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Specific heat (definition) 
and its relation to the temperature derivative 

of total internal energy  

, ,

Hence, the specific 
heat C=dQ/dT is

The energy differential

Change of the heat Q consists of the change of total energy + the work done:



Phonon contribution to the total energy
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The energy of all excitations (phonons) is given by the sum over all 
quantum states, which are numbered by the wave vector k=p/ℏ : 

The filling number nk of the quantum states of phonons is given by 
Bose-Einstein distribution function: ( ) ( ) 1/])([exp
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The phonon dispersion ω(k) may 
consist of several branches α.
The phase volume 
gives the number of quantum states. 
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Specific heat (heat 
capacity of unit mass)
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Phonons
In a periodic lattice the total wave vector of interacting 
waves is conserved, with the possible addition of a reciprocal 
lattice vector G.  

Inelastic scattering:  the incident particle has interacted 
with the lattice to destroy or create a phonon, of wave 
vector  q and energy  ωq.   

For all ′k − k values in the first Brillouin zone 

  ′k = k ± q, 

which looks like a law of conservation of momentum.  
Phonon – a quantized acoustic excitation with ‘particle-
like’ properties, by analogy with ‘photon’.  
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In general, the rule of conservation of momentum does not 
hold.  The incident particle can lose, or gain, the momentum 
 G in addition to the momentum of the phonon.  The extra 
momentum  G is transferred to the crystal as a whole.  
Such a process is known as an Umklapp process.   
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The Umklapp process is a consequence of the interplay 
between two scattering processes.   

In one of these processes, e.g., in multi-phonon scattering, 
the momentum of lattice excitations, often called crystal 
momentum, is conserved.   

The other process, i.e., a Bragg reflection, violates the law of 
conservation of crystal momentum.   

The characteristic time of energy transfer to the reflected 
acoustical wave in this process may be estimated as 

   Eg , 

where  Eg  is the energy gap in the vibrational excitation 

spectrum.   
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Often  Eg  is of the order of   ωmax , where  ωmax is the maxi-

mum lattice frequency, and the Bragg reflection occurs very 
fast.   

Nevertheless, the important point is that neither of the two 
scattering processes, if considered separately, will give rise 
to the same physical consequences as the Umklapp process 
does, i.e., finite thermal conductivity, etc. 
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The   CV (T) variations for different solids are quite similar.

[from F. K. Richtmyer, E. H. Kennard and J. N. Cooper, Introduction to Modern Physics, 
6th ed. (McGraw-Hill, New York, 1969)] 
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If the  CV  is plotted vs.  T Θ, then the specific heat data 
for different solids collapse into a universal curve. 

[from F. Seitz, Modern Theory of Solids, (McGraw-Hill, New York, 1940)] 



Quantum theory of the harmonic crystal 11

The characteristic temperature Θ plays an important role, 
which we will discuss later.  

As it appears, it does not matter if the solid contains atoms 
of just one type or of many types. 

Experiment: in the temperature range    T Θ1 the specific 
heat of insulators varies with the temperature as   T 3, and in 
this temperature range the difference  Cp −CV  can be 

neglected.  

The specific heat of metals contains an additional 
contribution to  CV , due to the thermal excitation of 
itinerary electrons.   
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The electronic contribution to  CV  linearly increases with 
increasing temperature; it is important (comparable to the 
lattice contribution), however, only up to several Kelvin.  
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The temperature variation of the specific heat of a solid 
may become distinctly different from the  CV T( ) shown 

above, for example, when: 

 The crystal structure changes with temperature 
(structural phase transition),  

 An order–disorder transformation occurs, 

 Additional degrees of freedom, not yet accounted for, set in.  

 Any phase transition occurs.
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Example: specific heat vs. temperature of a β-brass alloy,
containing 48.9 at.% Zn. The dashed line is calculated from 
the specific heats of Cu and Zn, assuming a pure mixture 

[from F. C. Nix and W. Shockley, Rev. Mod. Phys. 10, 1 (1938)] 

The sharp maximum of specific heat indicates a phase transition

phase diagram
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Until now we did not pay any attention as to whether the 
solid should be considered as crystalline or amorphous.  

At not too low and not too high temperatures, which are 
well below the melting temperature, this difference is 
unimportant.  

We will discuss, however, the temperature variation of the 
specific heat of amorphous and disordered solids that 
become manifest only at very low-temperatures. 

Glasses and other materials with disordered structures 
(alloys, fractal systems) at very low temperatures display 
significant deviations from the specific heat vs. tempera-
ture variation described above. 

