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Topic 2. Kinetic equation. Calculations of
electron electrical and thermal conductivity

Plan of the topic 2.

Kinetic equation. Full time derivative of electron distribution function.
Approximate form of collision integral in the tau-approximation.
Kinetic equation in the presence of electric field. Electrical and
thermal conductivities of metals in the tau approximation.

Scattering mechanisms: impurities, electron-electron and electron-
phonon interactions. Corresponding temperature dependences of
electric and thermal conductivities.

Thermoelectric phenomena.

Electronic motion in metals in magnetic field.

Galvanomagnetic properties of metals. Classical magnetoresistance.
Conductivity tensor in the limits of weak and strong magnetic field.
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Kinetic equation I(f) is a differential equation on f,

where f=f(p,r) is the distribution function in phase space (p,r) and
I(f) is the so-called collision integral.

The full time derivative of f(p,r) without magnetic field B is

df af afdr of dp af f f
TRETH ar dt apd,{ at Cor /‘ ap'

group velocity of external force according to

electron wave packet the second Newton’s law
The collision integral in the 1(f)= 0 \where
so-called tau-approximation is T

f0 Is the distribution function in equilibrium (without external fields), and
T depends on the scattering mechanism (impurity, e-e, phonons, etc.)
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df

Kinetic equation

=I(f),

the full time derivative of distribution function f(p ') without magnetic field B

g _of ofdr ofdp_ of f+eE of

where

d¢ at or dt op dt at ar op
The collision integral inthe | (f)=— F -1 , where f=f+f, , and
so-called tau-approximation is Ty
f0 Is the distribution function in equilibrium (without external fields),
and fl (p) = p-En(é‘) 1 ﬁ.En(g)
satisfies the kinetic equation: ’L'n,(e)
3
Electric current J is simply e — — d %
related to distribution function J = 2€J fol ([5') 3
(27h)

Substituting f, we obtain electric current:

At T=0 df,/0e = —6(& — u) and
j=— J’v(vE)'r--'Lv(a=:)d.f.-:-d—'(2 e 1.2 2
j ar = 1E[v*m(e)].,




Appendices: some useful mathematical formulas

1. For arbitrary function F(p) we can change the integration variable

IF(p)d [ )pdde_IF(p)v ()52

(27) (27)

2. At T=0 dfp/0e~=—8(e—p) ande(p)&e ,ude— jF( F)

3. The angular averaging of the vector product (E) dQ 1 ,

of electron velocity (appears for conductivity): VE = EV E.

To obtain this we dQ do V2
take E:EX. Then J‘(VEX)VE= J‘(VxEx)Vx E= V)2<EX = ? E..

4. Temperature dependence of various quantities can often be calculated
using the following formulas with Fermi distribution function f(&):

f _ J oo _IJ‘” z2dz ___71'2T2 B
jaede_ Lo Jle-w) asde— (4T) _ocosh’(z/2T) 3 =

J F(e) gfds ~—F(u)—¢m T* F"(p).
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Electric current at arbitrary temperature j=—e” v(vE)fr—; v(e) ds-4—-
T

It is the same as at T=0 up to _QI o 1272 pw
the terms ~T?/E2<<1, because_[ F(S) de de F(“’) 677 I'F (“)

The angular averaging of the vector productj VE V4— §V E.
T

At T=0 3fy/ 08 = —8(e — ) and j=%—e2E[v2'rv(e)]£=,‘

Here the density of states (DoS) /() = 2-"( )35(g(p) lu)
27

at the Fermi level u =Eis
factor 2 comes from spin degeneracy

Electrical conductivity o = %ez[vz‘rv(s)]u-

For Fermi gas with quadratic dispersion @ = (1/3)€2UF2TU~(LL)V(LL)

(as faras L = mDF2/2)
N. _4n p’

v

2 . — Ve _
or 0 =n_e T, /m where electron concentration N = v 2 3 (2?1:77)3



Thermal conductivity (general remarks)

In contrast to the electric current, i.e., the transfer of electric charge, energy transfer
involves not only electrons but also phonons, and therefore the thermal conductivity
has two parts, an electron and a phonon part. We shall here consider only the
electronic thermal conductivity. Usually, it far exceeds the phonon thermal conduc-

There is one significant difference between the mechanisms of charge and energy
transfer. The charge is transferred by real electrons. Since the density of particles
of the gas model (“electrons’’) is equal to the density of real electrons, we may
consider the electric current that arises in the gas model under the action of the
field, as has been done in the preceding section. As for the energy transfer, it is
achieved by quasiparticles with the energy spectrum €., =|£¢| and therefore we will
use the quasiparticle model here*.

