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Amorphous solids — thermal and elastic anomalies at low 
temperatures 

As we have established 
earlier, the low-temperature 
specific heat of glasses and 
amorphous solids does not 
follow the   T 3 variation due 
to acoustic excitations and 
contains the excess 
contribution that varies as 

  T
α ,α ≈1.
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Such behavior can be explained by a specific dependence of 
the potential energy on the atomic displacement, namely, by 
anharmonic effects.   

In harmonic approximation the 
potential energy is 

     
   Ei = Ei

0 + a r − r0( )2
 . 

We have mentioned earlier that 
in contrast to periodically 
ordered crystals, in amorphous 
solids many realizations of the 
structure of almost equal potential energy are possible.  
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Consider the simplest model in which each atom has two 
possible positions with almost exactly equal potential 
energies. 

The corresponding double well 
potential approximately as follows: 

Such potential energy is strongly 
anharmonic, i.e., we are considering 
a system with strong anharmonicity.  

Because the low- temperature 
specific heat anomalies discussed above have been measured 
on SiO2, we choose this substance as our model substance.  
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Many modifications of SiO2 contain oxygen tetrahedra filled 
with one silicon atom.   

We can construct an amorphous structure as a random 
network of such tetrahedra.   

Here we show a schematic two-
dimensional representation of two 
structures with almost equal 
potential energies.  We assume 
that light oxygen atoms are more 
disposed to small displacements 
than heavy silicon atoms.  
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The model assumption is that only the lowest vibrational 
state, or ground state, is predominantly occupied in each 
potential well, i.e.,   kBT ω .  

The tunneling probability between the two states is such 
that an exchange is possible during the typical time of a 
specific heat experiment, i.e.,   10−3 s < t <103 s. 

The tunneling barrier height can be chosen to be in the 
range between 0.1 and 1 eV.  

Bonding between an oxygen atom and its neighbors allows 
reaching thermal equilibrium, and the temperature is 
defined.  
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We assume that all N oxygen atoms are in identical 
conditions.  In thermal equilibrium the ratio of the 
occupation numbers of the two levels is  

 
  

N2

N1

= e−E2 kBT

e−E1 kBT = e E1−E2( ) kBT = eΔE kBT . (7.1) 

Since 

   N1 + N2 = N  , (7.2) 

we find 

 
  
N1 =

1
eΔE kBT +1

 . (7.3) 
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The energy is given by 

  U = N1E1 + N2E2 = N1ΔE+ NE2 . 

The temperature dependent contribution to the energy is 

 
  
U(T) = N1ΔE = NΔE

eΔE kBT +1
 . (7.4) 

Therefore,  

 
  
CV = ∂U

∂T
⎛
⎝⎜

⎞
⎠⎟V

=
ΔE kBT( )2 eΔE kBT

eΔE kBT +1( )2 NkB . (7.5) 
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Here we show the 
temperature variation 
of the specific heat. 

The specific heat of 
this type is typical 
of systems, in which 
internal degrees of 
freedom result in 
discrete energy 
spectra with level 
separations that fall into the temperature range measured.   

The function   CV (T ), known as the Schottky anomaly, slowly 
increases with increasing temperature and reaches a 
maximum at   T  ΔE k B .  
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Asymptotic behavior of the Schottky anomaly: 

Low temperatures 
  
T  ΔE

kB
: 

  
CV T( ) = kB

ΔE
kBT

⎛

⎝⎜
⎞

⎠⎟

2

e−ΔE kBT

 

. 

High temperatures 
  
T  ΔE

k B

: 
  
CV T( ) = kB

4
ΔE
kBT

⎛

⎝⎜
⎞

⎠⎟

2

 

. 

The specific heat of an ensemble of N two-level systems 
with equal  ΔE   

 
  
CV =

ΔE kBT( )2 eΔE kBT

eΔE kBT +1( )2 NkB   

cannot describe the experimental data. 
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As is the case with the Einstein model, an assumption that 
the same value of  ΔE  can be assigned to all N atoms, is 
most likely incorrect.  