Specific heat in crystalline and amorphous solids. Glasses.
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This becomes apparent when the same substance is investigated 
both in the crystalline state and in the amorphous state.  

The results of such  
a comparison, for the 
temperatures below  
10 K, are shown here.  

Below 1 K the specific 
heat of amorphous SiO2  
is several times higher 
than that of the crystal-
line SiO2 at the same 
temperature. 
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The specific heat of glasses increases with increasing 
temperature as  T , rather than   T3 , as that of crystals. 

The high specific heat of glasses was ascribed to the high 
degeneracy of energetically similar atomic configurations 
related to disorder.   

Other experiments have also revealed the excess specific 
heat in the data obtained from crystalline alloys, although, 
due to lower degree of disorder than in glasses, on a 
smaller scale.   

The specific heat anomalies of different nature have been 
found in systems with self-similar, or fractal, structure. 
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The Einstein model and specific heat 

Classical physics cannot explain the universal  CV  vs.  T Θ 
curve characteristic of the specific heat of solids.  

Consider a solid consisting of  N  atoms as a system with   3N
(more precisely   3N − 6) degrees of freedom. 

Then, in the limit of high temperatures, we can approxi-
mately determine the specific heat  CV  using the equi-
partition theorem that relates the temperature of a 
classical system with its average energy.  

Since   U = 3NkBT , we have 

CV = ∂U
∂T

⎛
⎝⎜

⎞
⎠⎟V

= 3NkB . 
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That corresponds to about 25 J/mol·K or 6 cal/mol·K and 
agrees well with the data.  

It has been experimentally established, however, that a 
deviation from the Dulong and Petit law becomes more 
and more pronounced as the temperature decreases.  

At room temperature (approx. 300 K) such a deviation is 
the most pronounced for diamond.  

The specific heat data for diamond above 200 K have been 
known since 1900s from the experiments performed by 
H. F. Weber.  
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Nernst has conducted further experiments at even lower 
temperatures. 

In 1906 Einstein has explained the observed specific heat 
behaviour of a solid assuming that atoms independently act 
as “Plank’s resonators.”  

“Plank’s resonators” correspond to harmonic oscillators in 
quantum mechanics.  

For simplicity assume that each harmonic oscillator has the 
same frequency  ω0. 
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The Hamiltonian is 

Ĥ = p̂2

2m
+

mω0
2x2

2
 , (5.1) 

the energy levels are 

   En = (n+1 2)ω0 , n = 0, 1, 2, ... . (5.2) 

The probability that the state with energy  En is occupied is 

 
wn = e−En kBT

Z
 , (5.3) 

where Z = e−En kBT

n
∑  is the partition function. Gibbs 

distribution

Павел
Линия
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The average energy of an oscillator is 

E = wnEn =
(n +1 2)ω0 e−(n+1 2)ω0 kBT

n
∑

e−(n+1 2)ω0 kBT

n
∑n

∑  . (5.4) 

The sums in 5.4 are calculated using 

xn

n
∑ = 1

1− x
 ,

where 
   x = exp −ω0 kBT( ), and 

nxn

n
∑ = x d

dx
xn

n
∑ = x

(1− x)2  . 
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We get for the average energy of an oscillator 

E =
ω0

2
+

ω0

eω0 kBT −1
 . (5.5) 

Here the first term on the right-hand side is the zero-point 
energy.   

The energy of the solid is 

  U = 3N E  , (5.6) 

because each of  N  oscillators has 3 degrees of freedom. 

Павел
Выносная строка
this is a Bose- Einstein distribution function
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The specific heat  CV  of a system of  N  oscillators is 

CV = ∂U
∂T

⎛
⎝⎜

⎞
⎠⎟V

= 3NkB
ω0

kBT
⎛
⎝⎜

⎞
⎠⎟

2
eω0 kBT

eω0 kBT −1( )2  . (5. 7) 

The only free parameter here is the oscillator frequency  ω0 , 
which corresponds to the Einstein temperature    ΘE = ω0 kB . 

The temperature enters expression 5.7 as the ratio  T ΘE . 

Fitting the experimental specific heat data   CV (T) using 
expression 5.7 yields the  ΘE value. 
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This figure displays the specific heat curve for diamond, 
calculated for   ΘE = 1320 K , and the Weber’s data.  

[from A. Einstein, Ann. Phys., (4) 22, 180 (1907); reproduced from Charles Kittel, 
Introduction to Solid State Physics (Wiley, New York, 1976)] 
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The high-temperature limit   T ΘE: 

CV = 3kB Neω0 kBT ω0

kBT eω0 kBT −1( )
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2

=

= 3kB N 1+
ω0

kBT
+ ...