First of all, we have to change the form of the kinetic equation slightly. Since the
charge of ‘“antiparticles” is opposite to that of “particles”, instead of e we must
write e sign £ where sign ¢ = ¢/ | €|. Further, the velocity of quasiparticles is

ale| o|¢| @ ,
<'|9; - e'ag I aﬁ = vsign £ where v=2as/0p=p/m*. &p)~&(p) =Ve(p-Pr)
The kinetic equation  0f of of  (f—So)

for quasiparticles is 6t+ b sign £ + ek sign 5—5 T



Thermal conductivity (calculation)

The kinetic equation af+051gn£ f+eE i nf-g— (f—=fo)

for quasiparticlesis ¢ ap T
In the presence of temperature gradlent the second term |s nonzero:

vs1gn§af gﬁ,mgnf(vVT) = |§”|6|f2| si n§(vVT)—-— a|j§|( VT).

The kinetic equation gives the solution f — f aﬂ’ (vV T)
T : _ _ 17
for distribution function f=f +f; : T o| €]

he ener d’p fo
fxis = Iffvfl(2 et jv(uvr)w(e)i%ﬂ e

In addition to electric charge, the quasi-particle transfer enerayv f

The integrals are the same, as in F(e)ﬁf_de ~ _F(p)__lszz F'(u).
the calculation of electric current: 0€ ¢

Finally, we get for thermal flux | = ~ %72 TV T( VUZT)M_

Thermal conductivity

2
is defined as g=—xVT. =~ %= 977' T(W) ) oC temperature.



Temperature dependence of thermal
conductivity in metals

e i b " 7 .. .
R £ Thermal conductivity of ideal

{0y 9% K —1/,C0l,

a0,

)

3

y X

é “;5 . Wwhere heat capacity of metal

S .8 C(T) o T, and the mean free

S =0

§ ¥ path I1=I(T):

S —i4 R =

% I R const, at I_owT

S 7 t \\\M 2 73 ocl/T , at high T>>6,

3 N

Co e L L 10 R Thermal conductivity of metal
g v 4w & S0 W Q y oT metals

5K

Pue. 7.15. TemneparypHad ocT atlowT

3aBHCHMOGOCTL TelJ0onpoOBOI- .
noctt mean [117. = const at high T>>6}
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Wiedemann - Franz law

Electric conductivity Thermal conductivity

1,_2r,.2
o=3ze[v°Tv(e)],. x =3m T(vv’r),,.

Electric o and thermal x conductivities are | % m This law is valid

related by the Wiedemann — Franz law : oT - 3e2°| for arbitrary g(p).




Thermoelectric phenomena in metals 0

Under a small temperature gradient combined with external electric field
In the metal the following

current and heat flows arise: ] O-E + ﬁVT ’)/E + gVT
The Onsager symmetry principle relates the coefficients 3 and y; ¥ = —pT

In practice, it is always easier to control the E=pj+ OVT,
electric current than the electric field inside = R
a metal. Then one can use the system _q=1j—x VT,

herep=6"',0=-P/o,[1=7/c, k=YB/c—-E. Also I1=0T, Kk =—(ER*/c +E).

The coefficient Q is called the Seebeck coefficient. It gives thermopower
(potential) per unit of temperature change (also called differential thermo-emf).

T, EdT
V —_ —_ —_ —_ —
| eme1 Vemf IEdI I dT /dl IQdT Q(Tz T1)

Peltier effect. A current flows through the junction ¢a qb
of two metals: J,=J,. Since IL#[1 , the thermal —> | P
currents (,#(,, => the heat is absorbed or a > ©

released on the junction: W,,= -0, =(/Z-11,)]. j



Seebeck effect

The Seebeck effect is the conversion of heat directly into electricity at
the junction of different types of wire. Originally discovered in 1794 by Italian
scientist Alessandro Volta, it is named after the Baltic German physicist Thomas Johann
Seebeck, who in 1821 independently rediscovered it. It was observed that a compass
needle is deflected by a closed loop formed by two different metals joined in two places,
with a temperature difference between the joints. This was because the electron energy
levels in each metal shift differently and a potential difference between the junctions
creates an electrical current and therefore a magnetic field around the wires. Seebeck
did not recognize that there was an electric current involved and called the phenomenon
"thermomagnetic effect”. Danish physicist Hans Christian @rsted rectified the oversight
and coined the term "thermoelectricity".

The Seebeck effect is a classic example of an electromotive force (emf)
and leads to measurable currents or voltages in the same way as any

other emf. The local current density is givenbyJ=6 (— VV+ E_ ),
where V is the local voltage, and & is the local conductivity.

