
Electron Theory of Metals 

Section 2. Normal metal in an external magnetic field. Quantum oscillations. (5-10 hours) 

Section 3. Other important results without violation of metallic state. (1-4 hours) 

Main textbook by A.A. Abrikosov, Fundamentals of the Theory of Metals  
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Topic 1: electrons in crystal 

(about 3 lectures) 

Plan: 

1. Some history. Models of Drude and Sommerfeld. 

2. Degenerate Fermi gas. Fermi surface and Fermi energy. 

3. Electrons in a crystal (periodic lattice potential). Bloch’s 

wave function. 

4. Weak- and strong-coupling approximations for electron 

interaction with periodic lattice potential. Tight-binding 

approximation and the model of weakly bounds electrons 

and their results for electron dispersion in a 3D crystal. 



The Drude theory 
History 3 



Problems of the Drude model 
The Drude model is purely classical model, and treats both electrons and ions as solid 

spheres. The classical gas model fails to explain important experimental facts: 

S=-V/T. 

Nevertheless, the Drude formula for conductivity is valid beyond the 

applicability of the Drude model:   

History 4 
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Optical conductivity in the Drude theory. 
Its comparison in metals, insulators and superconductors 

The real part of the expression above, 

commonly called as “optical 
conductance” is readily obtained: 

Drude conductivity 
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Fermi gas of free electrons.  

Sommerfeld theory of metals.  

Free electron dispersion relation: E=p2/2m 

Fermi surface, separating occupied 

(E<EF) and empty (E>EF) electron 

states in 3D space), in a free 

electron gas is a sphere of radius pF 

in momentum space. 

Fermi distribution function 

Occupied 

electron 

states 

Empty 

electron 

states 

pF 

FS of gold 

In crystals the FS 

(Fermi surface)  

is not a sphere: 
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The number of quantum states in the  

interval            is equal to 
dN= 



Appendix: derivation of Fermi distribution from the 

Gibbs distribution (Landau&Lifshitz, Vol .5, Sec. 53) 

Thermodynamic potential for 

a variable number of particles 

and fixed chemical potential    

The statistical sum is the sum 

over all energy levels with  

The free energy at fixed particle number is 

given by the logarithm of statistical sum: 

For a given quantum state k in  there 

is only a sum over particle numbers nk: 

For fermions nk may be only 0 or 1: 

Statistical average of particle number nk is given by the partial derivative: 
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Sommerfeld theory of metals.  

In 1927 Arnold Sommerfeld applied Fermi–Dirac statistics to the Drude model of electrons 

in metals, thus considering ideal Fermi gas with Fermi surface (Drude-Sommerfeld model). 

This enabled him to solve the unresolved problems of the Drude theory. Namely, the Pauli 

exclusion principle, that leads to the famous Fermi-step distribution of fermions in the 

ideal Fermi gas, leads to a drastic decrease of the fraction of electrons that can absorb 

heat and this explains the two orders of magnitude difference between classical and 

quantum results for the electron specific heat and thermo-power (Seebeck coefficient): 

        Another achievement of the Sommerfeld’s theory of metals 

was exact derivation of the Lorenz number in the Wiedemann-Franz law, which is in 

excellent agreement with experiments: 

History 9 

Lorenz 

number 



Appendix: derivation of heat capacity of Fermi gas (1) 
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The energy of Fermi gas is given by a sum over all states with the weight 

of their filling factor: 
where 

Heat capacity is the derivative of 

energy as function of temperature: 

where 

and the integrals over d3p are expressed via 

the integrals over the Fermi surface S and :   

The derivative d/dT can 

be taken from the identity 

Here we used d =vdp, because vi = /pi 



Appendix: derivation of heat capacity of Fermi gas (2) 
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Using the identities: 

and 

for arbitrary but  

smooth function   

we obtain the integral  

Then the integrals  

give 

and 

The last 

condition 

gives 

and 

Finally, for the heat capacity we obtain 

where () is the density of states (DoS), and () is DoS at the Fermi level 
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Electrons in a crystalline lattice 

