
                                                    Section 3.     Semester 2 
Superconducting properties of metals 

 

LECTURE 1 
Basic properties of the superconducting state. Thermodynamics of superconductors. 
Intermediate state. The London theory. 

 

Preamble  The classical Boltzmann statistics predicts that all the mechanical motions should die up at 
the temperature of absolute zero (T = 0°K ). Hence, considering electrons in a metal as the gas or fluid 
of charged particles (the Drude model of metals) one would expect growing viscosity at low 
temperatures, and therefore, increasing electric resistivity of metals when temperature decreases to 
zero. 
Dutch physicist Kamerling-Onnes, who managed to cool the samples down to and even below the 
liquid helium-4 temperature ( 4°K ), decided to check this general prediction of the Boltzmann’s 
statistics. He discovered in 1911 that the mercury resistance disappears suddenly at 4°K . Soon after 
this the same property has been found for several other metals. The new phenomenon was called 
"superconductivity", and the metals having this property were called "superconductors". 
 

General properties of superconductors 

   The temperature at which the resistance disappears is called critical temperature, Tc , it varies for the 

different superconducting materials. Historical curve of the critical temperature time dependence, Tc 

(t), is presented in Fig. 1 and demonstrates step-like development.  

 
Fig. 1 The history of experimental superconductivity. 

 

 Nb3Ge compound held the “title” of the highest Tc = 23 K material for about 15 years till the very end 

of the “common superconductors era” that lasted for 75 years and was characterized by an increase of 



Tc  from 4K to 23 K. The era ended with the famous discovery of the high superconducting temperature  

(Tc = 36 K), in cuprates by J.G. Bednorz and K.A. Müller in 1986, that was followed by an “explosive”  

increase of Tc  by 100 K  during the 7-year long course of discoveries, ended in so far highest Tc  

material HgCaBaCuO with Tc =136 K (April,  1993). The maximal critical temperature Tc = 9,25 K of 

all the single component metals has Nb, while the tungsten, W, has the smallest one Tc = 0,0154 K.  

There are many examples of the practical hi-tech applications of the superconducting materials, 

the number of them would increase dramatically if/when their critical temperature will be increased up 

to room temperatures. 

Phase diagram of the typical superconductor is sketched in Fig.2. 

 

 
Fig.2 Phase diagram of the typical superconductors: Type I (blue line); Type II (dashed lines). 

The superconductivity is destroyed by strong enough magnetic field (Kammerling-Onnes, 1914). 

It was established experimentally that the critical magnetic field Hc(T) temperature dependence agrees 

well with the formula: 

   Hc(T) =Hc(0)[1 – (T/T0)2].             (1.1) 

The breakdown of superconductivity also takes place when the critical current is applied, that 

according to the Silsbi rule, creates the magnetic field on the surface of superconductor equal to Hc. 

One of the main properties of superconductors is the Meissner effect (Meissner and Oxenfield, 

1933), which, as we shall see later in this course, is the workings of the Higgs mechanism in disguise. 

The superconducting metal expels magnetic field (which is less then Hc), so that in the bulk of the 

superconductor the magnetic field vanishes: B = 0 (recall that the magnetic induction B is the average 

microscopic magnetic field). This is shown in the Fig. 3: a is the normal metal, b is the metal in the 

superconducting state. Some superconducting alloys behave in the magnetic field in a more complex 

way, in particular, the Meissner effect can be incomplete.  

  



 
Fig. 3. The Meissner and Oxenfeld effect.  

A more detailed investigation discovered that the magnetic field is equal to zero only inside the 

bulk of magnetic sample. The field in the thin layer near the superconductor surface vanishes gradually 

from the “vacuum field” value at the surface to zero field in the bulk. The thickness of this layer, called 

the penetration depth (δL), by the order of magnitude equals 10–5 – 10–6 cm.  

 
Fig. 4. The London penetration depth describes magnetic field decay in the superconductor. 

The F. London & G. London theory. 

