
 

Measurement techniques : 
steady - state heat -flow technique
comparative technique
double comparative technique
parallel thermal conductance technique 
radial flow method
square wave a.c. drift method 
flash thermal diffusivity method — high temperatures
3ω technique — thin films

Systematic errors : 
heat loss via radiation 
thermal conduction through the lead wires 

Measurements of the Thermal Conductivity !



Measurements of the Thermal Conductivity !





The Steady-State Heat-Flow Technique!

Experimental set-up!



Experimental set-up: sample and sample holder !
(from W. Odoni, P.  Fuchs and H. R. Ott, Phys. Rev. B 28, 1314 (1983))!

1 – copper holder !
2 – thermal anchoring of the wires !
3 – coil foil !
4 – copper !
5 – stainless-steel holder !
6 – sample (Lead single crystal) !
7 – carbon thermometer !
8 – silver foil !
9 – heater !
10 – GE varnish; removed after !
         mounting!



Experimental set-up; T-range between 0.065 and 100 K �
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Experimental set-up: small samples!



  What is the upper limit for ΔT?

  
ΔT
T

≈ 0.015

Temperature distribution in a steady-state heat-flow set-up!
(from R. Berman, F. E. Simon and J. M. Ziman, Proc. Roy. Soc. A 220, 171 (1953))!

  T1

  T2



     

Assume that the steady-state heat flow is established, and 
that the isothermal surfaces are planar and perpendicular 
to the sample between the thermometers T1 and T2.
Integrating the Fourier – Biot equation from T1 to T2  yields

 (T ) dT = −
QΔx
A

.
T1

T2

∫
The mean value of   between T1 and T2  is

 (T ) = −
QΔx
AΔT

.

Whether  (T ) is a sufficiently accurate measure of  (T ) 
depends on the functional form of  (T ), the magnitude 
of ΔT , and how T  is defined from the measured T1 and T2. 



    

Usually, T  is defined from T1 and T2  as 1
2 T1 +T2( ).

Functional form of  (T ) :  replacing  (T ) by the 2nd  order 
Taylor series approximation to  (T ) about T  yields

 T( ) =  T( ) + ′ T( ) T −T( ) + 1
2

′′ T( ) T −T( )2⎛
⎝⎜

⎞
⎠⎟

dT
T1

T2

∫ =

 T( )ΔT + 1
24

′′ T( )ΔT 2ΔT

The relative error is δ


=
 T( )− T( )
 T( ) = 1

24
′′ T( )
 T( ) ΔT 2

Therefore ΔT  can often be quite large compared with T .  
If  = const or  ∝T ,  T( ) = T( ) and ΔT  can be any size. 



Thermal conductivity of icosahedral phases at low temperatures!
(from M. A. Chernikov, A. D. Bianchi, E. Felder, U. Gubler and H. R. Ott, Europhys. Lett. 35, 431 (1996);!

M. A. Chernikov, A. D. Bianchi and H. R. Ott, Phys. Rev. B 51, 153 (1995))!
 )!

    

Example:

for icosahedral phases 
below ∼ 1 K   varies as T 2

the relative error in   is
 

Δ


= 1
24

′′ T( )
 T( ) ΔT 2 = 1

12
ΔT
T

⎛
⎝⎜

⎞
⎠⎟

2

extremely small error!



Heat Loss due to Radiation Effects !

The maximum temperature reached in a conventional steady-state !
experiment is often limited by radiation losses


    

P = Aσε Tsample
4 −Tsurrounding

4( )
σ  = 5.67 ×10−8  Wm−2K−4

(the Stefan–Boltzmann constant)

translates to  error ∝T 3



Heated guard set-up: !
the same temperature distributions 
along the guard and the sample!



The Comparative Technique !

   
P = 1ΔT1A1

l1
=  2ΔT2 A2

l2

   
 2 =1

ΔT1

ΔT2

A1

A2

l2

l1



  

Sample :
Pb- doped Bi2Sr2Ca1Cu2Ox

800 ×80 × 4 µm3

Thermocouples :
13 µm  Chromel/Constantan 

D. T. Verebelyi,  
Rev. Sci. Instrum. 68, 2494 (1997)

The Comparative Technique – Measuring Microgram Wiskers  !



The experimental set-up: heat-flow reversal possible !
(P. B. Allen, Xiaoqun Du, L. Mihaly and L. Forro, Phys. Rev. B 49, 9073–9079 (1994)) !

 sample – Bi2Sr2YCu2O8 , 2 × 1 × 0.01 mm3

13 µm dia!

The Double Comparative Technique !



