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Normal modes of a one-dimensional lattice with a basis  

Consider a linear chain in which the spacing of atoms is a, 
and alternate atoms have mass   m1 and   m2.   

Assume again that only nearest neighbors interact and that 
this interaction is equivalent to a connection by a spring 
with spring constant K.  
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The equations of motion are  

 

   

m1 u2n = −K u2n −u2n−1( ) + K u2n+1 −u2n( )
= K u2n−1 +u2n+1 − 2u2n( ) ,

m2 u2n+1 = −K u2n+1 −u2n−2( ) + K u2n −u2n+1( )
= K u2n−2 +u2n − 2u2n+1( ) .

  (4.44) 

We seek solutions to (4.44) representing plane waves with 
angular frequency ω and wave vector k:  

 
  

u2n = Aei(2kna−ωt) ,

u2n+1 = Bei[k(2n+1)a−ωt] .
 (4.45) 
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We substitute (4.45) into the equations of motion (4.44) 
and find that 

   ω
2 −ω1

2( )A +ω1
2 eika + e− ika( )B = 0 , (4.46) 

   ω 2
2 eika + e− ika( )A + ω 2 − 2ω 2

2( )B = 0 , (4.47) 

where   ω1 = K m1  and   ω 2 = K m2 . 

This system of two homogenous equations in the two 
variables A and B has a nontrivial solution when  

   ω
2 − 2ω1

2( ) ω 2 − 2ω 2
2( )− 4ω 2

2ω1
2 cos2 ka = 0 , (4.48) 

or 

   ω
4 − 2ω 2 ω1

2 +ω 2
2( )− 4ω1

2ω 2
2 sin2 ka = 0 . (4.49) 
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The solution of equation 4.49 is 

   ω
2 =ω1

2 +ω 2
2 ± ω1

2 +ω 2
2( )2

− 4ω1
2ω 2

2 sin2 ka   

or 

   ω
2 =ω1

2 +ω 2
2 ± ω1

4 +ω 2
4 + 2ω1

2ω 2
2 cos2ka  . (4.50) 

The wave vectors k take the values only between   −π 2a 
and   π 2a .   

This is because the lattice parameter of a diatomic chain is 
2a, i.e., twice the lattice parameter of the monatomic 
chain.   
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Here the dispersion curve   ω (k) is plotted for   m2 m1 = 3 2, 
and the branches ω+ и ω− correspond to the signs in (4.50). 
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The ranges of allowed frequencies ω : 
ω− : ω  varies between zero and  ω 2 2 , 
ω+ : ω  varies between  ω1 2  and  2(ω1

2 +ω 2
2 ) .   
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The width of a gap formed at   k = π 2a is  Δω = 2(ω1 −ω 2 ).  

We first discuss the branch ω− because it looks similar to 
the dispersion curve of the monatomic chain.  

Surprisingly, the maximum frequency   2ω 2 = 2K m2  of the 

ω− branch is independent of   m1, the mass of light atoms. 

The origin of this phenomenon becomes lies in the actual 
motions of the light and heavy atoms. 

Because  ω1 >ω 2 ,  A and  B are the amplitude of oscillations 
of light and heavy atoms, respectively.  



Classical Theory of a Harmonic Crystal  28 

From (4.46) we find 

 
  

B
A

=
2ω1

2 −ω 2

2ω1
2 coska

 , (4.51) 

and from (4.47) we find 

 
  

B
A

=
2ω 2

2 coska
2ω 2

2 −ω 2  . (4.52) 

For  ω = 0 and   k = 0 the both conditions (4.51) and (4.52) 
lead to   B A = 1.  

The neighboring atoms move in phase and with the same 
amplitude, as in a common sound wave in the limit   λ  a.  

Therefore,   ω− (k) is known as the acoustic branch. 
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At   k = ±π 2a, i.e., the boundaries of the Brillouin zone, the 

frequency ω  reaches  2ω 2 .  According to (4.51) this leads 

to 

 
 
B
A

= ∞ .  

The light atoms do not move at all, and therefore the 
maximum frequency is independent of their mass   m1.   

The corresponding mode of oscillations is shown here. 
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We now discuss the branch ω+ .  

At   k = 0 the frequency is  ω = 2 ω1
2 +ω 2

2( ) , and according 
to (4.51) or (4.52)  

 
  

B
A

= −
ω 2

2

ω1
2 = −

m1

m2

 . (4.53) 

The light and heavy atoms move out of phase.   

