
Topic 2. Kinetic equation. Calculations of 
electron electrical and thermal conductivity 
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Plan of the topic 2. 

1. Kinetic equation. Full time derivative of electron distribution function. 
Approximate form of collision integral in the tau-approximation. 

2. Kinetic equation in the presence of electric field. Electrical and 
thermal conductivities of metals in the tau approximation. 

3. Scattering mechanisms: impurities, electron-electron and electron-
phonon interactions. Corresponding temperature dependences of 
electric and thermal conductivities. 

4. Thermoelectric phenomena. 
5. Electronic motion in metals in magnetic field. 
6. Galvanomagnetic properties of metals. Classical magnetoresistance. 

Conductivity tensor in the limits of weak and strong magnetic field.  



Kinetic equation 

where f=f(p,r) is the distribution function in phase space (p,r) and 
I(f) is the so-called collision integral.  

The full time derivative of f(p,r) without magnetic field B is   

is a differential equation on f, 

group velocity of 
electron wave packet 

external force according to 
the second Newton’s law 

The collision integral in the 
so-called tau-approximation is   
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f0 is the distribution function in equilibrium (without external fields), and 
τ depends on the scattering mechanism (impurity, e-e, phonons, etc.)  

where  
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Kinetic equation 

the full time derivative of distribution function f(p,r) without magnetic field B 

The collision integral in the 
so-called tau-approximation is   
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f0 is the distribution function in equilibrium (without external fields), 

where f=f0+f1 , and 

where 

Electric current j is simply 
related to distribution function 

and 
satisfies the kinetic equation: 

Substituting f1 we obtain electric current: At T=0            and 
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Appendices: some useful mathematical formulas 
1. For arbitrary function F(p) we can change the integration variable 
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3. The angular averaging of the vector product 
of electron velocity (appears for conductivity):   
To obtain this we  
take E=Ex. Then  ( ) ( ) .
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4. Temperature dependence of various quantities can often be calculated 
using the following formulas with Fermi distribution function f(ε): 

=> 
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Electrical conductivity 

For Fermi gas with quadratic dispersion 

Here the density of states (DoS) 
at the Fermi level µ =EF is ( )
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factor 2 comes from spin degeneracy 

or where electron concentration ne=  

Electric current at arbitrary temperature  

At T=0             and 

It is the same as at T=0 up to 
the terms ~T2/EF

2<<1, because 
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The angular averaging of the vector product  



Thermal conductivity (general remarks) 

ε(p)≈ξ(p) =vF(p-pF) 

The kinetic equation 
for quasiparticles is 

6 



Thermal conductivity (calculation) 

- 

The kinetic equation 
for quasiparticles is 
In the presence of temperature gradient, the second term is nonzero: 

The energy  
flux is 

The kinetic equation gives the solution 
for distribution function  f=f0+f1 : 

q 

In addition to electric charge, the quasi-particle transfer energy ξ 
The integrals are the same, as in 
the calculation of electric current: 

Finally, we get for thermal flux 

Thermal conductivity  
is defined as  => ∝ temperature. 
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Temperature dependence of thermal 
conductivity in metals 

Thermal conductivity of ideal 
gas 

where heat capacity of metal 
C(T) ∞ T, and the mean free 
path l=l(T): 
  
l(T) 

∝1/T , at high T>>θD  
= const, at low T  

Thermal conductivity of metals  

K(T) 
= const at high T>>θD  
∝T   at low T  



Wiedemann – Franz law 

Electric σ and thermal κ conductivities are 
related by the Wiedemann – Franz law : 

This law is valid 
for arbitrary ε(p). 

Electric conductivity Thermal conductivity 
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Thermoelectric phenomena in metals 
Under a small temperature gradient combined with external electric field 
in the metal the following  
current and heat flows arise: 

In practice, it is always easier to control the 
electric current than the electric field inside 
a metal. Then one can use the system 

Also  

The coefficient Q is called the Seebeck coefficient. It gives thermopower 
(potential) per unit of temperature change (also called differential thermo-emf). 

