Electron Theory of Metals  Semester 1
(24 hours)

Section . An electron in a crvstal lattice
(14 hours)

1.1 Quantum theory as a basis for describing the phvsical properties of metals: the successes and
failures of Drude and Sommerfeld theories.
1.2. Bloch's theorem on the motion of an electron 1n a spatially peniodic potential
(crystal). The electronic energy spectra of metals and dielectrics.
1.3. The concept of Landau Fernm liquid. Luttinger's theorem as a generalization of the theory of
Bloch for interacting electrons in solids. Fermu surface in the metal.
1.4. General form of the Boltzmann kinetic equation. Solution of the kinetic equation for
isotropic metal in the approximation of elastic collisions. Electric and thermal
conductivity. Thermoelectric and thermomagnetic phenomena in metals.
1.5. The Boltzmann kinetic equation 1 a magnetic field. The influence of the Fermi surface
topology on the magnetoresistance of metals (magnetic Bloch oscillator).
1.6. The processes of electron scattening. The basic mechanisms of electron scatterning in metals:
the temperature dependence of relaxation times and kinetic coefficients.
1.7. Kondo effect in a metal with paramagnetic impunties. Kondo lattice in allovs with heavy
fermions.

Section 2. Normal metal in an external magnetic field. Quantum oscillations. (5-10 hours)
Section 3. Other important results without violation of metallic state. (1-4 hours)

Main textbook by A.A. Abrikosov, Fundamentals of the Theory of Metals



Topic 1: electrons in crystal
(about 3 lectures)

Plan:

1. Some history. Models of Drude and Sommerfeld.

2. Degenerate Fermi gas. Fermi surface and Fermi energy.
3. Electrons in a crystal (periodic lattice potential). Bloch’s
wave function.

4. Weak- and strong-coupling approximations for electron
Interaction with periodic lattice potential. Tight-binding
approximation and the model of weakly bounds electrons
and their results for electron dispersion in a 3D crystal.



History The Drude theory

In 1900 Paul Drude proposed a model of itinerant electrons i the metal. In the model a
chaotic thermal motion of the itinerant electrons gamned a dnft velocity as a result of application
of an external electric field E . So, according to Dmde, electrons are accelerated by the electrnic
field, but they dissipate their excess kinetic energy to the lattice dunng collisions with the 1ons.

The Drude model rests on the following assumptions:

+ Itmmerant electrons in the metal form a classical gas, and they are moving through a
lattice of static 1ons. The system as a whole 1s neutral;

+ Electrons do not interact with each other:

+ Itmmerant electrons participate 1n the electnic current flow and collide with the lattice
with a frequency 1/7 ;

» Electron gas has temperature T .

. o nuclei
cnre

® ciectrons
@ ions
(mass M, charge +Ze)

valence
EIEctrﬂns
{mass m, charge -e)

fl‘EE atoms a solid

Fig. 1 A sketch of N free atoms merging into a metal. The 1ons are unchanged durning the process
where they end up by forming a periodic lattice. The valence electrons leave their host atoms and
form an electron gas glung the 1omic lattice together.



History

Problems of the Drude model

The Drude model is purely classical model, and treats both electrons and ions as solid
spheres. The classical gas model fails to explain important experimental facts:

l.
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The electron specific heat. ¢, . 1s overestimated: measured value 1s two orders of

magnitude less than predicted by the Drude theory.

The thermoelectric power, (. the Seebeck coefficient., i1s also overestimated:
measured value 1n metals 1s two orders of magnitude less than predicted by the Drude
theory. S=-4V/AT.

The electron scattering time in metal increases by a few orders of magnitude with
decreasing temperature (m pure enough metallic samples), while scattering cross-

section of the hard spheres (1omns) experienced by classical electrons should stay
constant.

. The Hall coefficient, R, , 1s known from experiments to be either positive or negative,

while 1t follows from the Drude model that it should be always negative.

