Metals in high-frequency electromagnetic field

- Normal skin-effect ($\delta > l\tau$)
- Anomalous skin effect ($\delta < l\tau$). Inefficiency concept.

Normal skin-effect ($\delta > l_{\tau}$)

Maxwell equations:

rot
$$E = -c^{-1} \frac{\partial H}{\partial t}$$
, rot $H = \frac{4\pi}{c} j = \frac{4\pi}{c} \sigma E$.

Substituting solution in the form of plane wave $exp(ikx-i\omega t)$ we obtain

ik
$$E_y = \frac{\mathrm{i}\omega}{\mathrm{c}} H_z$$
, $-\mathrm{i}kH_z = \frac{4\pi}{\mathrm{c}} \sigma E_y$. $\Longrightarrow k^2 = \frac{4\pi\mathrm{i}\omega\sigma}{c^2}$. Hence, the wave number $k = \left(\frac{4\pi\mathrm{i}\omega\sigma}{c^2}\right)^{1/2} = \left(\frac{2\pi\omega\sigma}{c^2}\right)^{1/2} (1+\mathrm{i}) = k_1 + \mathrm{i}k_2$.

Substituting this to $exp(ikx-i\omega t)$ we see that electromagnetic wave decreases exponentially $\sim exp(-k_2x)$ inside the metal.

This phenomenon is call the *skin effect*.

The penetration depth is
$$\delta = k_2^{-1} = \left[\frac{c^2}{2\pi\omega\sigma}\right]^{1/2}$$
.

Surface impedance

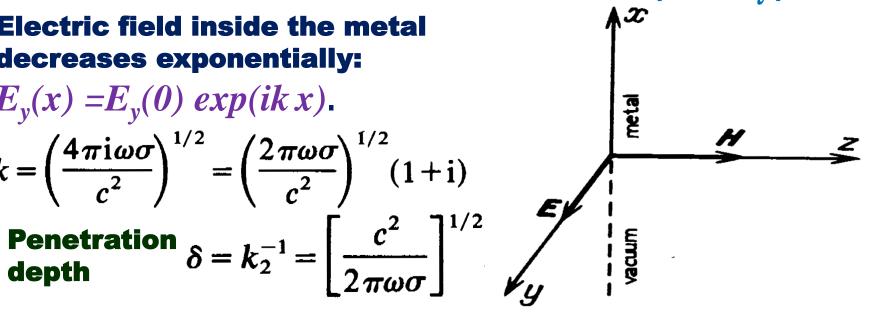
in the normal skin-effect ($\delta > l_{ au}$)

Electric field inside the metal decreases exponentially:

$$E_y(x) = E_y(0) \exp(ikx)$$
.

$$k = \left(\frac{4\pi i\omega\sigma}{c^2}\right)^{1/2} = \left(\frac{2\pi\omega\sigma}{c^2}\right)^{1/2} (1+i)$$

$$\delta = k_2^{-1} = \left[\frac{c^2}{2\pi\omega\sigma} \right]$$



The impedance, or surface resistance is

Using the Maxwell equations,

$$\operatorname{rot} \boldsymbol{H} = \frac{4\pi}{c} \boldsymbol{j} \quad \text{and} \quad \operatorname{rot} \boldsymbol{E} = -c^{-1} \frac{\partial \boldsymbol{H}}{\partial t},$$

rot
$$H = \frac{4\pi}{c}j$$
 and rot $E = -c^{-1}\frac{\partial H}{\partial t}$,

we obtain
$$Z = R - iX = \frac{E_y(0)}{-(c/4\pi)H_z|_0^\infty} = \frac{4\pi}{c}\frac{E_y(0)}{H_z(0)} = \frac{4\pi}{c^2}\frac{\omega}{k}.$$

$$Z = \frac{E_y(0)}{\int_0^\infty j_y(x) \, \mathrm{d}x}$$

Results:

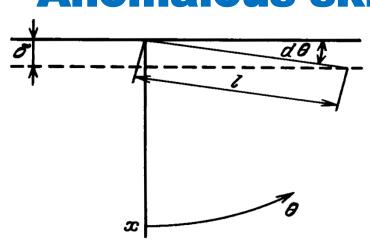
Surface impedance (2) in the normal skin-effect ($\delta > l_{\tau}$)

The impedance Z is a complex quantity and is written in the form R-iX, where R is the resistance and X is the reactance. The quantities R and X can be determined from the change in the amplitude and phase of the wave reflected from the metal surface. The resistance R determines the energy loss of the electromagnetic wave upon reflection and can be found from the production of heat in the metal when it is place in a high-frequency field.

$$Z = R - iX = \frac{4\pi}{c^2} \frac{\omega}{k} = \left[\frac{4\pi\omega}{i\sigma c^2}\right]^{1/2} = \left[\frac{2\pi\omega}{\sigma c^2}\right]^{1/2} (1 - i)$$
valid for any relation valid in the case of between j and E Ohm's law $j = \sigma E$ $R = X = \left[\frac{2\pi\omega}{\sigma c^2}\right]^{1/2}$.

The penetration depth is
$$\delta = k_2^{-1} = \left[\frac{c^2}{2\pi\omega\sigma}\right]^{1/2}$$
.