The Meissner effect was explained first in the phenomenological theory of F. London and G. London 

(1935). The main experimental facts of zero resistance of the superconductor to electric current and the 

Meissner and Oxenfeld effect were incorporated into the theory directly. First, the absence of 

resistance was incorporated via, essentially, the Newtonian 2nd law equation: 

  dΛ

j dt =


E; Λ = m nSe

2( )          (1.2)  

 
where nS is the density of superconducting electrons, m and e are the electron mass and charge 
respectively. Next, from the Maxwell–Faraday equation: 
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and Eq. (1.2)  the London equation follows, that relates the curl of the current density  

j  to the 

magnetic field: 
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where the absence of the current and magnetic field in the bulk of superconducting sample was used to 
derive the last equation. 
 

 
 



By relating the London equation to Maxwell's equation: 
 

 


∇ ×
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4π
c
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and taking curl of both sides of (1.5) , then combining the result with (1.4), it can be shown directly 
that the Meissner effect arises with penetration length δL :  
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This is one of the theoretical approaches to explanation of the Meissner effect.  Another equivalent 
way to write down the London equation (1.4), very useful for calculations of diamagnetic moment, is 
to use the vector potential  


A  instead of the magnetic field  


H : 

 

                                    
 


j = −

1
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
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
∇ ⋅

A ≡ 0; where:∇ ×


A =

H                (1.4a) 

 
Experimental data on the London penetration depth temperature dependence led to the following 
empiric formula: 
 

δ(T) = δ(0)/[1 – (T/Te)4]1/2.               (1.7) 
that in essence prescribes the temperature dependence to the superconducting electron density nS : 
 

 
Fig. 5. Superconducting electrons density in superconductor vs temperature at zero (2nd order 
transition) and finite (1st order transition) external magnetic fields. 
 

The thermodynamics of the superconducting transition.  

The thermodynamics of the superconducting transition depends on magnetic field H. The experiments 

show that if the transition takes place at H = 0, i.e. at T = Tc, then this is the phase transition of the 

second order. In this case the latent heat of transition is zero, but specific heat has a discontinuity at Tc. 

If the transition takes place at H ≠ 0, i.e. at T < Tc, then it is the phase transition of first order, which 

has finite latent transition heat. This change of the phase transition order can be related to the 

penetration depth behavior as it is sketched in Fig. 5.  

In the “common superconductors”, discovered before the HTS, the heat capacity at low 

temperatures was found to obey the exponential law: 

                               Cexp = a ⋅exp{−Δ kBT} .      (1.8) 

The power law temperature dependence of the specific heat was discovered later for the HTS 

compounds and was explianed as the result of the d-wave symmetry of the superconducting order 



parameter on the basisi of many different measured properties of these materials. For example, 

experiments show that in superconducting La2−xSrxCuO4 (0.16≤x≤0.22), the electronic specific heat 

Cel exhibits a T 2 dependence at T  <<Tc, and substitution of 0.3–0.5% Zn for Cu changes the T 2 

dependence into one, that is described by the sum of T linear and T 3 terms. These features of Cel give 

convincing evidence for a clean superconductor with lines of nodes in the superconducting gap of the 

fermionic excitations. 

 

The jump in the specific heat of the superconductor at Tc 

Consider the bulk cylindrical sample in the longitudinal magnetic field. The condition of the 

superconducting transition implies the equality of the free energies: 

                                              Fs(H,T) = Fn(H,T);                                                                  (1.9) 

where the indexes s and n denote the superconducting and normal phases respectively. The equality 

takes place only on the curve H = Hc(T) in the H-T phase diagram, see e.g. Fig. 2. 

The magnetic field penetrates into the superconductor only inside the layer of the penetration 

depth thickness, δL . In this layer the screening superconducting current flows in the presence of the 

magnetic field and provides the screening of the field in the bulk of the sample. This gives the 

contribution of order ~  per unit volume of the surface layer of the thickness δL . Hence, the 

total contribution of the both the screening current and the field H into Fs  is of the order  

  Hc
2 / 8π( )δLS /V << 1   per volume V, where S is the surface area of the sample. This contribution 

can be neglected unless we deal with a very thin plate. 

On the other hand, in the normal metal case, the magnetic field penetrates completely into the 

whole volume. Hence we obtain a detailed version of Eq. (1.9): 

                 Fs T( ) = Fn 0,T( ) − Hc
2 8π( ) .                   (1.10) 

Here we assume that the superconducting metals are not magnetic, i.e. they have µ ≈ 1.  