Nevertheless, the Drude formula for conductivity is valid beyond the

applicability of the Drude model: )
- g, _net

() — I g(m)= . O0g =
j(0)=o(w)E(w) i S




Electron transfer in external electric field

Consider motion of electron 1n an electric field. The second Newton's law 1n a momentum
representation could be written as follows:

Ip p
@w__Pr g (1.1)
dt T

here the first term models scattering. second — 1s an electric force. Consider a simple case of
electric field consisting of a single harmonic:

p(t)=Re(p(w) -exp{—imt}). E@)= Re(E(w} : cxp{—imr}) (1.2)

where Re 1s the real part of the complex function. and @ 1s the field frequency. Obviously. Eq.
(2) can be substituted now mto Eq. (1) and after solving the algebraic equation one finds:

e E() (1.3)

T

Substituting the latter result into Fourier transtormed expression for the density of electric
current flow. we find:

- nep(@) ne - — .
Jjl@)=— PO) _ 1 E () —— (1.4)
i I T —
Comparing this result with the Fourier transformed Ohm’s law:
j(w)=oc()E(w) (1.5)

one finally obtains the famous Drude’s result for the frequency dependent conductivity. Fourier-
component of the electron conductivity:

c ne’t _
oc(w)=—2—: o, = (1.6)
T — 0 Fr




Optical conductivity in the Drude theory.
Its comparison in metals, insulators and superconductors
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Re{o(w)} Drude conductivity
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\ The real part of the expression above,
B commonly called as “optical
\ conductance” is readily obtained:
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Fig.2 The curves for “optical conductance™: solid line — normal metal in the Drude theory:
dashed line — superconductor with the gap A ; dotted line — msulator.



Fermi gas of free electrons.
Sommerfeld theory of metals.

: : : AT
Free electron dispersion relation: E=p%/2m —

Fermi distribution function

f= [e(B-u)/T+ ]]“1. “\j_

'/ @)

Fermi surface, separating occupied
Fermi (E<Eg) and empty (E>E) electron
Surface states in 3D space), in a free
electron gas is a sphere of radius pg
In momentum space.

k, j
Empty In crystals the FS

electron (Fermi surface)

states IS not a sphere:
The number of quantum states in the \ _y/ d’p o
interval d°p = dp, dp, dp, is equal to (2mh)? FS of gold




Appendix: derivation of Fermi distribution from the
Gibbs distribution (Landau&Lifshitz, Vol .5, Sec. 53)

The statistical sum is the sum 7 = Z e—BwWT = {r exp (—-H/T)
over all energy levels with n

The free energy at fixed particle numberis F — _T log 2 e—EJT
given by the logarithm of statistical sum:

Thermodynamic potential for
a variable number of particles Q= —T log ; [e#N/TZ e E..NIT]
and fixed chemical potential p "

For a given quantum state k in Q there .Q —Tlog Z (e(#—‘h)/T)'u-
Is only a sum over particle numbers N:

For fermions N, may be only 0 or 1: Qi = -—T log (1 +e0“'"&)/7)

Statistical average of particle number Ny is given by the partial derivative:

—_ 0% . ew—eT _ 1
"k ou 1 +elu—eT  glop—mT .1 °
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HistorY  Sommerfeld theory of metals.

In 1927 Arnold Sommerfeld applied Fermi-Dirac statistics to the Drude model of electrons
in metals, thus considering ideal Fermi gas with Fermi surface (Drude-Sommerfeld model).
This enabled him to solve the unresolved problems of the Drude theory. Namely, the Pauli
exclusion principle, that leads to the famous Fermi-step distribution of fermions in the
ideal Fermi gas, leads to a drastic decrease of the fraction of electrons that can absorb
heat and this explains the two orders of magnitude difference between classical and
quantum results for the electron specific heat and thermo-power (Seebeck coefficient):

2 : 21 1T \1
T kgT ¢y, T kT |k,
(—1; — nkB Q - - }
2\ € 3ne 6\ & Je
where £, is the Fermi energy, and n is density of the Fermi gas.