The Seebeck effect is described locally by the creation of electromotive
field E,,; == S VT , where S is the Seebeck coefficient.



Seebeck coefficient

If the temperature difference AT between the two ends of a material
IS small, then the Seebeck coefficient of a material is defined as:
§==AV /AT =~ (Vleft - Vright )/ (Tleft - Tright) ,

where AV is the thermoelectric voltage seen at the terminals.

Thus, if Sis positive, the end with the higher temperature has the lower
voltage, and vice versa. The voltage gradient in the material will point
against the temperature gradient.

The Seebeck effect is generally dominated by the contribution from
charge carrier diffusion which tends to push charge carriers towards the
cold side of the material until a compensating voltage has built up. As a
result, in p-type semiconductors (havinge only positive mobile charges,
electron holes), S is positive. Likewise, in n-type semiconductors (which
have only negative charge carriers, electrons), S is negative. In most
conductors, however, the charge carriers exhibit both hole- and electron-
like behavior and the sign of S depends on which of them predominates.

Seebeck effect Is often used to determine the sign of main charge carriers



Peltier effect

When an electric current is passed through a circuit of a thermocouple,
heat is evolved at one junction and absorbed at the other junction. This
Is known as Peltier effect. The Peltier effect is the presence of heating or
cooling at an electrified junction of two different conductors. It is named
after French physicist Jean Charles Athanase Peltier, who discovered it in 1834.

When a current is made to flow through a junction between two
conductors, A and B, heat may be generated or removed at the junction.
The Peltier heat generated at the junction per unit time is

dQ/dt= (11, — Il ) | ,where Il , and Il are the Peltier coefficients of
conductors A and B, and | is the electric current (from A to B). The total
heat generated is not determined by the Peltier effect alone, as it may
also be influenced by Joule heating and thermal-gradient effects.

The Peltier coefficients represent how much heat is carried per unit
charge. Since charge current must be continuous across a junction, the

associated heat flow will develop a discontinuity if 11, and Il differ.

Thermoelectric heat pumps exploit this phenomenon, as
do thermoelectric cooling devices found in refrigerators.



Thomson effect

In different materials, the Seebeck coefficient is not constant in
temperature, and a spatial gradient in temperature can resultin a
gradient in the Seebeck coefficient. If a current is driven through this
gradient, then a continuous version of the Peltier effect will occur.
This Thomson effect was predicted and subsequently observed in
1851 by Lord Kelvin (William Thomson). It describes the heating or
cooling of a current-carrying conductor with a temperature gradient.
If a current density J is passed through a homogeneous conductor,
the Thomson effect predicts a heat production rate per unit volume

dg/dt =—KJ - V'T, where VT is the temperature gradient, and K is
the Thomson coefficient. The Thomson coefficient is related to the

Seebeck coefficient as K = TdS/dT.



Collision integral in the Boltzmann kinetic equation
for the scattering by impurities (1)

The scattering probability of electron on impurity centers in the Born

! : ) 3 7
approximation is: 1 27 2 d’p
—=w=—11V,, 5(8(;})—8(;}’)) / TV
T h (27h)
here V,, is the transition matrix element of the electron Interaction V(r)
with aII |mpur|ty atoms, occupying positions R;: _ Zv(r _ )

The matrix element of interaction potential LA,
. . - - Iprin -
V(r) is taken on the Bloch wave functions: le (I”) =V e u, (I”)

= 0 (7Y o(F = R e u (F)dF =
ﬁ?p =V ZJ‘ )’ (f RI)E u, ;)d J =
—_ V_ Ze_flj? _}'?]R_r' [T U(F)l!ﬂ (F)“‘ (F){,}_i{ﬁf_ﬁ}ifhdj‘;: _ V_lze_i{ﬁr_ﬁ]ér_ -"IT!U
) : 4 ’ B p'p
I [

and

21 , (o' MR —R. d’p’
w="2v2 [l P e rIE RIS (o p) =g p” v
h p;? ;ﬁ ( (;) (; ))(231_}%)%
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Collision integral for scattering by impurities (2)

In Born approximation the scattering probability of electron on impurities

3
2r —2 2 —i(p’—p)(R.—R, )/ T ’ d p;
w=—->V"1|lv, | Ze P mPRATR 5(8(;}')—8(;}' )) g
pp :
fi = (27h)
Positions of the impurity atoms in the crystal are assumed to be random,
and the averaging over impurity positions reduces the sum over
Impurities to diagonal terms only, i.e. with coinciding positions of the
Impurity atoms R, =R, , because other terms strongly oscillate and
vanish. Hence, the sum turns into the number of impurities in the crystal
N, and w finally takes the form (after cancellation of one power of V):