Because of the randomness of the amorphous network the 
parameter  ΔE  does not have a well-defined value.  It is 
expected to vary over a wide range.  

We assume  ΔE to have 
a constant distribution 
in the range between 
zero and   (ΔE)max . 
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The energy is now  

 
  
U(T) = n(ΔE) ΔE

eΔE kBT +10

ΔEmax

∫ d(ΔE) . (7.6) 

Changing the integration variable in to  ΔE kBT = x yields  

 
  
U(T) = n0 kBT( )2 x

ex +10

xmax

∫ dx . (7.7) 

Here the upper limit of integration is   xmax = (ΔE)max kBT . 

Since we are interested only in very low temperatures 

  T <1 K , and the typical values of   (ΔE)max are in the range 
between 0.1 and 1 eV, we estimate    xmax  103 – 104. 
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In the low-temperature limit    T  (ΔE)max kB  

 

   

U(T) = n0 kBT( )2 x
ex +10

∞

∫ dx

π 2

12

  

 . (7.8) 

This definite integral can be evaluated exactly.  

The low-temperature specific heat is 

 
  
CV = π 2

6
n0kB

2T  . (7.9) 
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The specific heat of 
amorphous SiO2 at 

  ′T = 0,1 K, where the 
contribution varying as 
  T 3 can be neglected, is 
about  10−7 J/g·K or 
 6 ⋅10−6 J/mol·K.  
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The density of states   n0 with this   CV ( ′T ) value is 

  
n0 =

36 ⋅10−6

π 2kB
2 ′T

= 1,92 ⋅1041 J −1mol 
−1= 3,06 ⋅1022 eV −1mol −1. (7.10) 

Assuming that upper limit for the separation   (ΔE)max 
between the levels is 0.1 eV we find the number of two-
level systems  

   NTLS = n0(ΔE)max = 3,06 ⋅1021 mol −1 , (7.11) 

i.e., one two-level system per about two hundred SiO2 
groups. 

Surprisingly, the values of the excess specific heat are 
similar for different types of amorphous materials. 
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The thermal conductivity   λ(T ) of amorphous materials also 
behaves anomalously at low temperatures.  It is considera-
bly lower than that of periodic crystals and depends only 
slightly on chemical composition.   

Below 1 K   λ(T ) of amorphous mate-
rials is limited by phonon scattering 
involving two-level systems and it 
varies approximately as   T 2.   

This scattering mechanism typically 
reduces   λ(T ) to values an order of 
magnitude below the Casimir limit.  

 
[from S. Hunklinger and A. K. Raychaudhuri, Progress in Low Temperature Physics, edited 

by D. F. Brewer (North-Holland, Amsterdam, 1986), Vol. IX, p. 265.] 
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Interaction of the low frequency lattice excitations with 
two-level systems leads to anomalous temperature variation 
of the sound velocities and to saturation of the sound 
attenuation.  

  
[from S. Hunklinger and A. K. Raychaudhuri, Progress in Low Temperature Physics, edited 

by D. F. Brewer (North-Holland, Amsterdam, 1986), Vol. IX, p. 265.] 
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Composite glassy systems:  

 fused capillary arrays of boro-silicate glass or 
policarbonate,  

 boro-alumino-silicate glass containing mica crystallites.  

Introduction of holes or crystallites in a glassy matrix 
produces a frequency-independent phonon mean free path.  

This results in a suppression of the phonon mean free path 
below the value determined by the phonon scattering on 
tunneling states alone. The thermal conductivity of com-
posite glassy systems shows a gradual increase of slope in 
  λ(T ) with decreasing temperature.   
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At the lowest temperatures the   λ(T ) variation is reported 
to be close to   T 3.  

  
[from M. P. Zaitlin and A. C. Anderson, Phys. Rev. B 12, 4475 (1975);  
E. P. Roth and A. C. Anderson, Journ. Appl. Phys. 47, 3644 (1976)] 
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The composite glassy systems represent cases of extremely 
strong additional phonon scattering corresponding to mean 
free paths of the order of 10–4

 – 10–3 cm.   