⎛

⎝⎜
⎞

⎠⎟
ω0

kBT
ω0

kBT
+ ...

⎛

⎝⎜
⎞

⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

2

≈ 3kB N .

 . 

The high-temperature specific heat of the Einstein model 
corresponds to the Dulong–Petit law CV = 3R.  
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The low-temperature limit   T ΘE: 

CV = 3kB N
ω0

kBT
⎛

⎝⎜
⎞

⎠⎟

2

e−ω0 kBT  . 

The lattice contribution 
to the low-tempera-
ture specific heat of 
most solids, however, 
varies as   T 3, in dis-
agreement with the 
model prediction. 
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The Debye model 

Nernst’s experiments have shown that the Einstein model 
does not provide a satisfactory description of the specific 
heat data at low temperatures.  

Debye has suggested considering a solid, due to a large 
number of atoms, as a mechanical continuum, and thermal 
excitations as longitudinal and transverse elastic waves 
that are collective modes involving many atoms.  

The Born–von Kármán periodic boundary condition. 

In the Debye model we select a part of the solid in the 
shape of a cube with the edge  L.  



Quantum theory of the harmonic crystal 35

We seek a solution of the equation of motion representing 

a wave with frequency ω  and wave vector   

k

   
u( x,t) =


A0ei(


k x−ωt)

 . (5.8) 

Here    

A0 is the displacement vector; for longitudinal waves 

   

k 

A0 and for transverse waves    


k ⊥

A0.

The Born–von Kármán periodic boundary condition 

  u x1 , x2 , x3 , t( ) = u x1 + L, x2 , x3 , t( ) = u x1 , x2 + L, x3 , t( ) = u x1 , x2 , x3 + L, t( ) (5.9) 

leads to 
  
k1 =

2π
L

n1 , k2 =
2π
L

n2 and   
k3 =

2π
L

n3 ,

where   n1 , n2 and   n3 are integers. 
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Each set of quantum numbers   n1 ,n2 ,n3 corresponds to one 
wave vector  


k =

ω
c
=

2π
L

n1
2 + n2

2 + n3
2( )1 2

 , (5.10) 

where  c is the wave velocity. 

For longitudinal waves  c = cL, and for transverse  c = cT .  

The velocities of longitudinal and transverse elastic waves 
are given by  

cL
2 =

E
ρ
 and cT

2 = G
ρ

 , 

respectively, where  E is the Young modulus,  G is the shear 
modulus and ρ is the density.  
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We will now consider waves determined by Eq. 5.8 
as the normal vibrational modes of the whole solid. 

Contrary to the Einstein model we now allow many frequencies.  

To calculate the energy of such a mechanical system we 
have determine the number of frequencies that fall into 
the range between ω  and  ω + dω . 

Using 5.10 we find 

ω =
2πc
L

n1
2 + n2

2 + n3
2( )1 2

=
2πc
L

n . (5.11) 
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We can view frequencies as the points, located inside the 
sphere of radius  r = n, where each point corresponds to 
three vibrational modes — one longitudinal and two 
transverse.  

We have assumed that for each frequency the velocities of 
longitudinal and transverse waves are equal.  

In the continuum approximation, the volume of the above-
mentioned sphere determines the number of frequencies 

Nω = 4π
3

ωL
2πc

⎛
⎝⎜

⎞
⎠⎟

3

= 1
6π 2

ω 3L3

c3  . (5.12) 
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Correspondingly, the number of vibrational modes is 

Nω = 1
6π 2 ω

3L3 1
cL

3 + 2
cT

3

⎛

⎝⎜
⎞

⎠⎟
. (5.13) 

We define the average mode velocity  c  as 

  

1
cL

3 +
2
cT

3

⎛

⎝⎜
⎞

⎠⎟
=

3
c 3  . (5.14) 

To determine the number of vibrational modes in the range 
between ω  and  ω + dω  we can write 

∂Nω

∂ω
dω = 3

2π 2
ω 2L3

c 3 dω  . (5.15) 
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The density of vibrational modes is 

g ω( ) = 3
2π 2

ω 2L3

c 3  . (5.16) 

For an infinitely large solid the range of possible frequen-
cies of vibrational modes would be open at the upper end. 

Since we consider only a part of the solid that contains 
a total of  N  atoms, the number of possible frequencies 
is   3N .  