_2m N, 2 / djp; where N./V=n; is the
w=—-=1") Upp | 5(8(;))_ 8([) )) (2;”5)3 i,mpurity cémcentlration

v

The collision integral I1=I(f) depends on the filling numbers (Fermi-Dirac
distribution function) in the initial and final states:

3 7

d’ p

I(f) =27HHJ| v, FLE(P)(1=F(p) = f(p)(1-£(p)) [6(e(p) - E(P’))(Mh);

It is zero for the equilibrium (zero-field) distribution function f;=f,(é&).




Collision integral (3) df af afdr of dp 17
The kinetic equation is dz at or dt ap dt_I(f)

In a stationary state the distribution function f=f,+f, is spatially uniform
and does not explicitly depend on time: 0f/ot =0 and of/0r =0. The last
term Of/op~(0f,/0¢) (O 10p)= ve(0f,/0€) #0 and dp/dt =eE. Then in the

first order in the small perturbation eE the kinetic equation becomes:

_ _ of 27[ d’p’
E-v — v, P{f( ) —&(p’
here Vv, =de(p)/ E)p is the group Velomty of the particle.

The first-order correction f; to distribution function is linear in force eE .
There is only one additional vector quantity p to make a scalar product to

formfy: f(p)= p-En(e) where the functionz(g) is unknown yet.

1
Integration over the energy is performed in two steps:

Z(J%pf stepl 2(]8’(]5 ) step 2def v(e") (JQ;
ole(p)—e so(e—¢ = vie')de’

Here v(¢’) is the den5|ty of electron states at the energy €’ (including the
factor of 2 allowing two possible projections of the electron spin 1/2).

—




Collision integral for scattering by impurities (4)

p-E p o
eiin 880 :'T?(S)JW(QP.pf)[P E-p: E} 47w

where the dependence of the scattering -
v(e)

amplitude V on the scattering angle®is W (Qp_p,) =—n, ‘U(Qp_p,)
After all the manipulations, integral kinetic equation reduces to a simply

Then the kinetic equation is

taken into account via the function

alge_lgraic equation: definition of the transport scattering time
ep’Eaf__. — dQ/ & 1 L
m 82 - En(e)J.W(Qp,p’)[cos(ep,p’) B 1] AT _T(S)P -En(e)

I(f)=pEn(s)j W(O)(COS(p E)- COS(p,E))g—Z-

We choose the polar axis Zalong p. Then p'E=plE,+p' E,, i.e.,

N~ NN NN NN
cos(p', E) = cos(p', p) cos(E, p) +sin(p', p) sin(E, p) cos ¢, ¢
where ¢, is the angle between the projections p' and E onto the plane Lp.
This term disappears after the integration over the angle o.

calculation details:
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Why impurities in metals can be described as short-range?

The typical range of impurity potential is of the order of atomic radius ag.
If impurity is uncharged (another atom), its range is ~ ag . If the impurity
Is charged, in metals any charge is screened on the Debye radius I'p.

Then the impurity e “"  where —Ze is the charge of the ion and
. . . ¢ — —Ze — -'1 M " b do
potential is given by > %p="rp 18 the inverse Debye radius

This impurity potential can be derived from Atp = 44-ren’ where the

change of electron denS|ty on.
=n(u+ €(p) ne(”') ~ eqo_—
oM
Then the Maxwell one _ e o
equation gives d¢ - —4me’ go GIN 0. = ¢@=—Le .
_ , 0N,
where the inverse Debye (screening) radius is *p= o

By the order ezﬂ%ﬂ 1/2~Po e’m 1/2~Po e’ 1/2___P_0
of magnitude ~P h® p2 h \ poh b \ #o h

the Debye radius is of the order of atomic distance.



Electron-electron scattering rate 1/t ocT2.

The scattering probability W is proportional to

5’ WOCJ 8(e,+e&,— &) —€4) d°p, d°p}

law of energy P, is fixed by law of total
conservation ~Momentum conservation

The initial energy of quasiparticle is close to
Fermi energy: |E;-E|~T<<E_, being in a shell of
width ~T around Fermi surface (if E;-Ep<<-T ,
the total energy of electron pair is much below
2E¢, and there is no empty states for them to
scatter in at this energy). Then the energies E;’
and E, are also close to Fermi energy (in a shell
of the width T for same reason), which reduces
the scattering probability W by a factor (T/Eg)>.
Total momentum relaxation (resistance)

appears only from the umklapp processes,
+ scattering by reciprocal lattice vector:

p1+p>=p1+p>+ hK




Electron-phonon interaction.

emission b .
of phonon Pk afscr)‘rp on ook The origin of e-ph interaction
p 0 pponon Is the Coulomb force between
| electrons and the charges
K k induced by electric
polarization created by ion

replacements in their motion.