In both formulas above, the Fermi gas model brings extra small factor k,7 /e, that multiplies,

essentially, the Drude’s results. Another achievement of the Sommerfeld’s theory of metals
was exact derivation of the Lorenz number in the Wiedemann-Franz law, which is in

excellent agreement with experiments: .- ;2 [ k, Y

_ ) < Lorenz
ol 3 e number

Here k is the thermal conductance of the electron gas, e 1s electron charge (modulus) and %,

is the Boltzmann constant.
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Appendix: derivation of heat capacity of Fermi gas (1)

The energy of Fermi gas is given by a sum over all states with the weight

of their filling factor: . -
) E(P)fd3p(2 h)3,wheref=[e( mIT 77,

Heat capacity is the derivative of c=v1LE dF ) ( )af d’p
energy as function of temperature: =~ aT v p oT (27rh)3'

Y S () W (e G

aT (e /T+1)? dT oe\ T dT/
af 1 e(E_M)/T 5 8—“’
where = ~T (T 1) =—(4T)"" cosh T

The derivative dw/dTcan 8 N J af(s—-p._l_dp.) d’p ~0

be taken from the identity 5_']: V= -2 de T dT (27,-f,)3
and the integrals over d3p are expressed via ds
the integrals over the Fermi surface S and &: J .o d3p=,[ .« de J—
Here we used dg =vdp, because V; =d¢ /3, v
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Appendix: derivation of heat capacity of Fermi gas (2)

Using the identities:

of , Of L J'°° ztdz 7 T?
Hde=-1 and | (e-p)?Lde=-@aT =1
_[68 de an J(E 2 o€ de =~(4T) _ocosh®(z/2T) 3

for arbitrary but

— ’ 1/ . _ 2 e
smooth function F(e)“F(“)+(€_“-)F(“)+;(8 p) F'(w)+

we obtain the integral J F(¢) ifde ~—F(u) -—%71'2 T? F'(u).
. o€
Then the integrals

of [ — dp) d’p d N _ Jaf(e-u dp,) d’p
C_ 2 j eas( T dT)(Q2#h)> 8T V 2 dge\ T dT) (2wh)’ 0

give

d d d (N du dv(u)
C= o) G T ), v g () <0 griw g 0
:ia?n _(_iﬂ'_ — L"L). 2 2’*"(#')
Condition 4T~ T Ty 2 #(D=pO)—er T2 N

where v(g) is the density of states (DoS), and v(u) is DoS at the Fermi level

Finally, for the heat capacity we obtain|C = 37r° Tv(w).
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Problems of Sommerfeld model

Nevertheless, disregard of electron-electron and electron-lattice interactions left the following
problems unresolved within the framework of Sommerfeld model:

The Hall coefficient, R, . 1s known from experiments to be either positive or negative,
while 1t still follows even from Sommerfeld model that 1t should be always negative;
besides, the model cannot explain not vanishing value and magnetic field dependence of
the magnetoresistence.

Besides the linear term in the specific heat experimentally one finds a cubic term as well,
which has different sign and the significantly different order of magnitude than high
temperature corrections to Sommerfeld calculation.

The sign of the Seebeck coefficient 1s known from experiments to be either positive or
negative, while 1t follows from Sommerfeld model that it should be always negative.

Why there exist msulators which have valence electrons while in atomic state. and how
the number of conducting (itmerant) electrons 1s determined in the metals built from
elements of variable valences?

How to explam temperature dependence of the resistivity at low temperatures and
deviations from the Wiedemann-Franz law?
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Electrons in a crystalline lattice

Preamble One of the central puzzles for the post-Sommerfeld, 20" century electron-theory of
metals was dramatic increase of the electron mean free path in Cu from 10 A to 100 4
(Angstroms) as the temperature of copper was lowered from the boiling point of water I=373 K
fo boiling point of liquid nitrogen T=77 K. The mystery was in the fact that 100 4 is far bevond
the interatomic distance and hence conducting electrons were evidently not scattered by the
copper ions. This fact contradicted the classical picture of metal proposed by Drude - Lorentz ,
with electrons considered as “light balls” scattered by the Coulomb potentials of the heavy ions,
that constitute the crystal lattice. Detailed solution to this puzzle was presented in the PhD thesis
of Felix Bloch. The clue is that electrons are quantum particles and, as the other waves,
propagate in the periodic potential of ions without reduction of their amplitude. A finite
resistance to the electron currvent is caused merely by the irregularities of the periodic ionic
potential in a metal, but not due to undisturbed potential itself. These irregularities might appear
essentially due to impurities as well as due to ionic vibrations — phonons, see Lecture X.