T1 

T2 Vemf ( )∫∫∫ −==== 12/
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Peltier effect. A current flows through the junction 
of two metals: ja=jb. Since Πa≠Πb , the thermal 
currents qa≠qb , => the heat is absorbed or 
released on the junction: Wab= qa-qb =(Πa-Πb )j. 

1
0 



Seebeck effect 
The Seebeck effect is the conversion of heat directly into electricity at 
the junction of different types of wire. Originally discovered in 1794 by Italian 
scientist Alessandro Volta, it is named after the Baltic German physicist Thomas Johann 
Seebeck, who in 1821 independently rediscovered it. It was observed that a compass 
needle is deflected by a closed loop formed by two different metals joined in two places, 
with a temperature difference between the joints. This was because the electron energy 
levels in each metal shift differently and a potential difference between the junctions 
creates an electrical current and therefore a magnetic field around the wires. Seebeck 
did not recognize that there was an electric current involved and called the phenomenon 
"thermomagnetic effect". Danish physicist Hans Christian Ørsted rectified the oversight 
and coined the term "thermoelectricity". 

The Seebeck effect is a classic example of an electromotive force (emf) 
and leads to measurable currents or voltages in the same way as any 
other emf. The local current density is given by J = σ ( − ∇ V + Eemf ) , 
where V is the local voltage, and σ is the local conductivity.  

The Seebeck effect is described locally by the creation of electromotive 
field Eemf = − S ∇T , where S is the Seebeck coefficient. 



Seebeck coefficient 
If the temperature difference ΔT between the two ends of a material 
is small, then the Seebeck coefficient of a material is defined as:  
S = − ΔV / ΔT = − (Vleft − Vright )/(Tleft − Tright ) ,  
where ΔV is the thermoelectric voltage seen at the terminals. 

Thus, if S is positive, the end with the higher temperature has the lower 
voltage, and vice versa. The voltage gradient in the material will point 
against the temperature gradient.  
 
The Seebeck effect is generally dominated by the contribution from 
charge carrier diffusion which tends to push charge carriers towards the 
cold side of the material until a compensating voltage has built up. As a 
result, in p-type semiconductors (havinge only positive mobile charges, 
electron holes), S is positive. Likewise, in n-type semiconductors (which 
have only negative charge carriers, electrons), S is negative. In most 
conductors, however, the charge carriers exhibit both hole- and electron-
like behavior and the sign of S depends on which of them predominates.  

Seebeck effect is often used to determine the sign of main charge carriers 



Peltier effect 
When an electric current is passed through a circuit of a thermocouple, 
heat is evolved at one junction and absorbed at the other junction. This 
is known as Peltier effect. The Peltier effect is the presence of heating or 
cooling at an electrified junction of two different conductors. It is named 
after French physicist Jean Charles Athanase Peltier, who discovered it in 1834. 

When a current is made to flow through a junction between two 
conductors, A and B, heat may be generated or removed at the junction. 
The Peltier heat generated at the junction per unit time is  
dQ/dt = ( ΠA − ΠB ) I , where ΠA and ΠB are the Peltier coefficients of 
conductors A and B, and I is the electric current (from A to B). The total 
heat generated is not determined by the Peltier effect alone, as it may 
also be influenced by Joule heating and thermal-gradient effects. 
The Peltier coefficients represent how much heat is carried per unit 
charge. Since charge current must be continuous across a junction, the 
associated heat flow will develop a discontinuity if ΠA and ΠB differ.  

Thermoelectric heat pumps exploit this phenomenon, as 
do thermoelectric cooling devices found in refrigerators.  