After differentiating with respect to T, we can find the difference of entropies (S = –∂F/∂T): 

Sn – Ss = – Hc (∂Hc/∂T)/(4π).                (1.11) 

The quantity q = T(Sn – Ss) gives the phase transition latent heat. As dHc/dT < 0, (see Fig. 2) q > 0, i.e. 

the heat is absorbed in going from the superconducting phase to the normal phase, excluding the point 

Hc=0 at Tc, where transition is of the second order and, hence, Hc=0. 

One more differentiation with respect to temperature gives the difference (jump) in heat capacities 

(Cv = T(∂S/∂T)v): 

             Cn – Cs = –(4π)–1[Hcd2Hc/dT2 + (dHc/dT)2].               (1.12) 

In particular at T = Tc , when Hc = 0, we have: 

                            ΔC = Cs Tc( )  –  Cn Tc( ) = 4π( )−1 dHc dT( )2 .                         (1.13) 



Remark1 Here we mention, that this elementary derivation, that rests only on the experimental fact that 

there is the Meissner effect, allows one to obtain rigorous formula equating the critical magnetic field 

with the thermodynamic characteristic of the superconductor. 

 

The intermediate state 

The Meissner effect in the bulk sample may be incomplete due to the sample geometry that 

enhances the field intensity near its surface in the superconducting state. For an ellipsoid this 

enhancement effect is expressed in a most simple way via the single demagnetizing factor, n. The 

simplification comes from the fact that in case of the ellipsoid the Maxwell field Hi inside the sample 

is uniform, but differs from the external field at infinity, H0 : 

                                            

Hi =


H0 − 4πn


M        (1.14) 

here  

M  is the magnetization, n is the demagnetizing factor or equivalently the demagnetization 

coefficient. 

The paradox 

Assuume first that the metal is in the superconducting state, and the Meissner effect is complete, i.e. 

 

B = 0  inside the sample (neglecting the surface layer of order of the London penetration depth), i.e. 

                      

B =

Hi + 4πn


M =


H0 + 4π 1− n( )


M                             (1.15) 

and hence: 

               

              

M = −


H0 4π 1− n( )⎡⎣ ⎤⎦;


Hi =


H0 1− n( )                (1.16) 

According to the boundary conditions of the usual Maxwell theory of electromagnetism, both the 

normal component of B and the tangential component of H are continuous across the boundary 

between the two media. Outside of the superconductor B = H. Hence, since B = 0 inside the 

superconductor, the H field has only tangential component at the boundary, i.e. the magnetic field 

force lines " circumflex" the superconductor (Fig. 3b).  

 
       a                                                               b 

Fig.6 Intermediate superconducting state: a) penetration of magnetic field in the ellipsoid.     
         b) field distribution inside the cylinder with the axis perpendicular to the field (n=1/2). 
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Since the tangential component of H is continuous at the boundary and hence, in those points where 

the directions of both H and H0 coincide the field at the boundary is maximal and equals H0/(1 – n), 

i.e. it is greater than H0. Therefore, there exists a possibility that the field Hi equals Hc in some regions, 

though away from the sample H0 < Hc is fulfilled.  

But, this reasoning leads to a paradox. Suppose that H0 < Hc is fulfilled and that somewhere in the 

superconducting sample the field exceeds Hc, see e.g. hatched area in Fig. 6a. Then this region should 

become normal metal. But then the field returns to its value in the vacuum, H0 < Hc , and hence, this 

region should be superconducting: a pradox!  

The solution of the paradox is due to Peierls and London (1936), who advanced an idea of the 

"intermediate state". According to this idea, if the external field H0 belongs to the following interval:  

                            (1 – n)Hc < H0 < Hc             (1.17) 

then the superconducting sample is described with the condition:  

                                   Hi = Hc.               (1.18) 

In this case we obtain from (1.14) that the magnetization equals to: 

M = –(Hc – H0)/(4πn),                         (1.19) 

And consequently, B is not zero in the sample: 

B = Hi + 4πM = H0/n – Hc(1 – n)/n.                          (1.20) 

Therefore, at H0 = (1 – n)Hc the field B = 0, and at H0 = Hc the field B = Hc, and in the interval 

between these values there is a linear dependence B on H0, see Fig. 6b (n = 1/2) for the cylinder in the 

field perpendicular to its axis. 