In fact, the quantum-mechanical problem of an electron in a periodic 3D
potential is complicated, and the result may strongly differ from the
free-electron model, because the electrons are strongly scattered by
the wave vectors of 3D periodic modulation.



Energy

Energy bands

Insulator Metal Semimetal Semiconductor Semiconductor

Figure 1 Schematic electron occupancy of allowed energy bands for an insulator, metal, semi-
metal, and semiconductor. The vertical extent of the boxes indicates the allowed energy regions;
the shaded areas indicate the regions filled with electrons. In a semimetal (such as bismuth) one
band is almost filled and another band is nearly empty at absolute zero, but a pure semiconduc-
tor (such as silicon) becomes an insulator at absolute zero. The left of the two semiconductors
shown is at a finite temperature, with carriers excited thermally. The other semiconductor is
electron-deficient because of impurities.
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Electron in a 1D crystalline lattice

U(x)}
Problem in a quantum mechanics: I I
a particlein a one-dimensic{wal (1D)
periodic potential gy — 4 3 &(z—na)
(ideal crystal) n=-00 L L JL
—2a —a 0 a 2a x

The general solutionis ¥ = A, exp {ik(z — na)} + B, exp {—ik(z — na)},

where k=\/2mE/R’. From ¥(z+a)=p¥(z), => 4 4 5 _ B
. p p

From sewing of wave functions 4. + B, = exp {tka}A,., + exp {~ika}B,.,,

— 2i 2
at x=na we get (I N _;%g) A, - (1 _ _;i%t) B, = exp {ika}A,_, — exp {—ika}B,_,.

. ! bands - cos ka Ei a <
Th|S SyStem of F? _2pf(E) 4 ! = 0, \ anas -1 < cosk +h’ks"k g
: . 1 y N
equations gives: mo : P o
| ) J(E) = coska + —— sin ka, ; / \ 24
wE ol i\ x , Jllmi ]\ ok ae
Electron dispersion is given by the equation: E\ /E §E=\§E~(q)

2ma’kE, N i , 2ma’E, ooy b ;
cos ga = Cos ] mao 172 sin e E 1os | o E E PR N
h (2n1ﬁ2Eu) / k E 30Ha :\]I a0Ha ¢} 3oHa |



Kronig-Penney periodic potential
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Figure 4 Square-well periodic potential as

introduced by Kronig and Penney.
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Figure 6 Plot of energy vs. wavenumber for the
Kronig-Penney potential, with P = 37/2. Notice
the energy gaps atka = , 27, 37 . . ..
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Energy levels in a rectangular potential well
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Schrodinger equation
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o x*

Boundary conditions:
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Solution:

Wave functions:
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Each energy level forms an electron band



Electrons in a crystalline lattice. Bloch’s theorem. **

Periodic crystalline potential
a,=na, + n2a2+ n;a;,

The Schrodinger equation
has an important property:

U(r+a,)= U(r), where

a, — lattice constants, N, — integers.
hZ

2m

Vi(r)+ U(r) g(r) = ey(r).

if Yy(r) is a solution, than y(r+a,) is also a solution with the same energy
If this level is non-degenerate,* than |¢(r+ a,) = Cg(r), where C=¢'?

Thus the wave functions in a crystal are l//p(? -I—Ein) = eXp{if)-Ei” /h}‘//p(F)

The Bloch’s theorem:

Vector p is called quasi-momentum

v, (F)=expi{ip -7 /h}u(r), where u(r +a,) = u(r) is periodic

An essence of the Bloch’s function is that it does not decay no matter
how big is the sample, thus making finite probability for a conduction
electron to propagate through the whole crystal without decay of the
current, unlike a classical particle that would be able to move only
diffusively, being scattered by the ions. This important result is in the
root of the notion of coherent electronic bands found in metals.