Thomson effect 
In different materials, the Seebeck coefficient is not constant in 
temperature, and a spatial gradient in temperature can result in a 
gradient in the Seebeck coefficient. If a current is driven through this 
gradient, then a continuous version of the Peltier effect will occur. 
This Thomson effect was predicted and subsequently observed in 
1851 by Lord Kelvin (William Thomson). It describes the heating or 
cooling of a current-carrying conductor with a temperature gradient. 
If a current density J is passed through a homogeneous conductor, 
the Thomson effect predicts a heat production rate per unit volume 
dq/dt = − KJ ⋅ ∇ T, where ∇ T is the temperature gradient, and K is 
the Thomson coefficient. The Thomson coefficient is related to the 
Seebeck coefficient as K = TdS/dT.  



Collision integral in the Boltzmann kinetic equation 
for the scattering by impurities (1) 

The scattering probability of electron on impurity centers in the Born 
approximation is: 

here Vp′p is the transition matrix element of the electron interaction V(r) 
with all impurity atoms, occupying positions Ri: 

=
τ
1

The matrix element of interaction potential 
V(r) is taken on the Bloch wave functions: 

and 
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Collision integral for scattering by impurities (2) 

Positions of the impurity atoms in the crystal are assumed to be random, 
and the averaging over impurity positions reduces the sum over 
impurities to diagonal terms only, i.e. with coinciding positions of the 
impurity atoms Ri =Rk , because other terms strongly oscillate and 
vanish. Hence, the sum turns into the number of impurities in the crystal 
Ni and w finally takes the form (after cancellation of one power of V) : 

In Born approximation the scattering probability of electron on impurities 

 , where Ni /V=ni is the 
impurity concentration  

The collision integral I=I(f) depends on the filling numbers (Fermi-Dirac 
distribution function) in the initial and final states: 

It is zero for the equilibrium (zero-field) distribution function f0=f0(ε). 
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Collision integral (3) 
The kinetic equation is 

In a  stationary state the distribution function f=f0+f1 is spatially uniform 
and does not explicitly depend on time: ∂f/∂t =0 and ∂f/∂r =0. The last 
term ∂f/∂p≈(∂f0 /∂ε) (∂ε /∂p)= vF(∂f0 /∂ε) ≠ 0  and dp/dt =eE. Then in the 
first order in the small perturbation eE the kinetic equation becomes: 

The first-order correction f1 to distribution function is linear in force eE . 
There is only one additional vector quantity p to make a scalar product to 
form f1 :   where the functionη(ε) is unknown yet. 
Integration over the energy is performed in two steps: 

Here ν(ε’) is the density of electron states at the energy ε′ (including the 
factor of 2 allowing two possible projections of the electron spin 1/2).  
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Collision integral for scattering by impurities (4) 
Then the kinetic equation is 

After all the manipulations, integral kinetic equation reduces to a simply 
algebraic equation: 

where the dependence of the scattering 
amplitude v on the scattering angle θ is 
taken into account via the function  

definition of the transport scattering time 

calculation details: 

We choose the polar axis z along p. Then  

⊥p. 
This term disappears after the integration over the angle ϕ.  
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Why impurities in metals can be described as short-range? 
The typical range of impurity potential is of the order of atomic radius aB. 
If impurity is uncharged (another atom), its range is ~ aB . If the impurity 
is charged, in metals any charge is screened on the Debye radius rD.  
Then the impurity  
potential is given by  

This impurity potential can be derived from            where the 
change of electron density 

Then the Maxwell  
equation gives  => 

where the inverse Debye (screening) radius is 

By the order 
of magnitude 

the Debye radius is of the order of atomic distance. 
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Electron-electron scattering rate 1/τee∝T2. 
The scattering probability W is proportional to 

law of energy  
conservation 

p2’ is fixed by law of total 
momentum conservation  

The initial energy of quasiparticle is close to 
Fermi energy: |E1-EF|~T<<EF, being in a shell of 
width ~T around Fermi surface (if E1-EF<< -T , 
the total energy of electron pair is much below 
2EF, and there is no empty states for them to 
scatter in at this energy). Then the energies E1’ 
and E2 are also close to Fermi energy (in a shell 
of the width T for same reason), which reduces 
the scattering probability W by a factor (T/EF)2.  
Total momentum relaxation (resistance) 
appears only from the umklapp processes, 
+ scattering by reciprocal lattice vector:  



Electron-phonon interaction. 