Remark2 It was consequently shown by Landau that condition Hi = Hc actually implies a 

superstructure of the alternating superconducting (B=0) and normal (B=Hc) layers in proportion 

determined by the positive surface energy (per unit area) of the boundary between the layers: 

 

σ ns = Hc
2 8π( )ξ > 0( )               (1.21) 

where ξ  is the so-called (Landau)correlation length. 

 

 

LECTURE 2 
 
The main idea of the microscopic theory of superconductivity. Criterion of 
superfluidity. Phonon attraction. Cooper pairing. The Little’s mechanism of 
high-temperature superconductivity in quasi one-dimensional molecular chains. 

 

Preamble. The microscopic theory of superconductivity was developed by Bardin, Cooper and 
Schrieffer in 1956, and independently by Bogolyubov in 1957. It happened 46 years after the discovery 
of the superconductivity in Hg by Heike Kamerlingh Onnes. The logical root from 1911 to 1956 was as 
follows: 

• the superconducting phenomenon resembled much that of superfluidity of liquid helium, 
discovered by Kapitsa in 1938.  
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• the theory of the latter phenomenon was developed by Landau in 1941, who advanced the 
superfluidity criterion considering the helium flow through the capillaries with zero 
viscosity 

•  the superconductivity was interpreted as the superfluidity of the electronic liquid, 
but electrons are fermions and fermionic excitations of  the Fermi liquid do not obey the 
Landau superfluidity criterion 

• hence, electrons should form bose-particles via formation of pairs, but since electrons are 
equally charged and repel each other, the cause of pairing seemed mystique  

• the isotope effect: dependence of Tc and Hc on the ion mass of the crystal lattice was 
discovered in 1950 (Maxwell, Reynolds et al. ), that encouraged Fröhlich and Bardeen 
independently to forward a hypothesis of the phonon-based attraction between electrons in 
the metals 

• but the Fermi energy (i.e. kinetic energy) possessed by conduction electrons is much 
greater than characteristic binding energy of superconducting pairs 
kBTc ≤ 10−4 ÷10−2( ) ⋅ εF ; the solution to this paradox was found by Cooper (1956), who 
calculated the binding energy of fermionic quasi-particles in the ground state of the Fermi 
liquid with attraction between the electrons in a narrow interval of energies around the 
Fermi level. 

 
The Landau superfluidity condition 

We start our study of the concepts listed above from the superfluidity criterion, that was introduced in 

Landau theory of superfluid 4He. One can imagine helium flowing through the capillary at a speed of 

v. If we go into the frame of reference connected with helium, it will rest, while the walls of capillary 

are moving with a speed of v. If the viscosity arises then the moving tube will carry helium at rest 

away with it. This means helium gains momentum P and energy E. However we know that the 

homogeneous quantum system changes its momentum and energy by means of generation of quasi-

particles. Let the quasi-particle appear with momentum p and energy ε(p). Back in the laboratory 

frame of reference bound with the tube the energy and momentum are equal: 

                               

′P =

P + Mv, ′E =E+


Pv+Mv2 2 ,                    (2.1) 

here M is the mass of the liquid. The energy change of the liquid when the quasi-particle appears 

equals:  

                                                                           E+

Pv ≡ ε p( ) + pv .                            (2.2) 

 

For the quasi particle creation to be energetically favorable the inequality must be satisfied:  

                     ε
p( ) + pv < 0 .              (2.3) 

The minimal value  ε
p( ) + pv  is achieved when  

p  and  
v  are antiparallel. Thus, at least: 

                ε p( ) − pv < 0  , or:       v>vc ≡ ε p( ) p{ }min .                 (2.4) 

 vc  is the minimum speed of the flow at which the quasi-particles with momentum p and energy ε(p) 

can appear.  