In fact, the quantum-mechanical problem of an electron in a periodic 3D 

potential is complicated, and the result may strongly differ from the 

free-electron model, because the electrons are strongly scattered by 

the wave vectors of 3D periodic modulation.  
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Energy bands 



Electron in a 1D crystalline lattice 

Problem in a quantum mechanics:  

a particle in a one-dimensional (1D)  

periodic potential 

(ideal crystal) 

The general solution is 

From where => 

From sewing of wave functions 

at x=na we get  

This system of 

equations gives: 

Electron dispersion is given by the equation: 

bands 
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Kronig-Penney periodic potential 



Energy levels in a rectangular potential well 

Wave functions: 

Energy levels: 

Schrodinger equation 

Boundary conditions: 

Solution: 

Each energy level forms an electron band 



Electrons in a crystalline lattice. Bloch’s theorem. 18 

Periodic crystalline potential  where 

ai – lattice constants, ni – integers. 

has an important property:  

if (r) is a solution, than (r+an) is also a solution with the same energy 

If this level is non-degenerate,* than          where C=ei 

Thus the wave functions in a crystal are 

An essence of the Bloch’s function is that it does not decay no matter 

how big is the sample, thus making finite probability for a conduction 

electron to propagate through the whole crystal without decay of the 

current, unlike a classical particle that would be able to move only 

diffusively, being scattered by the ions. This important result is in the 

root of the notion of coherent electronic bands found in metals. 

The Bloch’s theorem:  

where is periodic 



Appendices (1) 

* If the level is degenerate, than 

Orthogonality + normalization of wave functions requires 

or => 
and can be diagonalized. 

Then the eigenvalues   or   
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Quasi-momentum and reciprocal space 20 

These reciprocal lattice vectors Ki are given by 

They come from the Fourier transform of the periodic crystal potential 

and give the scattering wave vectors of this periodic potential. 

The Bloch’s theorem:  

where is periodic 

function. 



General properties of electron dispersion: (p)=(-p) 
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Electron dispersion (p) is a periodic function of p 

Electron dispersion (p) , i.e. 

the dependence of energy on 

electron quasi-momentum, is 

a periodic function of p with 

periods given by reciprocal 

lattice vectors K. Usually, it is 

defined in one Brillouin zone. 
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Electron dispersion (p) is a crystal 

From the mirror symmetry 

with respect to px plane also  

Hence and 

Electron energy (p) is a periodic 

function of momentum p, => 
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Electron dispersion (p) is a crystal (2) 

energy 

band 1 

lowest 

energy 

band 0 

1D Brillouin zone 

1D case 3D case 

3D Brillouin zones of face centered 

(a) and body-centered (b) crystals. 

See more illustrations in wikipedia. 

Typical notation: -point usually  
denotes the center of Brillouin zone 
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Approximation of weakly bound electrons 

We use the perturbation theory (iteration procedure). In the zeroth order 

we take isotropic free electron gas with dispersion (p)=p2/2m, spherical 

Fermi surface. Its wave functions are the plane waves            .  
 

In the first approximation we include the periodic scattering potential  

with matrix 

elements: 

These matrix elements are nonzero only if p-p’ =2nℏ/a, i.e. in 3D only 

for scattering by any linear combination of reciprocal lattice vectors K. 

We denote     . In the first order in U(x) the energy correction 

to (p)=p2/2m is diagonal matrix element U(p,p)=const. This constant 

energy correction does not change the dependence (p).  

In the second order in U(x) the  

energy correction to (p) is  

This energy correction is large if the denominator is small, i.e. when 

(p) (p-2nℏ/a). This happens when pnℏ/a, i.e. at the Brillouin-zone 

boundary. Then one must use perturbation theory for degenerate states. 
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(nearly free electron model) 



Perturbation theory for degenerate states, 

applied to electrons in crystal lattice 

This result for 1D electron dispersion 

(for energy spectrum) is shown in Fig. 