Therefore 3N = g(ω )
0

ωD∫ dω , where ωD is the cut-off 

frequency for the density of vibrational modes. 
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The density of vibrational modes: 

Using 5.16 we find the cut-off frequency 

ωD
3 =

6π 2Nc 3

L3  . (5.17) 
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We now express the density of vibrational modes as a 
function of ωD  

g ω( ) = 9N
ωD

3 ω 2 . (5.18) 

We now again assume that every vibrational mode corre-
sponds to a harmonic oscillator, whose average energy E
is given by Eq. 5.5.  

Then the total energy of the part of the body containing 
a total of  N  atoms is 

U = g(ω ) E
0

ωD

∫ dω  . (5.19) 
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Combining Eqs. 5.5, 5.18 and 5.19 we find 

U =
9N
ωD

3 ω 2

0

ωD

∫
ω

eω kBT − 1
dω  . (5.20) 

Here we account only for the temperature dependent 
contribution to E  and do not consider the zero-point 
energy.  

The cut-off frequency ωD corresponds to the so-called 
Debye temperature  

  
ΘD =

ωD

kB
 . (5.21) 
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Changing the integration variable in Eq. 5.20 to   x = ω kBT 
yields 

 
  
U = 9NkBT T

ΘD

⎛
⎝⎜

⎞
⎠⎟

3
x

ex − 1
dx

0

xD

∫  . (5.22) 

Here the upper limit of integration is   xD = ωD kBT = ΘD T . 

Differentiating with respect to  T  we get the specific heat 

 
  
CV =

∂U
∂T

⎛
⎝⎜

⎞
⎠⎟V

= 9NkB
T
ΘD

⎛
⎝⎜

⎞
⎠⎟

3
x4ex

(ex − 1)2 dx
0

xD

∫  . (5.23) 

As in the Einstein model, the specific heat depends only on 
the dimensionless variable  T ΘD .  
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Here the curve corresponds to the  ΘD values, obtained by 
fitting the specific heat data using Eq. 5.23; the  ΘD values 
are, of course, material-dependent. 

[from F. Seitz, Modern Theory of Solids, (McGraw-Hill, New York, 1940)] 



Quantum theory of the harmonic crystal 46

The high-temperature limit   T ΘD: 

U(T) = 9NkBT T
ΘD

⎛
⎝⎜

⎞
⎠⎟

3
x3

3
0

ΘD
T

= 3NkBT . 

The high-temperature specific heat corresponds to the 
Dulong–Petit law CV = 3R.  

The low-temperature limit   T ΘD : 

U(T) = 9NkBT T
ΘD

⎛
⎝⎜

⎞
⎠⎟

3
x4ex

(ex −1)2 dx
0

∞

∫
4π 4

15

  

 . 

This definite integral can be evaluated exactly. 
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The low-temperature specific heat is 

CV =
12
5
π 4NkB

T
ΘD

⎛
⎝⎜

⎞
⎠⎟

3

 . 

The Debye approximation correctly describes the lattice 
contribution to the specific heat at low temperatures 

  T < 1
20 ΘD.  

Assuming that the parameters cl and ct are the velocities 
of the compressional and shear sound waves, we can 
calculate the cut-off frequency ωD and, consequently,  ΘD 
using Eqs. 5.14 и 5.17. 
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Expressing the sound velocities in terms of the elastic 
constants allows us to generalize the Debye approximation 
to include anisotropic media.  Consider hexagonal crystals, 
which have five independent elastic constants and are 
transversely isotropic.  The sound velocities are given by 

ρvT1
2 = c44 +

1
2
csin2θ

ρvL,T2
2 = c44 +

1
2
asin2θ + hcos2θ{

± (asin2θ + hcos2θ )2 − 4(ah − d2 )sin2θ cos2θ⎡⎣ ⎤⎦
1
2
⎫
⎬
⎭
 ,

where a = c11 − c44 , c = c11 − c12 − 2c44 , d = c13 + c44 , h = c33 − c44 . 

Debye model for crystals



Quantum theory of the harmonic crystal  49 

As an example, we show the  vi (θ ) variations for Zinc. 
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At low temperatures only the long-wavelength acoustic 
modes contribute to CV (T ), which takes the form 

 
  
CV (T ) =

2π 2kB4

53v 3 T
3 . 

Here  1 v 3  is the average of the inverse third power of the 
velocities of the three acoustic modes:  

 
 

1
v 3 =

1
3

1
vi
3(θ )0

π

∫
sinθdθ
2i=1

3

∑  . 