 

 



Remark1 Thus, the viscosity arises if the velocity exceeds vc . It proved to be that the liquid helium has 

the energy spectrum that provides finite vc . Hence, the liquid helium is a superfluid at velocities lower 

than vc . But in the Fermi liquid the lowest excitation spectrum corresponds to the particle-antiparticle 

pair production. If they are produced just at the Fermi surface then the energy can be indefinitely 

small. At the same time the full change in the momentum can be up to 2pF if the particle and 

antiparticle lay on the opposite sides of the Fermi sphere. Therefore, vc = 0 , and the Fermi liquid has 

viscosity at any flow velocity. Hence, at least the electron pairing into bose-pairs is necessary to shut 

down the fermionic particle-antiparticle excitation channel that prohibits the superfluidity. 

 

The phonon attraction 

In 1950 the isotope effect was discovered in the form of the dependence of Tc and Hc on the 

crystal lattice ion mass:  

Tc ∝ M1/2, Hc ∝ M1/2,            (2.5) 

The ion mass can manifest itself only when the crystal lattice is involved in superconductivity. Based 

on this fact, Fröhlich and Bardeen (1950) independently proposed that electrons can attract via the 

retarded crystal lattice deformation, as sketched in Fig. 7: 

 
Fig. 7 The amplitudes of the phonon exchange between two electrons in a crystal lattice. 

 

First, consider the diagram 7a. One electron with momentum p1 produces the phonon with momentum 

ћk, hence, its own momentum becoming p′1 = p1 – ћk. The phonon is absorbed by other electron, 

which had momentum p2 and after the absorption acquired the momentum p′2 = p2 + ћk. The amplitude 

of this process, which is the second order perturbation in the electron-phonon interaction, is 

    ,                   (2.6) 

here Vk = Vp–ћk,p. 

From the other hand, the same final momentum occurs if the electron having the momentum p2 

emits phonon with the momentum –ћk, which will be then absorbed by the electron with momentum 

p1 (Fig. 7b).  The amplitude of this process is  



.        (2.7) 

Here we took into account that ω(k) and Vk are invariant to the change of the sign of k. The sum of the 

two amplitudes (2.6) and (2.7), accounting for the conservation of energy: 

ε(p1) + ε(p2) = ε(p′1) + ε(p2′),       (2.8) 

gives the final amplitude:  

 

−
2 Vk

2
ω k( )

ω k( )⎡⎣ ⎤⎦
2
− ε p1( )− ε p1 − k( )⎡⎣ ⎤⎦

2 .       (2.9) 

Taking into account the expression for Vk following from the electron - acoustic phonon emission-

absorption Hamiltonian (6.12) in the Lecture 6, and estimating it as: 

 
Vk

2

4ω k( )
pFmV

, 

we estimate the amplitude (2.9) by an order of magnitude: 

 

−
3

pFmV
ω k( )⎡⎣ ⎤⎦

2

ω k( )⎡⎣ ⎤⎦
2
− ε p1( )− ε p1 − k( )⎡⎣ ⎤⎦

2 .      (2.10) 

Remark2  The amplitude of electron-electron scattering via the phonon exchange (2.10) is negative 

when 
 
ε p1( )− ε p1 − k( ) ≤ ω k( ) , hence, manifesting attraction between electrons . Besides, in the 

limit 
 
ε p1( )− ε p1 − k( )  ω k( )  the amplitude does not depend on k. Hence, this attraction between 

electrons can be approximated by a local potential U = U0δ(r1 – r2), neglecting the retardation effects 

manifested by the frequency dependence in (2.10). This potential is isotropic and called s-wave 

scattering amplitude with zero orbital momentum l = 0 of the two electrons in the center of their mass. 

Therefore the coordinate wave-function of the interacting electrons is symmetrical relative to 

permutation of the particles. However, since the electrons are fermions, their complete wave-function 

is antisymmetrical relative to permutation of particles. Thus, the spin part of the wave function must be 

antisymmetrical, i.e. the pair of electrons is in the singlet state. This is actually the Pauli principle in 

disguise: the attraction of the two electrons with coinciding coordinates is not zero only when their 

spins are opposite.  

Assuming that the phonon density of states is proportional to k2(dk/dω), i.e. it decreases quickly when 

k is small, and the attraction amplitude is k - independent, one concludes that the main contribution to 

the electron-electron attraction amplitude bring the Debye phonons with: k ∝ kD ∝ π/a and ћω ∝ ћωВ. 