If the light and heavy atoms also bear different charges, 
such motion can lead to an oscillating dipole moment, which 
can interact with electromagnetic waves.  Therefore,   ω+ (k) 
is known as the optical branch; the name remain also when 
the atoms do not bear different charges. 
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At the edges of the Brillouin zone   k = ±π 2a we find from 

(4.52) that   B A = 0, i.e., the heavy atoms do not move.  

 

For this mode, the dipole moment does not oscillate.  

Therefore, electromagnetic waves cannot exite lattice 
vibrations of the optical branch at the the edges of the 
Brillouin zone. 
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The density of normal modes of the acoustic branch   ω− (k) 
is similar to   g(ω ) of the monatomic chain.  The density of 
normal modes of the optical branch diverges as the 
frequency ω  approaches the minimum  2ω 2 and maximum 

 ω = 2 ω1
2 +ω 2

2( )  frequencies.  
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If the limit    m1 m2, the frequency of the optical branch 
ω+  weakly depends on k, the group velocity  ∂ω ∂k is small, 
and the width of the optical branch is   Δω+ ≈ω+(0)m1 2m2 . 
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If the limit    m1 m2 the density of normal modes   g(ω ) of 
the optical branch can be approximated by a δ -function.   

In this case the Einstein model can describe the specific 
heat due to excitations of the optical modes.   

The acoustic contribution to the specific heat can be 
described by the Debye model.   

The both contributions are additive. 

The lattice specific heat of several solids is in fact best 
described by the sum of the Einstein and Debye terms.   

Example is the filled antimony scutterudite Tl0.8Co4Sb11Sn 
[R. P. Hermann et al., 2003]. 
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Considering the lattice excitation spectrum of the diatomic 
chain, we could arrive at the same solution, at least in the 
wave vector 
range between 

 −π a and  π a, if 
we would regard 
our chain as a 
one-dimensional 
lattice with the 
constant  a and 
two atoms in the 
basis.  
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Optical branches appear in the excitation spectrum of the 
Bravais lattice with the basis that contain two or more 
atoms.  An optical branch appears even when a diatomic 
basis contains two identical atoms. 
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At the edges of the Brillouin zone the highest frequency 

  ω−(π 2a) of the acoustic branch, however, coincides with 
the lowest frequency   ω+(π 2a) of the optical branch.   

The lattice excitation 
spectrum therefore 
remains gapless, and 
the mode with the 
wave vector   k = π 2a 
becomes doubly 
degenerated.  
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Lattice excitations in three-dimensional crystals 

In general, our arguments for one-dimensional lattices 
remain valid also in three dimensions.  In our discussion of 
the lattice excitations in 1D chains we considered only 
longitudinal modes.  There are two additional transverse 
modes in three-dimensional crystals. 

The density of normal modes can be obtained from the same 
relation   g(ω ) = g(k)∂k ∂ω , as in one-dimensional case.  

We now discuss the dispersion relations   ω(k) for copper and 
diamond, measured using inelastic neutron scattering, to 
illustrate typical features of   ω(k) in three dimensions. 
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Copper (Cu) — fcc lattice with a monatomic basis 
Only acoustic modes are expected.  

 
 [from E. C. Swensson et al., Phys. Rev. 155, 619 (1967)] 

The wave vector is plotted in units ka 2π .  Data points 
correspond to excitations with certain frequency ω  and 
wave vector  k , i.e., to phonons.  For some high-symmetry 
directions the transverse modes are degenerate.  
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In three dimensions the density of normal modes g(ω ) 
becomes quite complex because ω  now depends both on the 
absolute value and on the direction of the wave vector k .  

 
The density of normal modes in copper 
[from E. C. Swensson, B. N. Brockhouse, and 

J. M. Rowe, Phys. Rev. 155, 619 (1967)] 

Contrary to the 1D case, the 
critical points of g(ω ), or 
van Hove singularities, are 
now infinities only in the 
g(ω ) derivatives, but not in 
g(ω ) itself. 

The density of normal modes 
in copper is a superposition 
of separate densities for one 
longitudinal and two trans-
verse branches. 
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Diamond (C) — fcc lattice with a diatomic basis 
One acoustic and two optical branches are expected. 

The branches  LO и  LA at 
the edge of the Brillouin 
zone along the [100] 
direction are degenerate.  