The scattering probability w is given by golden Fermi rule 

emission 
of phonon absorption 

of phonon 

where u(r) is the phonon  
(vibration) amplitude,  

The origin of e-ph interaction 
is the Coulomb force between 
electrons and the charges 
induced by electric 
polarization created by ion 
replacements in their motion. 

Q(r) is the screened Coulomb potential of the ions, experienced by 
conduction electrons,              is the charge distribution 
due to crystal-lattice polarization, caused by deformation u(r): P=neu. 
Without screening Q(r)=1/r. With screening Q(r)≈a2δ(r), where a~ ℏ/pF. 
The matrix element 



Electron-phonon scattering rate at high T: 1/τe-ph∝T. 
The integrals are cut off at maximal 
phonon frequency=Debye energy = 
phonon frequency at wave length of 
crystal lattice constant: ΘD=ω(k=π/a). 

CV(T) 

Temperature dependence of heat 
capacity CV(T) changes at T~ ΘD. 

The main contribution to electron scattering comes from phonons with 
high energy ℏω ~ΘD and with filling numbers (obtained from Bose distribution)  

>>1 Then the electron-phonon scat- 
tering rate and conductivity: 

Therefore at room temperature TR >ΘD , the main part of electron scattering 
is from phonons, and one observes a linear-T resistivity: R(T)=const+αT. 



Electron-phonon scattering rate at low T<< ΘD : 1/τe-ph ∝T3, 
but 1/τe-ph

tr∝T5, and resistivity from phonons Re-ph(T)∝T5. 

Scattering rate is given by golden Fermi rule: 

=0 

The sound velocity s is much smaller than Fermi velocity: 

The typical phonon energy at T<< ΘD is   ~ kBT<< ΘD 

Hence, scattering by phonons gives electron diffusion 
along the Fermi surface, each scattering by a small 
“thermal” phonon momentum 
and by a small angle 

The integral is taken over the absolute value of the phonon momentum, 
k, and the angleθ. The integral overθ cancels δ–function, because 

Hence, the transport scattering rate 1/τtr<<1/τ : 



Electron-phonon scattering rate at low T<< ΘD : 1/τe-ph ∝T3, 
but 1/τe-ph

tr∝T5, and resistivity from phonons Re-ph(T)∝T5. 

The transport scattering rate 1/τtr<<1/τE : 

The simple e-ph scattering rate is ∝T3: 
because it contains 333

max
3
max0

23 3/3/max Tskdkkkd
k

∝==∝ ∫∫ ω

Hence, 

And we obtain the electric conductivity in pure metals at the low T 
due to electron-phonon scattering: 

Simultaneously, for the electron thermal conductivity κ in metals we use 
the relaxation time τE,  
which gives 
Hence, the Wiedemann-Frantz law does not hold. 



Блоха-Грюнайзена формула (закон) 

описывает температурную зависимость той части удельного 
электросопротивления металлов, которая обусловлена рассеянием, 
электронов на тепловых колебаниях кристаллич. решётки 
(фононах:) 

Б-Г. ф., не учитывает анизотропию металла и рассеяние электронов 
на дефектах кристаллич. решётки, => служит для грубых оценок 

Она приводит для T<<θD к зависимости ρ∝T5, а при T>>θD к ρ ∝ T. 



Правило Матиссена 

Правило Матиссена — электрическое сопротивление реального 
металла равно сумме идеального и остаточного сопротивлений. 
Идеальным сопротивлением называется электрическое сопротивление 
идеального кристалла. Остаточным сопротивлением называется электрическое 
сопротивление реального кристалла при абсолютном нуле температуры, 
вызванное столкновениями электронов с нарушениями периодичности 
кристаллической решетки металла. 