Step 2 – a sample is attached between the !
sink and the heater, in parallel with the post; !
the thermal conductance of the system is !
then again measured; parallel thermal !
conductance, which is determined by the !
sample and thermal contacts is calculated.!

Error: blackbody radiation from the sample.!

The Parallel Thermal Conductance Method  

Applications – structurally weak samples, !
which cannot support thermometers and !
heater.!

Step 1 – a conventional steady-state set-up !
with a low-conductive post is assembled; !
thermal conductance is measured.!



The Radial Flow Method!

Heat is applied internally – low radiation losses from the heater!
(G.  A. Slack and C. Glassbrenner, Phys. Rev. 120, 782 (1960))!

    

 = P
L

ln r2 r1( )
2π T1 −T2( )

L – sample length

The end‐loss error 

δend‐loss < 0.5% if L > 4D 



The Flash Method of Measuring Thermal Diffusivity!
W. J. Parker, W. J. Jenkins, C. P. Butler and G. L. Abbott, J. App. Phys. 32, 1679 (1961) !

One face of a sample in the shape of !
a thin disk is irradiated by a short, 
of the order of ½ ms, light pulse.  !

The heat propagation through the 
sample results in a temperature rise on 
the other surface.  !

An infra-red detector monitors the 
temperature rise of the opposite side !
of the sample.  !

The thermal diffusivity is then 
calculated from the temperature 
versus time curve. !



  

∂T
∂t

=α d 2T
dx2 (1)
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∞
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α = 1.37d 2

π 2t1 2

(3)

   

Eq. (2) – Carslaw and Jaeger’s solution to one - dimensional heat flow

d 2 α – characteristic time of heat diffusion across the sample 



Flash diffusivity set-up: schematic!

The sample temperature rise is kept fairly small, between about ½ to 2 °C.  !
An InSb infra-red detector, cooled by liquid nitrogen, is a common choice.  !
At very high temperatures up to 2800 °C pyrometers are used. !

The sample holder is specifically !
designed to shield the IR detector !
from direct laser or flash light. !

The both sample surfaces must be 
highly emissive – often this requires 
a thin coating of graphite, which can 
lead to a significant error, if good 
adhesion is not achieved. !

temperature rise curve!



Diagram of the experimental set-up!
(from O. Maldonado, Cryogenics 32, 908 (1992))!

Square-wave modulation of the heater 
current creates temperature gradients!

The Square Wave AC Drift Method  



Temperature vs. time variation!
(from O. Maldonado, Cryogenics 32, 908 (1992)) !

Assumption: the heater heat 
capacity, the heater resistance, 
and the thermal conductance of 
the sample are smooth functions 
of temperature.!



  
K = RI0

2

ΔTpeak-to-peak
tanh Kτ

2C
⎛
⎝⎜

⎞
⎠⎟

Assumptions: !
(1)   the heater heat capacity, the heater resistance, and the thermal !

 conductance of the sample are smooth functions of temperature !
(2)  the temperature drift is slow compared to the periodic oscillations!

Advantage – the sample temperature sweeps as the data is collected.  !
The square wave a.c. method has been implemented in a commercial 
instrument (PPMS, Quantum Design).!



 The 3ω Method

(D. G. Cahill, Rev. Sci. Instrum. 61, 802 (1990))


Errors due to black-body radiation scale with a characteristic 
length of the experimental geometry.  !

The method is insensitive to these errors because the effective 
thickness of the sample is small, of the order of 100 µm. !

The method uses a radial flow of heat from a single element 
that serves both as a heater and thermometer.!



   

Temperature oscillations inside the sample at a distance r = x2 + y2  
from the line 

ΔT (r) = P
lπλ

K0 qr( ), 
K0  – the zeroth-order modified Bessel function,

q−1 = λ 2iωρC( ) – the wavelength of the diffusive thermalwave.



 

The current through the line oscillates at a frequency ω and the power
is generated at a frequency 2ω.  The resistance of pure metals increases 
with increasing temperature.  Therefore the resistance of the metal line 
has a small a.c. component that oscillates at 2ω.  The resistance oscillation 
times the original driving current oscillating at ω results in an oscillation,
with small amplitude, of the voltage across the line at 3ω. 



    

Experimentally, measurements of the voltage across 

the line at 3ω are taken at selected fixed frequencies.  

The thermal conductivity   is determined from 

 =
V 3 ln f2 f1( )

4π lR2 V3,1 −V3,2( )
dR
dT

. 

Here V  is the voltage across the metal line at  ω ,  
R is the resistance of the metal line,  
V3,1  is the 3ω  voltage at frequency  f1,  
V3,2  is the 3ω  voltage at frequency  f2 .