If the mean free path l due to excessive scattering is 

long enough, the   T 3 regime will not be reached down to 
the lowest temperatures usually accessible to thermal-
conductivity measurements of the order of 0.05 K.  
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Umklapp processes in heterostructures and quasicrystals 

The large-period modulation of the acoustic impedance 
across the superlattice layers, e.g., (GaAs)n(AlAs)m creates 
the so-called mini-Brillouin zones.  

The reciprocal lattice vectors associated with the mini-
Brillouin zones give rise to the mini-Umklapp processes, 
which increase the thermal resistance.  The corresponding 
phonon mean free path  Λph is expected to vary with the 

temperature approximately as    e ′G vs 2kBT , where    ′G  kBθD vs  
is the size of the mini-Brillouin zone.  For comparison, in 
periodic crystals  Λph varies with T as   eθD 2T . 
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Quasicrystals 

The characteristics of Umklapp scattering of lattice 
excitations in solids with periodic and quasiperiodic orders 
are distinctly different.   

This is believed to be a direct consequence of the 
difference between the lattice excitation spectra of 
periodic and quasiperiodic lattices.   

In a periodic crystal, the exponential decrease with 
decreasing temperature of high frequency phonons available 
for Umklapp processes leads to an exponential decrease of 
the Umklapp scattering rate of the phonons.  
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In a quasicrystal the situation is apparently different, 
because the momentum of lattice excitations can be 
transferred to the lattice in inelastic scattering events by 
arbitrarily small portions, i.e., not limited in magnitude from 
below, resulting in a power-law decrease of the rate of 
Umklapp processes. 

The average transport cross-section for the quasiperiodic 

Umklapp process is proportional to   ω 2T 4 , i.e., not 
exponential in frequency or temperature as is valid for 
Umklapp processes in periodic crystals. 



Lattice Excitations in Complex Structures 28 

Structural scattering of the lattice excitations in 
quasicrystals 

Consider the “quasiperiodic” Umklapp processes, which 
involve both phonon-phonon scattering and Bragg 
reflections.  Suppose, that the conservation laws do not 
prohibit the three-phonon processes.   

Then, the frequency dependence of the transport cross-
section is given by  

 
σ transp = Aσω ωmax  , 

where σ  is the full phonon-phonon scattering cross section.  
For three-phonon scattering the full cross-section is 
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proportional to   ωT 4, because the standard three-phonon 
matrix element is proportional to  ω1ω2ω3  and the phase 

volume rises as   T 2 (six free components minus four 
conservation laws).   

Here it is supposed that only one phonon in the three-
phonon process has a low frequency and that the two 
others are merely thermal ones with their frequency 
proportional to the temperature.   

The average transport cross-section for the anharmonic and 
quasiperiodic structural scattering, together denoted as 
quasiperiodic Umklapp process, is proportional to   ω 2T 4. 
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Transport of heat in aerogels and opals 

The   λ(T ) curves for silica aerogels of different densities.   

At high temperatures 
the T dependence of λ 
is the same for differ-
ent densities.   

The inset shows   λ(T ) 
for amorphous SiO2.  

 
 
 
 
 

[from A. Bernasconi et al., Phys. 
Rev. B 45, 10363 (1992)] 
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Temperature dependence of the specific heat of various 
silica aerogel samples and of amorphous SiO2.  

Data are plotted as 

  Cp T 3  vs  T  on a 
double logarithmic 
scale.   

Horizontal lines are 
the Debye limits.  

 
 
 
 
 
 

[from A. Bernasconi et al., 
Phys. Rev. B 45, 10363 (1992)] 
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Opals are structures composed of the closed packing of 
silica spheres in the size range typically between 150 to 
300 nm.  Chemical formula SiO2·n H2O. 

Depending on the method of preparation, the temperature 
variation of the thermal conductivity of opals can be either 
similar to   λ(T ) of quasicrystals (type 1 opals) or amorphous 
solids (type 2 opals). 