The scattering probability w is given by golden Fermi rule

ny 2@
1{1’! _— ———

v

N T B} L .z _\\ d’k
Ag_ph ; He_ph(p—hk,;))‘ 5(8(;})—8(;}—%1{)—?[@(1{)) (2?rh)3

H — E,[ 7 — 7 \ivl enii (7)) 477 where u(r) is the phonon
e=ph Q( )( [ ( )] (vibration) amplitude,

Q(r) is the screened Coulomb potential of the ions, experienced by
conduction electrons, div[em?i(?’)] = divP is the charge distribution
due to crystal-lattice polarization, caused by deformation u(r): P=neu.
Without screening Q(r)=1/r. With screening Q(r)=a*&r), where a~ #/pe.
The matrix element

1. W 1/2 _ ho(n+1)\ 2
Vi~V '/218202n-uk~-—iV°”2€2a2"(h(nk+l)) =~- V-WPO( o )) '
A\ nMw ) nm




Electron-phonon scattering rate at high T: 1/'ce_phocT.

The integrals are cut off at maximal
phonon frequency=Debye energy = 3Nk
phonon frequency at wave length of

crystal lattice constant: @p=a(k=nfa).

Temperature dependence of heat >
capacity C,/(T) changes at T~ @,

0 i A

The “high” temperature case: T >> 0,

The main contribution to electron scattering comes from phonons with
high energy Aw ~6, and with filling numbers (obtained from Bose distribution)

n ['Eu ): ;41_ : kﬁ?: >>1 Then the electron-phonon scat-
L exp(hm[_ k, ) /’kBT) —1'" hw(ku) tering rate and conductivity:
1 k,T

U
. . _ 2 ephf . 2 106 A
e W, 2 =0, , —ne T, /111 =n_e n/mk,T~ 10 ( = ]5

Ir

Therefore at room temperature T >@, , the main part of electron scattering
IS from phonons, and one observes a linear-T resistivity: R(T)=const+a.T.



-

Electron-phonon scattering rate at low T<< 6,: 1/t T?
but 1/7_,"cT>, and resistivity from phonons R,_, (T)ocT>.

The typical phonon energy at T<< @, is ?!CO(E) = sk ~ kgT<< 6,

Scattering rate is given by golden Fermi rule: B
27 d’k

= N (=5 8(e(P)~e(p— k) —hao (k) oV
The integral is taken over the absolute value of the phonon momentum,
k, and the angleé. The mtegral overé@cancels é—function, because

— Nk . :
e(p)-e(p— i) - o)=L (; )—hw(k) f’fjj[ws(eﬂ)_j;_’;f]:o

The sound velocity Sis much smaller than Fermi velocity: s/v, ~m, /M,

Hence, scattering by phonons gives electron diffusion
along the Fermi surface, each scattering by a small

“thermal” phonon momentum k, ~k,T /s = p,T|©, < p;

and by a small angle Qp_p, ~k/p, ~T/O, <1

Hence, the transport scattering rate 1/7,<<1/7:
1 | dQ’ dQ 1

_=JW(QP_p;)[l—Cos(Qp?p )} (T/G) ) J (GM )E_(T/G) ) TE(S)

t (e) Am




Electron-phonon scattering rate at low T<< 6,: 1/7_, «T?,
but 1/7_,"cT>, and resistivity from phonons R,_, (T)ocT>.

The transport scattering rate 1/7,<<1/7: :

4y dQ’ 1
r,r() =Jwl ””)[1 cos(,, ” A ~(1/0,) [W(6,, 4;rE(T/®”) 7, (¢)

The simple e-ph scattering rate is «T3: 1/7,(¢) ~ (T/©, )2 (kyT [h) o< T*
because it contains jd?’kocjk”‘”k dk=k®_ /3=, /3s°cT?

