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Specific heat (definition)
and its relation to the temperature derivative
of total internal energy

Change of the heat Q consists of the change of total energy + the work done:

d9 dE 4V dE _ _dS
= GtPar @ =Tg-Pa 40/ =Tdas/dt

Hence, the specific C, = T(8S/oT)y,
heat C=dQ/dTis ¢, = T(8S/oT)p.

The energy differential dE = T dS—PdV —) C, = (0E/oT)y.




Phonon contribution to the total energy

The energy of all excitations (phonons) is given by the sum over all
quantum states, which are numbered by the wave vector K=p/# :

E(1)= T e, (O V"k )N (e,)

The filling number n, of the quantum states of phonons is given by
Bose-Einstein distribution function: (g) 1
K
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Phonons

In a periodic lattice the total wave vector of interacting
waves is conserved, with the possible addition of a reciprocal
lattice vector G.

Inelastic scattering: the incident particle has interacted
with the lattice to destroy or create a phonon, of wave
vector q and energy 7iw,.

For all k’—k values in the first Brillouin zone
hK =nhk £ hq,
which looks like a law of conservation of momentum.

Phonon - a quantized acoustic excitation with ‘particle-
like’ properties, by analogy with ‘photon’.



In general, the rule of conservation of momentum does not
hold. The incident particle can lose, or gain, the momentum
AG in addition to the momentum of the phonon. The extra
momentum %G is transferred to the crystal as a whole.
Such a process is known as an Umklapp process.

N-process U-process



The Umklapp process is a consequence of the interplay
between two scattering processes.

In one of these processes, e.g., in multi-phonon scattering,
the momentum of lattice excitations, often called crystal
momentum, is conserved.

The other process, i.e., a Bragg reflection, violates the law of
conservation of crystal momentum.

The characteristic time of energy transfer to the reflected
acoustical wave in this process may be estimated as 7#/E,,

where E, is the energy gap in the vibrational excitation

spectrum.



Often E, is of the order of 7w

mum lattice frequency, and the Bragg reflection occurs very
fast.

where @ . IS the maxi-

max / X

Nevertheless, the important point is that neither of the two
scattering processes, if considered separately, will give rise
to the same physical consequences as the Umklapp process
does, i.e., finite thermal conductivity, etc.



The C,(T) variations for different solids are quite similar.
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If the C, is plotted vs. T/O, then the specific heat data

for different solids collapse into a universal curve.
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The characteristic temperature © plays an important role,
which we will discuss later.

As it appears, it does not matter if the solid contains atoms
of just one type or of many types.

Experiment: in the temperature range 7/0 <1 the specific
heat of insulators varies with the temperature as T°, and in

this temperature range the difference C,-C, can be

neglected.

The specific heat of metals contains an additional
contribution to C,, due to the thermal excitation of

itinerary electrons.



The electronic contribution to C, linearly increases with
increasing temperature; it is important (comparable to the

lattice contribution), however, only up to several Kelvin.
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The temperature variation of the specific heat of a solid
may become distinctly different from the C,(T) shown

above, for example, when:

# The crystal structure changes with temperature
(structural phase transition),

+ An order-disorder transformation occurs,

4+ Additional degrees of freedom, not yet accounted for, set in.

4+ Any phase transition occurs.



Example: specific heat vs. temperature of a [-brass alloy,
containing 48.9 at.% Zn. The dashed line is calculated from
the specific heats of Cu and Zn, assuming a pure mixture

The sharp maximum of specific heat indicates a phase transition
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Specific heat in crystalline and amorphous solids. Glasses.

Until now we did not pay any attention as to whether the
solid should be considered as crystalline or amorphous.

At not too low and not too high temperatures, which are
well below the melting temperature, this difference is
unimportant.

We will discuss, however, the temperature variation of the
specific heat of amorphous and disordered solids that
become manifest only at very low-temperatures.

Glasses and other materials with disordered structures
(alloys, fractal systems) at very low temperatures display
significant deviations from the specific heat vs. tempera-
ture variation described above.

21



This becomes apparent when the same substance is investigated

both in the crystalline state and in the amorphous state.

The results of such
a comparison, for the
temperatures below
10 K, are shown here.

Below 1 K the specific
heat of amorphous SiO,
Is several times higher
than that of the crystal-
line SiO, at the same
temperature.
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The specific heat of glasses increases with increasing

temperature as T, rather than T°, as that of crystals.

The high specific heat of glasses was ascribed to the high
degeneracy of energetically similar atomic configurations

related to disorder.