Brillouin 

zone 

Energy gap at the edges of Brillouin zone 
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The model of weakly bound electrons in 3D crystal 
27 

The crystal-lattice potential 
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To obtain this, we need to solve the Schrodinger equation 
where 

and  
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Diagonalization of this matrix goes via 

the calculation of the determinant:  

It gives the eigenvalues in Eq. (1) as 

the solutions of quadratic equation: 
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The analysis of electron dispersion in 3D crystal 

in the approximation of weak coupling to lattice 
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Perturbation theory for degenerate states (in the first order in UK) gives 

Figure illustrates the surface =const near the boundary of Brillouin zone (BZ) 

Electron velocity vz =/pz =0  to the boundaries of Brillouin zone (BZ) 

=> strong Bragg reflections from the BZ boundaries.  

the electron dispersion 

near the BZ boundary is 

intermediate  

energy 

BZ 

boundary 



Fermi-surface in weak-coupling regime  

Fermi-surface – surface (p)= =EF in the momentum space.  

In the weak-coupling regime it deviates from a sphere mainly 

only at the boundaries of Brillouin zone.  

Fermi surface of gold 



Tight-binding approximation. 

(derivation from Ch. Kittel, Introduction to Solid State Physics, 8th edition) 

Bloch wave function  

The electron 

energy is 

Keeping only  



Tight-binding approximation: transfer integral 

For two hydrogen atoms the direct calculation of overlap energy gives 

Energy 

spectrum 



Tight-binding approximation. Wannier functions 

Its exact solution are the Bloch waves: 

The Wannier functions are defined as 

a Fourier transform of Bloch waves: 

The Wannier functions wn(x) are located near n-th ion in the crystal.  

If the Bloch waves were plane waves eipx, the Wannier function would be 

a –function: wn(x)= (x-na). Now          and satisfy eq. 

because the product 
acts as small perturbation, 

In the zeroth approximation, neglecting this term h(x), wn(x) equals to 

the wave function of isolated atom    and satisfies Schrodinger 

equation with energy        equal to the energy level of isolated atom 

(derivation from A.A. Abrikosov, Fundamentals of the theory of metals) 



Tight-binding approximation (1) 
for electron dispersion in a crystal 

equation on w(1): 

where 
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Tight-binding approximation (results) 

where 
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In 1D case the electron dispersion (p) is given by 

and (x) are the electron wave functions on isolated ions.  
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In tight binding approximation the overlap of functions (x) on adjacent 

ions is very small, => h(1)>>h(2) ..  and I(0)=1>>I(1)>>I(2). Hence, we 

may keep only I(0), I(1) and h(1) (since h(0)=0). Then we obtain the 1D 

electron dispersion given by 

In simplest 3D case:  
and for the cubic 

crystal lattice, with 

basic vectors 

the electron dispersion is 

very different from free e-: 



Electron dispersion in the tight-binding 

approximation (isotropic 3D case) 

the electron  

dispersion is 

Energy 

spectrum 



Fermi-surface in the tight-binding regime 

(anisotropic case)  

Quasi-2D electron  

dispersion:  

 
ε(p)=ε ||(p ||)+2tz cos(pzd/ℏ),  
  

2tz< EF , ε||(p ||)  p ||
2/2m || . 

Fermi-surface: 

Quasi-1D electron  

dispersion:  

 
ε(p)=ε x(p x)+2ty cos(pyd/ℏ) 

+2tz cos(pzd/ℏ),  
  

ty,tz<< EF , εx(p x) p x
2/2m x . 

Fermi-surface: 

organic metals,  





Fermi-surface reconstruction  
in electron-doped cuprate superconductors  

Nd2-xCexCuO4 

   (NCCO) 

Introduction 

      n = 0.17 
Sh = 41.5% of SBZ 

Original FS: 
Reconstructed FS: 

n = 0.15 and 0.16 

Sh  1.1% of SBZ; 

0.15  64 meV; 

0.16  36 meV 

T. Helm, M. 

Kartsovnik et al., 

PRL 103, 157002 

(2009) 
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Phase diagram of 

cuprate high-Tc 

superconductors 

AFM 