Hence, (T/@ ) k i (T/GD)4'(kBT/h)

And we obtain the electric conductivity in pure metals at the low T
due to electron-phonon scattering: 1016 4
P 9 g ~10"(u/k,T)(©,/T) s

Simultaneously, for the electron thermal conductivity k¥ in metals we use
the relaxation time 1, C1g

which gives K oc Cylvy = CVTEV.E” ~10° (G)D/T)_

Hence, the Wiedemann-Frantz law does not hold.

cm:-s-K



bnoxa-'pioHanseHa chopmyna (3aKoH)

onucbiBaeT TeMnepatTypHyro 3aBUCUMOCTDb TON 4YacTun vyAeJNibHOro
AJNIEKTPpoCcOonpoTuBIiIeHNA MmeTannoB, KOTopas o6ycn03ne|-|a pacCesHunem,
AJIEKTPOHOB Ha TernnoBbIX KoredaHunax KpucTtansrunu. peLLIéTKM

(dboHOHaX:) ' m# {
P = net 1:_:
1 o nv e B I G S R T ORI O
Tt hi E’D M (aK ;)? (Eﬂ ‘(Eﬂ)'
F {I]— x z%dz
b “Sﬂ{e“'-n (1-e~%) °

OHa npuBoauT Ana T<<0, K 3aBUCUMOCTU PXT>, a npu T>>0, K P o T.

b-I. ., He yunTbiBaeT aHM3OTPONUIO MeTasnna n paccesiHme 3f1eKTPOHOB
Ha gedeKkTax KpUCTannny. peweTkKn, => CIYXUT ONA rpyobiX oUueHOoK



Mpaeuno MaTtucceHa

MpaBuno MaTtucceHa — aneKkTpnyeckoe CONPoOTUBIEHUe pearnbHOro
MeTasnJsia paBHO CyMMe naeanbHOro U OCTaToOYHOro COnpPoOTUBIIEHUN.
WpeanbHbIM CONPOTUBIEHMEM Ha3bIBaeTCA 3NeKTpuYeckoe CONpoTUBIIEHMe
upeanbHoro Kkpuctanna. OcTaTo4YHbIM CONPOTUBNEHUEM Ha3bIBaeTCs AneKTpuyecKoe
CONPOTUBIEHMe peanbHOro KpucTanna npu abconoTHOM Hyne TemnepaTypbl,
BbI3BaHHOE CTONIKHOBEHUSIMM 3NIEKTPOHOB C HapYLUEHUAMMN NePUOaNYHOCTH
KpUCTaNnM4ecKow pelueTkn metanna.

O0bLACHeHue

BepoATHOCTb CTO/IKHOBEHMA 3/IEKTPOHA B KPUCTA/I/IMYECKOMN peLleTKe C O4HUM 13
npenatcTeun pasHa W =W _ .+ W, . BepoATHOCTb CTONKHOBEHMA 06paTHO
nponopuMoHanbHa AnuHe ceobogHoro npobera W =1/L,=>1/L=1/L ., +1/L,,.
TaK Kak yaenbHan 3N1eKTponpoBoAHOCTb O MPOnopLMoHanbHa AnvHe npoberal, a
conpoTtusneHue p = 1/0, otcioga cnegyet npasuno MaTtncceHa: p=p .+ P i4-



Temperature dependence of electric
resistivity in metals (sketch)

'} Electrical
resistivity
(p=1/o)

Temperature (T)
>

e-e |
Impurity  interaction + phonon mainly phonon

scattering +impurity  scattering scattering
scattering  p(T)ocT>+const p(T)=aT+const



Electron motion in magnetic field. Lorenz force F=(e/c)[v=B].

The Lorenz force F=(e/c)[v=xB] is always L to g{gilftmn

magnetic field B and to electron velocity V.

In coordinate space free electrons in magnetic

field move along a cyclotron circle 1B of Larmor electron helical motion
radius R, =pc/eB. The frequency of such periodic madnetc fild

motion is called cyclotron frequency: coc:eB/mc.

The electron momentum p, along magnetic field
IS conserved, => electron trajectory is a helix:

In crossed fields (magnetic +weaker electric) ——

: : : . A
this cyclotron orbit drifts L electric field E, so E m
that the average velocity along electric field is
zero, => average kinetic energy of electrons

does not change: 4&xun dp
— ==¢Ev. Zs'B
dt V- v
Average electric current along electric field vanishes, => diagonal part of
electric conductivity tensor o,, 1 B=B, vanishes: o,, =0y, =0, and c||B

remains unchanged: o,, (B,)=0,, (B=0). Non-diagonal (Hall) ny(BZ),—éO.




Electron motion in magnetic field in metals.

In metals in magnetic field B=H,
due to the Lorenz force:

dp/dt = e a:'[f’ X FI] =F,
electrons move in momentum
space along the surface g=const
In the plane 1B, i.e. p,=p||B=const.