Other experiments have also revealed the excess specific
heat in the data obtained from crystalline alloys, although,
due to lower degree of disorder than in glasses, on a

smaller scale.

The specific heat anomalies of different nature have been
found in systems with self-similar, or fractal, structure.
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The Einstein model and specific heat

Classical physics cannot explain the universal C, vs. T/©
curve characteristic of the specific heat of solids.

Consider a solid consisting of N atoms as a system with 3N
(more precisely 3N —6) degrees of freedom.

Then, in the limit of high temperatures, we can approxi-
mately determine the specific heat C, using the equi-

partition theorem that relates the temperature of a
classical system with its average energy.

Since U =3Nk,T', we have

ol
C =| =—=1| =3Nk. .
v (aTjV B
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That corresponds to about 25 J/mol-K or é cal/mol-K and
agrees well with the data.

It has been experimentally established, however, that a
deviation from the Dulong and Petit law becomes more
and more pronounced as the temperature decreases.

At room temperature (approx. 300 K) such a deviation is
the most pronounced for diamond.

The specific heat data for diamond above 200 K have been

known since 1900s from the experiments performed by
H. F. Weber.



Nernst has conducted further experiments at even lower

temperatures.

In 1906 Einstein has explained the observed specific heat
behaviour of a solid assuming that atoms independently act

as "Plank’s resonators.”

"Plank’s resonators” correspond to harmonic oscillators in

quantum mechanics.

For simplicity assume that each harmonic oscillator has the

same frequency w,.



The Hamiltonian is

) 2.2
=2 % (5.1)
2m 2
the energy levels are
E =(n+1/2)hw,, n=0,1,2,... . (5.2)

The probability that the state with energy E is occupied is

e—En/kBT
w, = , 5.3
"= \ (5.3)
where Z =Y ¢ /%" is the partition function. Gibbs
n distribution


Павел
Линия


The average energy of an oscillator is

(5.4)

<E> - anEn == Ze—(n+1/2)hw0/kBT

n

The sums in 5.4 are calculated using

where x = exp(-#,/k;T), and

» X
an x—z (1—x)2 :




We get for the average energy of an oscillator

ho ho
(E)= 20+em0/k£_1 . (5.5)

\this is a Bose-

Einstein
distribution

Here the first term on the right-hand side is the zero-point luncion

energy.
The energy of the solid is
U=3N(E), (5.6)

because each of N oscillators has 3 degrees of freedom.


Павел
Выносная строка
this is a Bose- Einstein distribution function


The specific heat C, of a system of N oscillators is

c =) _ang. | % R (5. 7)
Vol oT v_ B kT (ehwo/kBT_l)z' '

The only free parameter here is the oscillator frequency w,,

which corresponds to the Einstein temperature O, =ho,/k;.
The temperature enters expression 5.7 as the ratio T/0..

Fitting the experimental specific heat data C,(T) using

expression 5.7 yields the O, value.



This figure displays the specific heat curve for diamond,
calculated for ©,.=1320K, and the Weber's data.
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The high-temperature limit T > O,:

ho,/k,T
C, =3k, Ne'/

0 ~3k,N.

The high-temperature specific heat of the Einstein model

corresponds to the Dulong-Peftit law C, = 3R.



The low-temperature limit T < ©;:

2
ho —hw, [k, T
CV — 3kBN£k—O] e / .

B

The lattice contribution
to the low-tempera-
ture specific heat of
most solids, however,

o
~

varies as T°, in dis-
agreement with the

C,/ T(mJg-atom™ K™)
o
(@)

model prediction. 0.5,
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The Debye model

Nernst’s experiments have shown that the Einstein model
does not provide a satisfactory description of the specific

heat data at low temperatures.

Debye has suggested considering a solid, due to a large
number of atoms, as a mechanical continuum, and thermal
excitations as longitudinal and transverse elastic waves

that are collective modes involving many atoms.
The Born-von Karman periodic boundary condition.

In the Debye model we select a part of the solid in the
shape of a cube with the edge L.
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We seek a solution of the equation of motion representing

a wave with frequency ® and wave vector k
(%, 1) = A (5.8)
Here A, is the displacement vector; for longitudinal waves
k|| A, and for transverse waves k L A .
The Born-von Karman periodic boundary condition
u(xy, %y, %5, t) = u(x, +L,xy, x5, )= u(x,, %, + L, x5, t) = u(x,, %, %, +L,t)  (5.9)

leads to k, —Z—En k, —Z—En and k, —Z—En ,
L L L

where n,,n, and n, are integers.