The Debye temperature is given by 

 
  
ΘD = 

kB
6π 2N
V

⎛
⎝⎜

⎞
⎠⎟

1 3

v  , 

where N V  is the number density of atoms. 
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Here we compare for several solids the Debye temperatures 

 ΘD, obtained from fitting the measured specific heat data 

  Cp(T) at low temperatures and calculated from elastic 

constants  cij. 

 C 
(diamond) 

Si V Fe Cu Al Pb 

  ΘD (K) from   Cp(T) 2240 647 326 457 342 423 102 

  ΘD (K) from  cij  2240 649 399 477 345 428 105 

 
[from K. A. Gschneider, Jr., in Solid State Physics, vol. 16, eds. F. Seitz and D. Turnbull 

(Academic Press, New York, 1964) p. 275]  
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Sometimes the Cp (T ) data in the intermediate temperature 
range is analyzed assuming that  ΘD explicitly depends on 
temperature. 

0 5 10

64

66

68

70

72

T (K)

!
D

 

Krypton

 
0 5 10

5

6

7

T (K)

C
p

 /T
 3  (

 m
J/

m
ol

 K
4  )

Krypton

 

[Data from L. Finegold and N. E. Phillips Phys. Rev. 177, 1383–1391 (1969)] 
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The Debye model is quite successful in describing the 
temperature variation of the specific heat of insulators. 

We remind, however, that the Debye model treats a solid 
as a continuum, i.e., disregards atomic structure of a 
crystal lattice, and assumes no dispersion in the excitation 
spectrum of the vibrational modes. 
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Density of normal modes, van Hove singularities 

In three dimensions the density of normal modes g(ω ) 
becomes quite complex because ω now depends both on the 
absolute value and on the direction of the wave vector  


k .

The critical points of the density of normal modes g ω( ), 
related to vanishing of the absolute value of the group 
velocity  vk , are known as the van Hove singularities.  

Contrary to the one-dimensional case, the van Hove 
singularities are infinities only in the g ω( ) derivatives, 
but not in g ω( ) itself. 
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There are four types of critical points: minimum, saddle-
points S1 and S2 and maximum. 

 
Van Hove’s theorem states that the density of normal 
modes g ω( ) must contain at least one critical point of each 
of the types S1 and S2 , and dg dω → −∞ at the upper end.
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Quasi-localized vibrational modes 

Heavy impurities, for example, 
heavy isotope impurities, in  
a monoatomic lattice lead to  
a Lorentz-type feature in the 
density of vibrational states at 

  ωq ωD  

    

   

δ g(ω ) 
ωqΓq

ω 2 −ωq
2( )2

+ Γq
2
 . 

Here  ωq is the quasi-local frequency and  Γq is the half-
width of the Lorentz curve.  
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Since  

 
   

Γq

ωq
2


′m −m
m

 ,  

where  m and  ′m  are the host and impurity atomic masses, 

respectively, the Lorentz curve narrows as  ′m −m 

increases.  

Quasi-local vibrations alter the thermodynamic and kinetic 

properties of a crystal, in particular, resulting in resonance 

anomalies in the absorption of ultrasound waves. 
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Local phonon modes; the Einstein solids  

The specific heat of Al10V above 2 K is well described by 
the Einstein model, i.e., it increases exponentially with 
increasing temperature [A. D. Caplin et al., 1973].   

 
[from L. Bodnárová, Diploma Thesis, Comenius University, Bratislava, 2004] 
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This phenomenon relates to a well-defined local phonon 
mode that has an Einstein temperature of 22 K.   

It is thought that vibrations of ‘loose’ Al atoms, occupying 
the centers of Friauf polyhedra in the Al10V structure, are 
responsible for the local modes.   

The Friauf polyhedron is composed of 16 Al atoms.  It can 
be viewed as a large ‘shell’ of about 3.2 Å in radius.   

For comparison, the separation between nearest neighbours 
in the fcc structure of Al is only 2.8 Å.   

Consequently, Al atoms inside the Friauf polyhedra move in 
a shallow potential resulting in vibrational modes with very 
low energies; such Al atoms are effectively uncoupled from 
the rest of the Al10V structure. 
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The space group of Al10V is 
  Fd 3m.  The primitive cell 
contains 44 atoms.  The 
cubic unit cell consists of 
four primitive cells.  The 
grey and black spheres 
are the Al and V atoms, 
respectively.  There are 
eight ‘holes’ per unit cell. 

 [from L. Bodnárová, Diploma Thesis 
Comenius University, Bratislava, 2004] 

Another example of an Einstein solid is quinol clathrate 
with an argon atom trapped inside a cage in its structure.  
In this case the Einstein temperature is 48 K [Parsonage 
and Stavely, 1960].  
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