The electron orbits in momentum =

space may be closed (i.e. ellipse) O O O |

or open (i.e. wavy line), depending O1010 T 1 1 7T

on if this orbit intersects the pe—————

boundary of Brillouin zone. O O O I
2

a
Example: the Fermi-surface is a warped cylinder%/\vith axis along z.
For B||z the electron trajectories are closed (Fig.' a), while for B||x or|B]|y,
electron trajectories are open, i.e. extended out of Brillouin zone (Fig. b).

The conductivity tensor depends J = 0jj Ej 1)=1,2,3. pij and o;; are

on the topology of electron orbit. E;=py J;, g =(g;; ). 3x3 matrices.



Electron motion in magnetic field in metals (add).

The motion in coordinate and momentum space in the plane 1B are
related by the rotation by 90°, which follows from the condition g=const:

de = (0¢/p, )dp, +(0e/8p, )dp, =v,dp, +v,dp, =0=> |dp, /dp, = v, /v,

In coordinate _ _ . _ _
space dx=v,dt, dy=v dt; = |dy/dx=v /v, =-dp, /dp,

Examples: y
Closed electron AY Corresponding B®
orbit in B® => electron orbit
coordinate O N in momentum
space space:
Open electron Corresponding B®

orbitin B® y —> electron orbit Q.
. D,

coordinate in momentum

space space:

This property is a consequence of the equations of motion in B
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Kinetic equation in the presence of magnetic field df = I(f)

The full time derivative of distribution function f(p,r) in magnetic field B

df_of ofdr ofdp_of  of  _of, of

- vH
d: at or dt op dt at or ap [ ] op
The collision integral inthe | (f)=— r-f , where f=f+f, , and
so-called tau-approximation is Tir i

fo Is the distribution function in equilibrium (without external fields).

Without electron scattering (i.e. by impurities) even a weak magnetic field
strongly changes (reduces to zero) longitudinal (diagonal) conductivity.

This contradicts the common sense that very weak perturbation cannot
strongly affect the observable phenomena. What is solution of paradox?

Answer: the effect of magnetic field is weak if cyclotron period T| >>7,

l.e. when O)CT:TGB/IT]C<<1 and electron trajectories are almost straight
lines between scattering events, because their curvature due to B is weak




Electron motion in magnetic field in metals (2).

Lorentz force L velocity: dp/dt =e fl:i? X ﬁ] =F
P i W, Therefore kinetic energy is conserved:

def ¥

de/dt =(0e/dp)-dp/dt =V -dp/dt = f/fi?-[i'}{ﬁ]z 0

é=const The projection of momentum on B=H is also
conserved & = const, p- = const

Equations of motion are: dp /dt = (e/c)v H, dp /dt= —(e/c)v H
Taking the square of both the equations and summing up we obtain:

(dp +dp; )/dr e/c) H* (V:: + vf) where(dpi + dpf) = dt’;
Is the element of the length of the path in the momentum space.

1/2

Then equations of motion give d/ / dt, = (f?/ﬂ‘)HVL; Vi (V TV, )

dl ¢ jf” For closed trajectory 7 — _€ f[d]
N

The new dt, ¢ a Y
variable {wa, LT H v, the period of motion el

It is convenient to change variables: p..p..p. —1,€, P,



Electron motion in magnetic field in metals (3).

The area inside the contour of closed electron orbit
. — dl
f.-n the plane p, = const S(e) _ Idpx dp,= J‘decﬁv_

The period of motion T = (¢/eH)dS / d¢

=const The "cyclotron mass" m™* = (27)"aS / de

c dl C jd!’

New variables: p ,p .p. —1,,€, P, wher dt,=———1
P> Py> P 1S P ere eH v, L eH

Electric current . 1 1 JH
~ N dp dp. dp. = L dedt.dp
h ) )

of . of . of .

Kinetic equation in —= t + +-2Ls=]
the new variables  dt, apz p-" o€ (f)
af of of

E,+—evE = I
” pze o €0 (f)

Introducing aj:) we Slmpllfy the 6![/
. — f 2 - T evkE.
the notation f Jo ‘/’ kinetic equation:  gt, (p) =

Since dt,/dt=1, the kinetic equation is



Kinetic equation in magnetic field (2).

dfo
Introducing the notation for the distribution function: f=fo—— 173
In the t-approximation in magnetic %_l__'»(_’: ev(t )E
field the kinetic equation becomes ot, T 175
The solution of this equation is i —(1 —
c=—00 = ev(tz)E C (=) dtz.
where from boundary c

condition Y (t;+ T) = (1)
The electric current is given by the Shockley tube integral (formula):

. e - 2He2J fOJ'
Ja—(zwh)gj.fvadp~ (2mh)c deae dp, dt,v.¥

2He3 Po T : —(t,—t,)/ T
=(27rh)3 J‘._,, dp, L dt, v, (t,) J._wvﬁ(tz)e (t=1)/ Eg dt,.