Appendices (1)

19

*If the level is degenerate, than lll,,,(r"' a,) =) vad’v(’)'
Orthogonality + normalization of wave functions requires
J y*(r) ¢, (r)dV=35,,,0r Y C* C, =8, => Cuw iS a unitary matrix,
n _ and can be diagonalized.
Then the eigenvalues |C|*=1or C = ¢*!*




Quasi-momentum and reciprocal space *

The Bloch’s theorem:

v (F)=exp{ip-7 / h}u(F), where u(r +d, )= u(r) is periodic
Vector p is called quasi-momentum function.

It is easy to see that this vector has been defined ambiguously. Namely, if to p
we add the vector #K, which satisfies the condition Ka, = 27m for any lattice period
a, (where m is an integer), we will obtain the same coefficients C(a,). The equations
Ka, = 27m are satisfied by an infinite system of vectors, all of which may be written
in the following form: K = g, K, + q,K,+ q;K;.

Here g; are integers and K; are the smallest noncoplanar vectors Ka, =27m.

These reciprocal lattice vectors K; are given by

_ 2rxla,xa,] -
Kl:’_ ——— — ‘K::
{__.:i.'l | a, X EIL)

N [= -
_.?T_H3 }{Hl_

;E3:

2| a, X a,
X

(“*1 gL '1*3_)

(fil . Lﬂl X ﬁ!_,,_)

They come from the Fourier transform of the periodic crystal potential
and give the scattering wave vectors of this periodic potential.



General properties of electron dispersion: g(p)=¢(-p) N

Let us consider some general properties of the functions &/(p). The complete
Schrodinger equation has the form

., O
ih o = H.

We will now turn to the complex-conjugate equation and perform the transformation
t-> —t. Here we obtain

" Y (=t r)
ot

=H*y(—t, r),

that is, the same Schrodinger equation with a Hamiltonian H*. But H is a Hermitian
operator, i.e., the eigenfunctions and eigenvalues of the operators H and H* are
the same. From this it follows that if y,,(r, t) =exp[—ig,(p)t/ ] ¢, (r) is an eigen-
function of H, then the function yf(r, —t) is also an eigenfunction of H. Upon
displacement of r by a period a the function ¢, acquires a factor exp(ipa/#) and
the function ¢f(r, —t) acquires a factor exp(—ipa/#). It then follows that &(p)=

&(—p).




Electron dispersion g(p) Is a periodic function of 62

Let us draw from some reciprocal lattice point all K-vectors that connect it with
the other lattice points. Then, we draw planes perpendicular to each of these vectors
and dividing them in half. These planes will cut out a certain figure in the space of
the reciprocal lattice which has the shape of a polyhedron. It is not difficult to see
that such a polyhedron possesses all the required properties and may therefore be
taken as the region of specification of the quasimomentum p. It is called the Brillouin
zone. Figure 1 shows examples of Brillouin zones for the face-centred cubic (a) and
body-centered cubic (b) lattices.

Electron dispersion gp) , I.e.
the dependence of energy on
electron quasi-momentum, Is
a periodic function of p with
periods given by reciprocal

lattice vectors K. Usually, itis| a Fig. 1 pe
defined in one Brillouin zone.




Electron dispersion g(p) is a crystal »

As a rule, the crystal lattices of metals exhibit high symmetry. This gives rise to
certain properties of the function &,(p). Suppose, for example, that the symmetry
plane perpendicular to the axis p, passes through the point p = 0. If there exist faces
of the Brillouin zone perpendicular to the p, axis, then ¢(p) as functions of p,
must have extrema on these faces. Indeed, let us single out the points of these faces,
p: and p,, which are symmetric with respect to the symmetry plane (fig. 2). They
differ by a reciprocal lattice period (multiplied by #). Therefore, at these points

Electron energy &(p) is a periodic ae(p,) e p,)
function of momentum p, => Ez(Pl) = &/(p2), 3 = p .
pyA px px
Fr_or:n the mirror syrlnmetr?/ 381(1’1) B ag,(pz)
with respect to p, plane also - .
2, o, P Px P ap, ap,
% ence 981PY) _ o ( _@_ﬂ) o
apx apx Py =0

Thus, we arrive at the conclusion that for symmetrical lattices, as a rule, there are
extrema of the functions ¢;(p) in the center of the Brillouin zone or at its boundaries.