Anomalous skin-effect ($\delta < l_{\tau} => j \neq \sigma E$)



The electrons moving at a large angle to the surface spend little time in electric field and therefore almost do not interact with it. This is called *inefficiency concept*.

In the isotropic case the number of electrons with momenta directed within a certain solid angle is proportional to that angle. Essential electrons are those which are moving within the skin layer throughout their entire mean free path. For these electrons (Fig. 28) $d\theta \sim \delta/l$ and, hence, $d\Omega \sim 2\pi \sin \theta d\theta \sim 2\pi d\theta \sim \frac{2\pi\delta}{l}$ $(\theta \approx \frac{1}{2}\pi)$.

Thus, the effective electron density is $n_{\rm eff} \sim n_{\rm e} \frac{{\rm d}\Omega}{4\pi} \sim \frac{n_{\rm e}\delta}{I}$.

The conductivity is proportional to the number of electrons. Therefore, the effective conductivity compared to the ordinary conductivity contains a factor of order δ/l .

$$\sigma_{\text{eff}} = \frac{i a \sigma}{k l}, \ k = \left(\frac{4\pi i \omega \sigma_{e}}{c^{2}}\right)^{1/2} = \left[\frac{4\pi \omega a \sigma}{c^{2} l}\right]^{1/3} e^{i \pi/3}, \delta = \left(\frac{c^{2} l}{4\pi \omega a \sigma}\right)^{1/3} \frac{1}{\sin \frac{1}{2}\pi}.$$

Surface impedance in the anomalous skin-effect ($\delta < l_{ au}$)

The surface impedance is Using the Maxwell equations,

$$Z = \frac{E_y(0)}{\int_0^\infty j_y(x) \, \mathrm{d}x}$$

rot
$$H = \frac{4\pi}{c}j$$
 and rot $E = -c^{-1}\frac{\partial H}{\partial t}$,

we obtain
$$Z = R - iX = \frac{E_y(0)}{-(c/4\pi)H_z|_0^\infty} = \frac{4\pi}{c}\frac{E_y(0)}{H_z(0)} = \frac{4\pi}{c^2}\frac{\omega}{k}.$$

Substituting

$$k = \left(\frac{4\pi i\omega\sigma_{e}}{c^{2}}\right)^{1/2}$$
$$= \left[\frac{4\pi\omega a\sigma}{c^{2}l}\right]^{1/3} e^{i\pi/3}$$

$$Z = \frac{4\pi\omega}{c^2 k} = \left(\frac{4\pi\omega}{c^2}\right)^{2/3} \left(\frac{l}{a\sigma}\right)^{1/3} e^{-i\pi/3}$$
$$= \left(\frac{2}{a\sigma}\right)^{1/3} \left(\frac{\pi\omega}{c^2}\right)^{2/3} \left(\frac{l}{a\sigma}\right)^{1/3} (1 - i\sqrt{3}).$$

Results:

Anomalous skin-effect ($\delta < l_{ au}$)

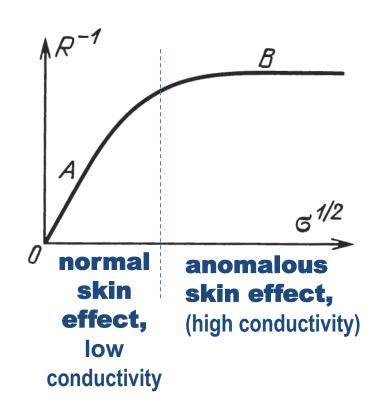
The penetration depth:

$$\delta = \left(\frac{c^2 l}{4\pi\omega a\sigma}\right)^{1/3} \frac{1}{\sin\frac{1}{3}\pi}.$$

The impedance:
$$Z = \left(\frac{2}{a}\right)^{1/3} \left(\frac{\pi\omega}{c^2}\right)^{2/3} \left(\frac{l}{\sigma}\right)^{1/3} (1-i\sqrt{3}).$$

Thus, we have obtained the following results: (a) Z is proportional to $\omega^{2/3}$; (b) $X = \sqrt{3}R$; (c) the conductivity enters into eqs. (7.11) and (7.12) only in the combination σ/l ; but since $\sigma \sim n_e e^2 \tau/m \sim n_e e^2 l/p_0$, it follows that $\sigma/l \sim n_e e^2/p_0$ (this relation is independent of the temperature and is determined by the electronic spectrum alone).

Regions of normal and anomalous skin effect



The anomalous skin effect is observed when $\delta < l_{\tau}$

Substituting
$$\delta = k_2^{-1} = \left[\frac{c^2}{2\pi\omega\sigma}\right]^{1/2}$$
 and $\sigma = n_e e^2 l/p_0$

we obtain the condition for anomalous skin effect: $\omega > \frac{c^2 p_0}{2\pi n_{\rm e} e^2 l^3}$

Assuming that $n_e \sim 10^{22} \text{ cm}^{-3}$ and $p_0 = \hbar (3\pi^2 n_e)^{1/3} \sim 10^{-19} \text{ g} \cdot \text{cm/s}$ we obtain $\omega > 10^{-2} (l[\text{cm}])^{-3} \text{ s}^{-1}$

If $l \sim 10^{-3}$ cm (this is the residual resistance region), then $\omega > 10^7 \, \mathrm{s}^{-1}$.