For isotropic closed orbit Ux = U, COS Qtl .

and this 3 3 s -1

integral {-’x} — 2He i Po_2mcm 1 { T E.+()E, }
jyJ @mh)Y’c3 m** 2He Q°+7?|-QE,.+7'E,

gives

v, =—v,sin ¢,




Conductivity in weak magnetic field (results)

In weak magnetic field {jx} _ ne’ 1 { 7 E,+()E, }
B=B,, 5,, (B, )=0,, and j, ~QE,+7'E,J’

m* Q%+ 772

The angular frequency ) =24/ T =eH/cm* = o.Is called Larmor or
cyclotron frequency, and z IS mean scattering time.

2

In weak magnetic ., M€ 7 Usually in . 0 _
field Qu<<1,and Jx = m* E, experiments »y=0 =E, {7,
%

The Hall R = Ey _ eH tE.m =(n eC)_l can be used to measure
resistance Hjx m*e neez'rHEx ¢ electron concentration.
The Shockley tube integral formula for electric conductivity in magnetic
field: 317 Pr T(p,) fy

, 2 eH [, —1,

J, = jdp_ j dr v, (1 jdtzv 5 exp{‘ Egl|._
’ (27:;'1)3 c oo 10(1)_00 ﬁ( ) T Ble=u

This formula is suitable both for numerical and analytical calculations of
magnetoresistance for arbitrary electron dispersion.



Conductivity tensor in strong magnetic field (results)

For closed orbits, in strong magnetic field B, Qt>>1, and 0y, , Gy, oc 1/2°—> 0.
Introducing notation y=1/2r<<1, for closed electron trajectories we find

2 —
conductivity [7 %x 7’2axy Y2\ resistivity tensor bee ¥ by by
tensor: Ou=| Y Y dy Yy pi=(o;)*  Pu= Y by by, by,

(closed a a a
trajectories) Yz Yy 7 b, b,, b,,

where a; =const and all magnetic-field dependence is in y=1/€27o1/B,

For open trajectories the result is

Pz open electron  (different, e.g., c,, =const and p,,ocB2:
trajectory

2
Y Qxx YQxy, YQx:
_ 2
’ T = Y ayx a_vy ayz
f"\ pz’”
g - yazx azy a,,

Y b ¥ by ¥ by

closed electron px=| v 'b, b, b,
trajectory (dashed line) 'y“b b b
zZX zZZ

zy



Introduction

R (10° ¢y
ar

Angle-dependent magnetoresistance
oscillations (AMRO) in quasi-2D metals.

First observation:

M.V. Kartsovnik, P. A.
Kononovich, V. N. Laukhin, I.
F. Schegolev,

JETP Lett. 48, 541 (1988).

Fermi surface

First theory:
K.J. Yamaiji,
Phys. Soc. Jpn.
58, 1520,
(1989).

L
-40 o 40

3D
o, =erY Vi, v,=0¢eldp,
FS

L L
80 g (degrees)

For axially symmetric dispersion and in the first

order in t, the Shockley tube integral gives:
[R. Yagi et al., J. Phys. Soc. Jap. 59, 3069 (1990)]

— Jo(kpdtan0) +2y - .
ikrdtan)+2) 1+ (jooc)’
A

% J3(kpd tan 0)

J=1

0-(B)
0: (0) r
gives AMRO

gives damping of

AMRO by disorder

o, (6)/ o (0)

37

1 h
\ (@) w.t=10.8
(b) m.t= 1.5
0.6 | '-.II (C) T = oo
W\
LN o (tand)
0.2 \E/—QH---.._E
AN
oL° /\/\/’T\%W
0 3 a

6 12 15
k=d tan &

Yamaji angles
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Magnetic breakdown

High magnetic field Weak magnetic field
N NN e e 2 i
N e ™ N N N

(a) (b}

Figure 33 Breakdown of band structure by a strong magnetic field. Brillouin zone boundaries
are the light lines. The free electron orbits (a} in a strong field change connectivity in a weak field
(b) to become open orbits in the first band and electron orbits in the second band. Both bands are
mapped together.

The probability of magnetic breakdown is given by P = e ~Ho/H
where 2 2 2
T E & mce;, H g

H,

Py e T —

=4ehvxvy eh ( —hwcC
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