Electron dispersion g(p) Is a crystal (2)

24

The conclusions concerning the electron energy as a function of the quasimomen-
tum are illustrated in fig. 3, which refers to the one-dimensional case. Evidently,
the Brillouin zone here is the segment —#h/a < p < wh/a, where a is the period of

1D case

energy
band 1

lowest
energy
band 0 :

- o e -—" e W ——-——-4——d

3D case

a e

3D Brillouin zones of face centered
(a) and body-centered (b) crystals.
See more illustrations in wikipedia.
Typical notation: I'-point usually

-h/a /4 wh/a
Fig. 3

denotes the center of Brillouin zone



Approximation of weakly bound electrons *
(nearly free electron model)

We use the perturbation theory (iteration procedure). In the zeroth order
we take isotropic free electron gas with dispersion g(p)= p21/22m spherlcal
Fermi surface. Its wave functions are the plane waves L™ /2 giPx/

In the first approximation we include the periodic scattering potential
— 2winx/a with matrix il
U(x)=Y U, e ) = U(x) e '@ P%/h 4x
n

elements: U(p, P
These matrix elements are nonzero only if p-p’=2znA/a, i.e. in 3D only
for scattering by any linear combination of reciprocal lattice vectors K.

We denote U(p,p') = U, . In the first order in U(x) the energy correction
to g(p)=p?%/2m is diagonal matrix element U(p,p)=const. This constant
energy correction does not change the dependence g(p).

In the second order in U(x) the @) lUn|2

energy correction to g(p) is (p)= n§0 e(p)- g(o)(p —2mnh/a)

This energy correction is large if the denominator is small, i.e. when
g(p)= e(p-21NA/a). This happens when pmth#/a, i.e. at the Brillouin-zone
boundary. Then one must use perturbation theory for degenerate states.




Perturbation theory for degenerate states, 26

applied to electrons in crystal lattice

Suppose that the sought-for wave function has the form ¥ = Ayt AxY,,
where ¢, corresponds to the first state and ¥, to the second. Substituting this

expression into the Schrodinger equation Hy = ey, we find
A(e &)+ U(A Y, + Azfn) + Ax(e,— €)Y, =0,

where &, = p?/2m and ¢, = p'*/2m. Multiplying by ¢¥ and then by ¢, integrating
and using the orthogonality of ¢, and ¢,, we obtain

A(e,—e+Uy)+U,A=0, UXA,+(e,— e+ Uy)A,=0.

The eigenvalues are found from the vanishing condition of the determinant of
this homogenous linear system (the constant U, is incorporated into ¢):

AE
82—(81+82)8+8182—|Un|2"—'0.

»
~

”’
p e ——— - — - - - - -

o
=
o
=
>

This equation has two solutions:
e = (3)(e:+ £2) £[(§)(e, — £2)" +| U1,

This result for 1D electron dispersion___y»
(for energy spectrum) is shown in Fig.

———p—————
N .
O
-
D

I Energy gap at the edges of Brillouin zone —wh/a 0 :rh}a 2nh/a
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The model of weakly bound electrons in 3D crystal
The crystal-lattice potential U(r) =Z Uk eixr

where K are the periods of the rec1procal lattice.