Each set of quantum numbers n,,n,,n, corresponds to one
wave vector

\12\ =22 2”(1/112 + 12 +n§)1/2 , (5.10)

C

where C is the wave velocity.

For longitudinal waves c=c,, and for transverse c=c,.

The velocities of longitudinal and transverse elastic waves
are given by

E G
== and c; =—,

p p

respectively, where E is the Young modulus, G is the shear
modulus and p is the density.

C



We will now consider waves determined by Eq. 5.8

as the normal vibrational modes of the whole solid. (X, t)= Aot’f'iﬁ_m”

Contrary to the Einstein model we now allow many frequencies.

To calculate the energy of such a mechanical system we

have determine the number of frequencies that fall into
the range between w and w+dw.

Using 5.10 we find

27C 12 27C
sz(nf +1’l§ +n§) :T?Z . (511)



We can view frequencies as the points, located inside the
sphere of radius r =1, where each point corresponds to
three vibrational modes—one longitudinal and two

transverse.

We have assumed that for each frequency the velocities of

longitudinal and fransverse waves are equal.

In the continuum approximation, the volume of the above-
mentioned sphere determines the number of frequencies
N :47r(a)L )3 1 o’

= ) 5.12
© 3 6r’ ¢’ (5-12)

27C



Correspondingly, the number of vibrational modes is

1 1.
N,=—7’L [—3+—3] . (5.13)
o1 c; Cr

We define the average mode velocity ¢ as

£1+2]:%. (5.14)

3 3 |7 =
¢, ;) €

To determine the number of vibrational modes in the range

between @ and @+d® we can write

ON 3 0L’
A = ——5——;
0w 2m° ¢

do . (5.15)



The density of vibrational modes is

3 w’l’
g(a))zzﬂz = - (5.16)

For an infinitely large solid the range of possible frequen-
cies of vibrational modes would be open at the upper end.

Since we consider only a part of the solid that contains

a total of N atoms, the number of possible frequencies
is 3N.

Therefore 3N = jOwD g(w)dw, where o, is the cut-off

frequency for the density of vibrational modes.



The density of vibrational modes:

A
g(®)
0 >
0 w0,

Using 5.16 we find the cut-off frequency

3 6m°NC>
075 = 3

(5.17)



We now express the density of vibrational modes as a
function of w,

g(w)=—=0w*. (5.18)

We now again assume that every vibrational mode corre-
sponds to a harmonic oscillator, whose average energy (E)

is given by Eq. 5.5.

Then the total energy of the part of the body containing
a total of N atoms is

WOp

U= jg(w)<E>da) : (5.19)

0



Combining Egs. 5.5, 5.18 and 5.19 we find

9N ho

° do . (5.20)
eha)/kBT . 1

U =
(UDO

Here we account only for the temperature dependent

contribution to (E) and do not consider the zero-point

energy.

The cut-off frequency w, corresponds to the so-called

Debye temperature

hop

k. (5.21)

O, =




Changing the integration variable in Eq. 5.20 to x = hw/k,T
yields

3xD
U:9NkBT(i]J *dx . (5.22)

p) ne —1
Here the upper limit of integration is x, =hw,/k,T=0,/T.

Differentiating with respect to T we get the specific heat

ol T Y2 xier
Cvz[a—TjV—9Nk( ] j(e e (5.23)

As in the Einstein model, the specific heat depends only on

the dimensionless variable T/0,, .



Here the curve corresponds to the ©, values, obtained by
fitting the specific heat data using Eq. 5.23; the O, values
are, of course, material-dependent.
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The high-temperature limit T > O:

C

T

= 3NKk,T .

3
T x>

U(T)=9Nk,T

(T) = 9Nk, [@ ] .

D

0

The high-temperature specific heat corresponds to the
Dulong-Petit law C, = 3R.

The low-temperature limit T < ©,:

3 o 4 x
U(T):9NkBT(i] [ =
®D 0 (8 _1) )

4m?

This definite integral can be evaluated exactly.



The low-temperature specific heat is

3
12 T
C =—n*Nk, | —| .

D

The Debye approximation correctly describes the lattice

contribution to the specific heat at low temperatures
T<50,.