The branches  LO и  TO at 
the Brillouin zone center 
are also degenerate.   

This degeneracy is lifted for 
ionic crystals, e.g., for NaCl.  

 
[From J. L. Warren et al., Inelastic Scattering of Neutrons (IAEA, Vienna, 1965) Vol. I, p. 361] 
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Connection with the Theory of Elasticity 

The theory of elasticity treats a solid as a continuum, 
ignoring its microscopic atomic structure.  

The theory of elasticity can be derived from the theory of 
lattice vibrations by considering lattice deformations that 
vary gradually on a scale determined by the range of the 
interatomic forces.   

Assumption: one can specify the deformation of the basis 
atoms within each primitive cell entirely in terms of the 
vector field u(r), specifying the displacement of the whole 
primitive cell.  
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The number of independent elastic constants 

Crystal System Point Groups Elastic Constants 

Triclinic all 21 

Monoclinic all 13 

Orthorhombic all 9 

Tetragonal   C4 ,C4h ,S4  7 

 

  C4v , D4 , D4h , D2d  6 

Rhombohedral 
  C3,S6  7 

 

  C3v , D3, D3d  6 

Hexagonal all 5 

Cubic all 3 

Decagonal all 5 
Icosahedral  all 2 

Isotropic Media  2 
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Elastic isotropy and transverse elastic isotropy 

The elastic modulus matrix  cij of an isotropic solid has only 
two independent components:   

  

c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 ′c 0 0

0 0 0 0 ′c 0

0 0 0 0 0 ′c

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

, 

where   ′c = 1
2
(c11 − c12 ) . 
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By contrast, the simplest elastic modulus matrix for a 
periodically ordered crystal (cubic) has three independent 
components   c11 ,   c12 and   c44:  

  

c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

. 
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The isotropic and cubic elastic tensors are identical, except 
that for an isotropic solid   c44 = 1

2
(c11 − c12 ).  An anisotropy 

parameter A is defined as 

 
  
A =

c11 − c12

2c44

  , 

so that for an isotropic solid   A =1.   

With   A =1.007 ±  0.002  tungsten has the smallest elaslic 
anisotropy among all periodic crystals.  The sound velocity 
in tungsten varies with direction by less than 0.5%. 

Icosahedral quasicrystals possess elastic isotropy, and for 
icosahedral Al-Cu-Li, elastic isotropy was verified to within 
0.07% (Spoor et al., 1995). 
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The elastic modulus matrix of a transversely elastically 
isotropic solid 

  

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 ′c

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

The number of independent elastic moduli  cij is five 
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The elastic modulus matrix of a tetragonal crystal  
(Laue class   4 / mmm) 

  

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

The number of independent elastic moduli  cij is six 



Classical Theory of a Harmonic Crystal  50 

The elastic modulus matrix of the tetragonal Laue class 

  4 / mmm differs from that of a transversely isotropic solid 
only in that the elastic modulus combination   c66 = 1

2
(c11 − c12 ) 

is nonzero.  A measure of the deviation from transverse 
isotropy is the ratio 

 
  
As =

c11 − c12

2c66

   

of the squares of the velocities of the pure shear waves 
polarized in the (001) plane and propagating along the [110] 
and [100] directions, respectively.  For transversely isotropic 
solids   As =1 . 
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For transversely elastically isotropic solids, the equality 

  c66 = 1
2
(c11 − c12 ) reduces the number of independent elastic 

moduli  cij that determine a deformation in the quasiperiodic 

plane to two, as for an isotropic medium.   

Among ordered solids only hexagonal and decagonal phases 
are transversely elastically isotropic.   

For example, for the decagonal Al-Ni-Co phase (five-
dimensional space group   P105 / mmc)   As =1.0002 ± 0.0004 

(Chernikov et al., 1997). 
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We now determine the degree of polar elastic anisotropy, 
i.e., the deviation from complete elastic isotropy.   

For transversely isotropic solids, two parameters may be 
used to quantify polar anisotropy, i.e., the anisotropy of 
shear   Ps = c44 / c66 and the compressional anisotropy 

  Pc = c33 / c11.   

For decagonal Al-Ni-Co   Ps = 0.794 and   Pc = 0.991, revealing 

a very weak polar elastic anisotropy. 

For comparison, for hexagonal Zn   Ps = 0.65 and   Pc = 0.38. 
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