Remark3 When |ε(p1) – ε(p1′)| >> ћωD the inter-electron interaction decreases steeply. Hence, the 

electrons are attracted only in the vicinity of the Fermi surface: the width of the attraction layer being 

ћωD on the energy scale and  Δp ∝ ωD vF  on the momentum scale. Allowing for the uncertainty 

principle one estimates the attraction radius Δr  in the real space as follows:  

 



Δr ∝ vF ωD ∝ a vF s( )∝ M m( )1/2 a      (2.11) 

where M is the ion mass, m is the electron mass, and thus:  M m( )1/2 102 ÷103 , i.e. Δr ∝10−6 ÷10−5 cm . 

Therefore, the phonon interaction is the long-ranged one: 
 
Δr ∝ pFm 

3( )−1 . At the same time the 

Coulomb repulsion, owing to the Debye screening, acts within the Debye screening radius rD  which is 

of the order of the metallic crystal’s lattice spacing a:  rD ∝  pF  a  . Therefore, the screened 

Coulomb potential is short-ranged and can be approximated with the Dirac’s delta-function: 

  

 UC ≈ e2a2δ (r1  –  r2 ) .        (2.12) 

 

The ratio of the amplitudes of the phonon attractive and Coulomb repulsive effective potentials is, 

according to (2.10) and (2.12), is approximately 1: 

                                      e2a2/(ћ2/p0m) ∝ (e2ћ2/p0m/ћ3) ∝ 1.       (2.13) 

 

Nevertheless, the phonon attraction can dominate, in some metals, the Coulomb repulsion due to, so-

called, dynamic factor: 1 ln(M/m) <<1 , that depletes effectively the Coulomb repulsion at longer times.  

In most cases these interactions differ significantly, and thus, for the studying of the 

superconductivity, one can account solely for the phonon attraction. Instead of the exact formula (2.10) 

we can represent  this attractive potential via its matrix elements in the momentum space of the 

fermionic quasi-particles: 

 

Up, ′p =
−g, µ  –  ωD  < ε(p),ε( ′p ) < µ  + ωD;
0, ε(p)− µ , ε( ′p )− µ > ωD.

⎧
⎨
⎪

⎩⎪
      (2.14) 

Here g ∝ ћ3/p0m ∝ [ν(µ)]–1 . 

 

The Cooper pairs 

An application of the effective potential (2.14) to the fermionic quasi-particles and not the bare 

electrons of the FL anabled Leon Cooper to solve the paradox, mentioned above, of the smallness of 

the binding energy of the Cooper pair with respect to the Fermi energy of the electrons.  

We will consider isotropic case for simplicity, with the linearized quasi-particle spectrum |ξ(p)|, 

where ξ  = vF (p –  pF ) , as is sketched in Fig. 8: the right branch refers to the quasi-particles of the 

“particle” type, the left one refers to the quasi-particles of the “antiparticle” type with the positive 

charge.  

 

 

 

 



 

 

 
Fig.8 

It will be seen below that the most important for the superconductivity is the interaction of the quasi-

particles with the same |p|, i.e. the interaction of either two particles or two antiparticles with the center 

of mass at rest. Then, from (2.9) it follows that in both cases the phonons perform the attraction. 

Let us write the Schrödinger equation for two quasi-particles: 

 [H0(r1) + H0(r2) + U(r1, r2)]Ψ(r1, r2) = EΨ(r1, r2);      (2.16) 

here H0(r1) is the free quasi-particle Hamiltonian, i.e. 

                              H0(r1)ψp(r1) = |ξ(p)|ψ(r1)         (2.17) 

(ψp = V–1/2eipr/ћ, i.e. plane wave in the free quasi-particle approximation). Both the total momentum and 

the spin of the bound pair in the ground state must be zero. Hence, the wave function of the pair will 

be the superposition of two states of two free quasi-particles having both the opposite momenta and 

spins, i.e. 