The second-order perturbation =@ |UK|
theory in 3D gives (p)= Z e9(p)—9(p-K)

This correction is small except regions where  ¢@(p) = ¢(p — #K).
Perturbation theory for degenerate states (in the first order in U,) gives

e(p)=D[e”(p)+eV(p- 1K) £[()(”(p) — e (p - hK))*+|Uk [

To obtain this, we need to solve the Schrodinger equation H Y = E v,

WherT:I_ £0)(p) U, o W=(%J=(w(pz|</2))
U, £O(p=k) v,) \w(p~-K/2)

Diagonalization of this matrix goes via 8(0)( )—6‘ U
the calculation of the determinant: P 0 K =0
It gives the eigenvalues in Eq. (1) as 0 )

g g d. (1) U, c (p_ K)-¢

the solutions of quadratic equation:



The analysis of electron dispersion in 3D crystal
in the approximation of weak coupling to lattice

Perturbation theory for degenerate states (in the first order in U,) gives
e(p)=B)e(p)+ eV (p-4K)1=[(2)(e(p) - (p - #K))*+|Ux[1">.

Let us choose the axis p, along #K and introduce a new variable, p,, = p, —3hK.
Substituting £ = p%/2m into (1.42) and using the new variables, we find that

the electron dispersion [Pi+p§|+(%ﬁK)2] N [(leﬁK)2+|U I2]1/2
2m X

near the BZ boundary is g(p) =

2m
1 2 ¢ _ _pi
. <2fK) intermepliate

A energy |

boundary 2:
Figure illustrates the surface e=const near the boundary of Brillouin zone (BZ)

Electron velocity v, =d&/&b, =0 1 to the boundaries of Brillouin zone (BZ)
=> strong Bragg reflections from the BZ boundaries.



Fermi-surface in weak-coupling regime

Fermi-surface - surface gp)=u =E- in the momentum space.
In the weak-coupling regime it deviates from a sphere mainly
only at the boundaries of Brillouin zone.

" COPBE r Sodiumﬂ

Fermi surface of gold



Tight-binding approximation.
(derivation from Ch. Kittel, Introduction to Solid State Physics, 8t edition)

Bloch wave function o (r) = N~V E exp( (ik - 1})@( )

The electron

energy is (kjH|k) =N~ 12 EeXP Zk (Qom’H[SDj ;

where ¢, = ¢(r — 1, ).

Writing p,, = r,, — 1;, (k|H k) = Y exp(~ik - p,,) [ AV ¢*(r — p,,)He(r)

Keeping only de go*(r)Hgo(r) =~ ; de GD*(I' —p)HqJ(r) = 7Y
we have the first-order energy, provided (klk) = 1:

(k|H [k} = —a — v 3, exp(—ik * p,,) = €,




Tight-binding approximation: transfer integral

Energy  (k|H|k)=—a -y Y exp(~ik-p,) = &,
spectrum m

For two hydrogen atoms the direct calculation of overlap energy gives

= + p/ag) exp (—play)  where ay = h*/me”.
¥(Ry) = 2(1 + play) exp (—plag) wh o = fit/me’

2.2}
1.4
08
£b
=5 \ F
=" ree
2 -LOr atom
E"B _'1.8_ /
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Figure 17 The 1s band of a ring of 20
e hydrogen atoms; the one-electron energies
Eal 0 0 4 4 4 4y bre calculated in the tight-hinding approxi-
0

0 .1 2 3 4 smation with the nearest-neighbor overlap
Nearest-neighbor distance, in Bohr radii inte gr HI Uf E q (9)



Tight-binding approximation. Wannier functions
(derivation from A.A. Abrikosov, Fundamentals of the theory of metals)

A3V 5 Ux—na) w(x) = eu(x)

2m dx* 5 i/ b
Its exact solution are the Bloch waves: !llp(x) =e’ “p(x)

The Wannier functions are defined as — N—1/2 —ipna/h
a Fourier transform of Bloch waves: w,,(x) N E: c ‘/’p(x)

the Schrodinger equation is —

The Wannier functions w,(x) are located near n-th ion in the crystal.