Объяснение 
Вероятность столкновения электрона в кристаллической решетке с одним из 
препятствий равна W = W o s t + W i d . Вероятность столкновения обратно 
пропорциональна длине свободного пробега W = 1/L , => 1/L = 1/L o s t +1/ L i d.  
Так как удельная электропроводность σ пропорциональна длине пробега L, а 
сопротивление ρ = 1/σ, отсюда следует правило Матиссена: ρ = ρ o s t + ρ i d. 



Temperature dependence of electric 
resistivity in metals (sketch) 

impurity 
scattering 

e-e 
interaction  
+ impurity 
scattering 

+ phonon 
scattering 
ρ(T)∝T5+const 

mainly phonon 
scattering 
ρ(T)≈αT+const 

Temperature (T) 

Electrical 
resistivity  
(ρ=1/σ) 



Electron motion in magnetic field. Lorenz force F=(e/c)[v XB].  

B The Lorenz force F=(e/c)[v XB] is always ⊥ to 
magnetic field B and to electron velocity v.  
In coordinate space free electrons in magnetic 
field move along a cyclotron circle ⊥B of Larmor 
radius RL=pc/eB. The frequency of such periodic 
motion is called cyclotron frequency: ωc=eB/mc. 
The electron momentum pz along magnetic field 
is conserved, => electron trajectory is a helix: 

RL 

In crossed fields (magnetic +weaker electric) 
this cyclotron orbit drifts ⊥ electric field E, so 
that the average velocity along electric field is 
zero, => average kinetic energy of electrons 
does not change:   

cyclotron 
orbit 

Average electric current along electric field vanishes, => diagonal part of 
electric conductivity tensor σxx⊥ B=Bz vanishes: σxx =σyy =0, and σ||B 
remains unchanged: σzz (Bz )=σzz (B=0). Non-diagonal (Hall) σxy(Bz )≠ 0. 



Electron motion in magnetic field in metals.  

In metals in magnetic field B=H, 
due to the Lorenz force: 
 
electrons move in momentum 
space along the surface ε=const 
in the plane ⊥B, i.e. pz=p||B=const. 

B 

The electron orbits in momentum 
space may be closed (i.e. ellipse) 
or open (i.e. wavy line), depending 
on if this orbit intersects the 
boundary of Brillouin zone.  

Example: the Fermi-surface is a warped cylinder with axis along z.  
For B||z the electron trajectories are closed (Fig. a), while for B||x or B||y, 
electron trajectories are open, i.e. extended out of Brillouin zone (Fig. b).   

z B||z  B||x or B||y 

The conductivity tensor depends  
on the topology of electron orbit. 

ji =σij Ej , i,j=1,2,3.  
Ei =ρij  jj , ρij =(σij )-1. 

ρij and σij are 
3x3 matrices. 



Electron motion in magnetic field in metals (add).  

The motion in coordinate and momentum space in the plane ⊥B are 
related by the rotation by 90o, which follows from the condition ε=const:  

Closed electron 
orbit in 
coordinate 
space 

x 
y 

px 

py 
Corresponding 
electron orbit 
in momentum 
space: 

B⊗ 
B⊗ 

Open electron 
orbit in 
coordinate 
space 

x 
y 

px 

py 
B⊗ 

B⊗ 
Corresponding 
electron orbit 
in momentum 
space: 

This property is a consequence of the equations of motion in B 

=> 

=> 

( ) ( ) ⇒=+=∂∂+∂∂= 0// yyxxyyxx dpvdpvdppdppd εεε xyyx vvdpdp // −=

⇒== ;, dtvdydtvdx yx
In coordinate  
space yxxy dpdpvvdxdy /// −==

Examples: 



Kinetic equation in the presence of magnetic field 

The full time derivative of distribution function f(p,r) in magnetic field B 

The collision integral in the 
so-called tau-approximation is   

,)( 0
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f0 is the distribution function in equilibrium (without external fields). 

where f=f0+f1 , and 

31 

Without electron scattering (i.e. by impurities) even a weak magnetic field 
strongly changes (reduces to zero) longitudinal (diagonal) conductivity.  
 