Assuming that the parameters ¢, and c, are the velocities
of the compressional and shear sound waves, we can
calculate the cut-off frequency @, and, consequently, ©,
using Egs. 5.14 u 5.17.
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Debye model for crystals

Expressing the sound velocities in terms of the elastic
constants allows us to generalize the Debye approximation
to include anisotropic media. Consider hexagonal crystals,
which have five independent elastic constants and are
transversely isotropic. The sound velocities are given by

|
pv%l = Cyq + ECSIII2 6

1 .
;ov%,T2 =cCyy + E{a sin” @+ hcos” 6
1
i[(asin29+hcoszt9)2—4(ah—d2)sin29c0829]2 :
where a=c|—cu,c=ci1—cCip—2¢a4 ,d =13+ Cag ,h = 33— Cus.
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As an example, we show the v;(0) variations for Zinc.
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At low temperatures only the long-wavelength acoustic
modes contribute to Cy(T), which takes the form

2ks
SKhD°
Here 1/0° is the average of the inverse third power of the
velocities of the three acoustic modes:

sin0d6
73 _Zju(e) 2

=10

Cy(T)= T

The Debye temperature is given by

n (62N )
@D — ) ’
kol v

where N/V is the number density of atoms.



Here we compare for several solids the Debye temperatures

©,, obtained from fitting the measured specific heat data
CP(T) at low temperatures and calculated from elastic

constants c,.

C Si Vv Fe Cu Al Pb
(diamond)

O, (K) from CP(T) 2240 647 326 457 342 423 102

O, (K) from o 2240 649 399 477 345 428 105




Sometimes the C, (T') data in the intermediate temperature

range is analyzed assuming that ©, explicitly depends on

temperature.
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The Debye model is quite successful in describing the

temperature variation of the specific heat of insulators.

We remind, however, that the Debye model treats a solid
as a continuum, i.e., disregards atomic structure of a
crystal lattice, and assumes no dispersion in the excitation

spectrum of the vibrational modes.



Density of normal modes, van Hove singularities

In three dimensions the density of normal modes g(w)

becomes quite complex because ®w now depends both on the

absolute value and on the direction of the wave vector k.

The critical points of the density of normal modes g(w),

related to vanishing of the absolute value of the group

velocity v,, are known as the van Hove singularities.

Contrary to the one-dimensional case, the van Hove
singularities are infinities only in the g(®) derivatives,

but not in g(w) itself.
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There are four types of critical points: minimum, saddle-
points S, and S, and maximum.

gA

Van Hove's theorem states that the density of normal
modes g(®) must contain at least one critical point of each

of the types S, and S,, and dg/d @ — — at the upper end.



Quasi-localized vibrational modes

Heavy impurities, for example, , ,
heavy isotope impurities, in

a monoatomic lattice lead to

a Lorentz-type feature in the
density of vibrational states at

W, <O,

I
Sg(@)~ 14

2
2 2 2
(a) —a)q) +Fq

Here w_ is the quasi-local frequency and I' is the half-

width of the Lorentz curve.



Since

() m

where m and m’ are the host and impurity atomic masses,
respectively, the Lorentz curve narrows as m’—m

increases.

Quasi-local vibrations alter the thermodynamic and kinetic
properties of a crystal, in particular, resulting in resonance

anomalies in the absorption of ultrasound waves.



Local phonon modes; the Einstein solids

The specific heat of Al,pzV above 2 K is well described by
the Einstein model, i.e., it increases exponentially with
increasing temperature [A. D. Caplin ef al., 1973].
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This phenomenon relates to a well-defined local phonon
mode that has an Einstein temperature of 22 K.

It is thought that vibrations of ‘loose’ Al atoms, occupying
the centers of Friauf polyhedra in the Al,p,V structure, are
responsible for the local modes.

The Friauf polyhedron is composed of 16 Al atoms. It can
be viewed as a large ‘shell’ of about 3.2 A in radius.

For comparison, the separation between nearest neighbours
in the fcc structure of Al is only 2.8 A.

Consequently, Al atoms inside the Friauf polyhedra move in
a shallow potential resulting in vibrational modes with very
low energies; such Al atoms are effectively uncoupled from
the rest of the Al,,V structure.



The space group of AlV is
Fd3m. The primitive cell
contains 44 atoms. The
cubic unit cell consists of
four primitive cells. The
grey and black spheres
are the Al and V atoms,
respectively. There are
eight 'holes’ per unit cell.

Another example of an Einstein solid is quinol clathrate
with an argon atom frapped inside a cage in its structure.
In this case the Einstein temperature is 48 K [Parsonage
and Stavely, 1960].
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