If the Bloch waves were plane waves elPx, the Wannier function would be

a d—function: w, (x)= &x-na). Now w,,(x) = w(x - na) and satisfy eq.
h d

g ( - 8-;3+ U(x- na)) ci”"""‘w,,(x)+)5 h(x) e *w, (x) = &(p) ); P/ Py (x),

where h(x) = V(x)- U(x—-na) acts as small perturbation,

because the product U(x ~ma) w,(x) with n # m, is small

In the zeroth approximation, neglecting this term h(X), w(X) equals to
the wave function of isolated atom w'¥ = @(x) and satisfies Schrodinger
equation with energy e(o)( p) = g, equal to the energy level of isolated atom
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Tight-binding approximation (1)

for electron dispersion in a crystal
Assuming that w = w'¥+ w", we find equation on w():

h? d? :
Y ( ™ dx2+ U(x—na)-— 80) w(l) gipna/h

=[e(p)— el L ¥/ "y (x) = L h(x) " " ) (x).

This is a linear equation for w'" with a right-hand side. According to the general
rule, such an equation has a solution only if the right-hand side is orthogonal to
the solution of the corresponding reduced equation with the same boundary condi-
tions. These conditions consist of the vanishing of w at +00. From this it follows
that the corresponding solution of the reduced equation is just w(x) in the zeroth
approximation, i.e., ¢(x). From the orthogonality condition we deduce that

Z h(n) e'Pne/® h(n) = J e*(x) h(x) ¢(x—na) dx,

e(p)—€go= - , Where
Y I(n)e?"/? I(n) =J o*(x) ¢(x —na) dx.




Tight-binding approximation (results) *
In 1D case the electron dispersion g(p) is given by
Y. h(n) e'P"/" h(n) =j o*(x) h(x) ¢(x — na) dx,
e(p)—ego=" , Where
Y I(n) eP"e/* I(n)=J e*(x) ¢(x—na) dx.

Here h(x) =V (x)—U (x—na)= > U(x—ma)

m==n

and ¢(x) are the electron wave functions on isolated ions.

In tight binding approximation the overlap of functions ¢(x) on adjacent
ions is very small, => h(1)>>h(2) .. and 1(0)=1>>1(1)>>1(2). Hence, we
may keep only 1(0), I(1) and h(1) (since h(0)=0). Then we obtain the 1D

electron dispersion given by & — = h(0)+2[h(1) — h(0) I(1)] cos (_gﬁg)

In simplest 3D case: ~ the electron dispersion is
Y h(n) e'**/* and forthecubic  very different from free e
n crystal lattice, with g —g,=h(0)+8[h(1)—h(0) I(1)]

basic vectors pxa p,a p.a

ipa_/+h = oy
Y I(n) ™" ¢ =(+lg +1g +1a) *\24) % \2n) ©*\21

E—Epg—




Electron dispersion in the tight-binding
approximation (isotropic 3D case)

Energy (k|H|k) = —a — v 2, exp(—ik - p,,) = €,
spectrum m

For a simple cubic structure the nearest-neighbor atoms are at

pm = (j: a>O>O> ; (O, i— a,O) ; (0,0, i a) 2 @

the electron
dispersion is

€, = —a — 2y(cos k,a + cos k,a + cos k.a)

For the fcc structure with eight nearest neighbors,

1 ; 1
€, = —a — 8ycos;kacosska cossk.a



Fermi-surface in the tight-binding regime
(anisotropic case)

Quasi-2D electron SrFe,P, Quasi-1D electron

dispersion: dispersion:

£(p)=¢€ (px)t+2t, cos(p,d/A)
+2t, cos(p,d/n),

1:y’tz<< EF ’ E:x(px) ~p x2/2mx .

e(p)=€(p)*2t, cos(p,d/n),

Fermi-surface:
Fermi-surface:

L

21
k

< k.
e ———

2z /b
organic metals,




What is a Fermi surface?

The location in reciprocal space of ‘.
long-lived electronic excitations that

govern the electronic properties of

metals at low temperatures.

“The” fundamental property of the

metallic state.

“The pathways for
carriers through a metal”
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Introduction Fermi-surface reconstruction

in electron-doped cuprate superconductors

electron doped

i ' ,.hole (Ijoped .
Ndz XC €, CuO 4 I l
(NCCO)

N
o
o

Phase diagram of
<€— cuprate high-Tc
superconductors
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