This contradicts the common sense that very weak perturbation cannot 
strongly affect the observable phenomena. What is solution of paradox? 
 
Answer: the effect of magnetic field is weak if cyclotron period TL >>τ, 
i.e. when ωcτ =τ eB/mc<<1 and electron trajectories are almost straight 
lines between scattering events, because their curvature due to B is weak 



Electron motion in magnetic field in metals (2).  

Lorentz force ⊥ velocity: 
Therefore kinetic energy is conserved: 

The projection of momentum on B=H is also 
conserved  

It is convenient to change variables: 

Equations of motion are:  

where 

Taking the square of both the equations and summing up we obtain: 

is the element of the length of the path in the momentum space. 

Then equations of motion give 

The new 
variable 

For closed trajectory 
the period of motion 



Electron motion in magnetic field in metals (3).  

The area inside the contour of closed electron orbit 
in the plane pz = const 

The period of motion 

The "cyclotron mass" 

New variables: where 
Electric current 

where 

Kinetic equation in  
the new variables 

Since       , the kinetic equation is  

Introducing  
the notation  

we simplify the 
kinetic equation: 



Kinetic equation in magnetic field (2).  

In the τ-approximation in magnetic 
field the kinetic equation becomes 

Introducing the notation for the distribution function:  

where  from boundary  
condition  

The electric current is given by the Shockley tube integral (formula):  

For isotropic closed orbit 
and this 
integral 
gives 



Conductivity in weak magnetic field (results)  

In weak magnetic field 
B=Bz, σzz (Bz )=σ0 , and 

The angular frequency    = ωc is called Larmor or 
cyclotron frequency, and τ  is mean scattering time.  

In weak magnetic 
field Ωτ<<1, and  

Usually in  
experiments  

The Hall  
resistance 

=> 

The Shockley tube integral formula for electric conductivity in magnetic 
field:  

can be used to measure 
electron concentration. 

This formula is suitable both for numerical and analytical calculations of 
magnetoresistance for arbitrary electron dispersion. 



Conductivity tensor in strong magnetic field (results) 

For closed orbits, in strong magnetic field Bz, Ωτ>>1, and σxx ,σyy∝ 1/Ω 2→ 0.  
Introducing notation γ =1/Ωτ <<1, for closed electron trajectories we find  

resistivity tensor  
ρij =(σij )-1: 

conductivity 
tensor: 

where aij =const and all magnetic-field dependence is in γ =1/Ωτ∝1/Bz   

(closed 
trajectories) 

For open trajectories the result is 
different, e.g., σyy =const  and ρxx∝B2:  open electron 

trajectory 

closed electron 
trajectory (dashed line) 



Angle-dependent magnetoresistance 
oscillations (AMRO) in quasi-2D metals. 

For axially symmetric dispersion and in the first 
order in tz the Shockley tube integral gives: 
[R. Yagi et al., J. Phys. Soc. Jap. 59, 3069 (1990)] 

gives AMRO 

Yamaji angles 

Introduction 

First theory:  
K.J. Yamaji, 
Phys. Soc. Jpn.  
58, 1520, 
(1989). 

AMRO 

Fermi surface 

LLs 

B 

First observation: 
M.V. Kartsovnik, P. A. 
Kononovich, V. N. Laukhin, I. 
F. Schegolev, 
JETP Lett. 48, 541 (1988). 

gives damping of 
AMRO by disorder 
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Magnetic breakdown 

The probability of magnetic breakdown is given by   
where 
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