
K una − u(n+1)a⎡⎣ ⎤⎦

2

n
∑  , 

respectively. 
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The force constant  K can be expressed through the 
interaction energy   φ(x) of two atoms separated by a 
distance  x:   K = ′′φ (a).   

The Lagrangian is 

 
   
L = 1

2
M una

2

n
∑ − 1

2
K una − u(n+1)a⎡⎣ ⎤⎦

2

n
∑  . 

The equations of motion are  

 
   Muna = −K 2una − u(n−1)a − u(n+1)a⎡⎣ ⎤⎦ . (4.1) 

Since the number N of atoms in the chain is large, the 
exact description of the atoms that are close to the ends 
of the chain is unimportant.   
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We therefore choose the Born–von Kármán periodic 
boundary condition.  For a linear atomic chain this boundary 
condition can be formulated as follows: join the atom on 
the left end and the spring on the right end by a massless 
rigid rod of length  L = Na .  

 

Assume that the atoms occupy sites a, 2a, 3a, …, Na.  

Then we can use Eq. 4.1 to describe each of the N atoms 

  (n =1,2,..., N ).   



 

Classical Theory of a Harmonic Crystal 7 

The displacements   u(N+1)a and   u0 that occur in the equa-

tions of motion for  uNa  and  ua should replaced as follows: 

   u(N+1)a = ua ; u0 = uNa  . (4.2) 

We seek solutions to (4.1) representing plane waves with 
angular frequency ω and wave vector k: 

   una (t) ~ ei(kna−ωt) . (4.3) 

We substitute (4.3) into the first of the conditions (4.2), 

cancel the common factor   ei(ka−ωt) and find that 

  eikNa =1 . 
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Therefore, k has the form:  

 
  
k = 2π

a
j

N
 , (4.4)  

where j is an integer.  

Important: if k is changed by 2π /a, the displacement  ua 

that is defined by (4.3) remains unchanged.   

There are exactly N different solutions, corresponding to 
the N permitted values of the wave vector k consistent 
with (4.4).   

We require these values to lie in the range between  −π a  
and  π a . 
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We substitute (4.3) into (4.1) and find that 

 
  
−Mω 2ei(kna−ωt) = −K 2− e−ika − eika( )ei(kna−ωt) . (4.5) 

Cancelling the factor   ei(kna−ωt) and transforming the right-
hand side of (4.5)  

  
2− e−ika − eika = 2 1− ch ika( ) = 2 1− coska( ) = 4sin2 ka

2
 , 

we find the characteristic equation  

  
Mω 2 = 4Ksin2 ka

2
 . 
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The equation of motion (4.1) has a solution for a given k if 

 
  
ω(k) =ω0 sin ka

2
 , (4.6) 

where   ω0 = 2 K M .  Equation (4.6) is known as a dispersion 

curve.  
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The range of the wave vectors k between  −π a  and  π a is 
the first Brillouin zone of our one-dimensional lattice.  The 
lattice parameter of the reciprocal lattice is   2π a. 

The actual atomic displacements are given by the real or 
imaginary parts of (4.3): 

 
  

una(t) ~ cos(kna−ωt) ,
una(t) ~ sin(kna−ωt).

 (4.7) 

There are N different values of k, each with its own 
frequency   ω(k), therefore (4.7) describes 2N independent 
solutions, which correspond to N normal modes.  

Solutions (4.7) describe waves propagating along the linear 
chain of atoms.  Their phase and group velocities are  ω k 
and  ∂ω ∂k, respectively.  
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The group velocity  

   
  
vG = ∂ω

∂k
=
ω0a

2
cos

ka
2

   (4.8) 

decreases with increasing the wave 
vector k and vanishes at the Brillouin 
zone boundary  π a . 

Waves with the wave vectors k that 
correspond to the Brillouin zone bound-
aries  k = ±π a , are the standing waves 

 
   una (t)  e±inπe−iωt = u0(−1)n e−iωt ,  (4.9) 

in which the neighboring atoms move in 
opposition to one another.  

 
Fig. 75a 
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We note a close analogy of this phenomenon with the Bragg 
reflection of X-rays.  

When the Bragg condition is satisfied, constructive inter-
ference of the incident and reflected waves results in a 
standing wave.!  

The wave vectors  k = ±π a that correspond to the 
boundaries of the first Brillouin zone satisfy the Bragg 
condition   2dsinθ = nλ , if we take  θ = π 2,  d = a, and the 
order of the reflection   n = 1.  

For  k = ±π a the wavelength   λ = 2a, and the frequency ω 
reaches its maximum value of  ω0.   
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A solution with the wave vector k outside the first Brillouin 
zone is equivalent to the solution with the wave vector 

  ′k = k − 2π j a , where j is integer, which is inside the first 
Brillouin zone.  The two waves are indistinguishable if their 
wave vectors differ by the reciprocal lattice vector. 
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In the long wavelength   λ  a limit, where details of the 
structure do not play a significant role, the dispersion 
relation takes the form  

 
  
ω =

ω0a
2

k . 

Since ω  is linear in k, the group velocity is equal to the 
phase velocity and both are frequency independent.   

Long-wavelength vibrations the chain can be looked at as 
vibrations of an elastic continuum.   

Correspondingly, the long wavelength limit is the limit, in 
which the Debye model becomes applicable. 
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We now get back to the dispersion relation   ω(k):  

 

We attribute to a wave propagating in a one-dimensional 
monatomic lattice the frequency ω  and the wave vector k, 
and, consequently, the ‘momentum’   p = k.   

Such lattice waves can be thought of as having 'particle-
like' properties.  These 'particles' are known as phonons.  
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We now determine the density of normal modes. 

The total number of normal modes is N, one mode per atom.  

We remind that for a one-dimensional monatomic lattice 
with periodic boundary conditions a solution representing a 
propagating plane wave takes the form  

   una (t) ~ ei(kna-ωt) . 

The permitted wave vectors k are  

 
  
k = 2π

a
j

N
 ,  

where j is an integer.  



 

Classical Theory of a Harmonic Crystal 18 

These wave vector values are equally spaced, and the 
separation between the neighboring values is   Δk = 2π Na .  

The number of normal modes per unit wave vector is   Na 2π  
for k in the range  −π a ≤ k ≤ π a and zero for all other 
values of k.  

We now define the density of normal modes   g(ω ).  The 
number of normal modes   g(ω )dω  in the infinitesimal 
frequency range between ω  and  ω + dω  is 

 

  

g(ω )dω = Na
π

1
∂ω
∂k

dω  . (4.10) 
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The group velocity  ∂ω ∂k can be determined from the 
dispersion relation   ω(k).  

The density of normal modes   g(ω ) has singularities when 
the group velocity vanishes, i.e., when the dispersion curve 

  ω(k) becomes flat. 

Expressing the wave vector k as a function of ω   

 
  
k = 2

a
arcsin

ω
ω0

 .  

we have 

 
  

dk
dω

= 2
a

1

ω0
2 −ω 2

 . (4.11) 
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If we substitute (4.11) into (4.10), we find that 

 
  

g(ω ) = 2N
π

1

ω0
2 −ω 2

 . (4.12) 

The density of normal modes   g(ω ) diverges as the 
frequency ω  approaches  ω0. 

 