,        (2.18) 

here the indexes plus and minus mean the ± 1/2 spin projections. Substituting this in the equation 

(2.16) we obtain 

2|ξ(p)|cp + ∑Upp′cp′ = Ecp.                   (2.19) 

Suppose 

                
 
Up ′p =

−g, pF − ωD / vF < p , ′p < pF + ωD / vF ,
0 outside this interval

⎧
⎨
⎩

                (2.20) 

and solve (2.19) for cp: 

   cp = gI/[2|ξ(p)| – E],                  (2.21) 

where 

      
 
I = c ′p

′p = p0 −ωD /v

′p = p0 +ωD /v

∑ .                 (2.22) 



We have to take into account that we are seeking for the negative energy eigenvalue. Let us denote 

E = –2Δ and substitute cp from (2.21) in the condition (2.22). We find in this case: 

 
I = gI / 2( ) ξ p( ) + Δ⎡⎣ ⎤⎦

−1

′p = p0 −ωD /v

′p = p0 +ωD /v

∑ .       (2.23) 

Going to the integration over ξ and taking into account that the integral is taken over the vicinity of the 

Fermi surface, we obtain: 

1 = [gν(µ)/2]ln(ћωD/Δ)       (2.24) 

(the multiplier 1/2 arises since we sum over the states of a quasi-particle with the given spin projection, 

whereas previously defined density of states 
 
p0m π 23( )   accounted for the both spin projections). 

Solving for Δ, we obtain: 

  Δ = ωDexp[ – 2(gν(µ))]; E=-2Δ    (2.25) 

 

Thus, the pair of the quasi-particles has finite binding energy -2Δ . Such pairs are called the Cooper 

pairs, by the name of the author of this derivation. At T = 0 the Cooper pairs form the Bose 

condensate. This self-consistent derivation nevertheless does not take into consideration that the 

spectrum of the quasi-particles possesses the gap Δ  at T = 0, then, corrected value of Δ is twice the 

one in (2.25).  

Conclusions: the main consequences of the BCS theory of superconducting pairing 

1. The bound state with the binding energy −2Δ  exists at an arbitrary small value of the attraction 

g due to filled up Fermi surface.  

2. The greater is the coupling energy per quasi-particle eigen state, gν µ( ) , the higher is the 

superconducting transition temperature Tc ~ Δ kB . Usual superconductors (i.e. discovered 

before 1986) obey inequality: gν µ( ) <1 , which leads to an estimate:  Tc ωD ≤10−2 .  

3. The conclusion 1) stems from the fact demonstrated by Cooper, that the involved in the pairing 

quasi-particles occupy essentially one-dimensional space when the Fermi sphere is filled up: 

the integrals over the momenta transform according to the rule , and 

in the one-dimensional system any attraction is enough to bind the particles. 

4. Δ(T) decreases with temperature and at Tc ~ Δ 0( ) kB  it turns to zero. 

 

Thus we see that the presence of filled Fermi sphere plays an important role in the Cooper pairs 

formation in the weak coupling limit studied in the BCS theory.  

 

The Little’s mechanism of high-temperature superconductivity in quasi one-dimensional molecular 
chains (the exciton mechanism in superconductivity) 
 



The exciton mechanism of the superconductivity proposed by W.A. Little (1964) is expressed in the 
following citation from his paper: “The excitonic mechanism is a proposed mechanism in which an 
electronically polarizable entity is used instead of the polarizable ionic lattice. Here, instead of the 
ionic mass (M) the much smaller electronic mass (m) would appear, and the superconducting transition 
temperatures would be expected to be of the order of M m( )1/2  times greater than those of conventional 
superconductors. This is the basis of the hope for achieving superconductivity at liquid nitrogen 
temperatures or perhaps even room temperature. Life is not that simple though and our problem is to 
try to devise a real system to utilize this mechanism. ” The estimate made above is based on the 
isotope effect (2.5), assuming that the effective coupling constant etc. is preserved as in the phonon 
assisted attraction case considered above. The realization of the “electronically polarizable entity” is 
sketched in Fig. 9. 
 

 
Fig. 9. The exciton mechanism of the superconductivity (W.A. Little, 1964). 
 
In Fig. 9 the one-dimensional (1D) conducting structure is a long conducting channel (e.g. a polymer) 
which is attached by a series of insulating bonds to a series of side chains A. These side chains should 
constitue some highly polarizable molecules, such as an intensely colored dye. An electron at  

r1  
moving along the channel induces a charge separation in the side chain, A*, but because of the finite 
frequency of oscillation of the charge in the side chain the maximum induced charge appears some 
distance behind this electron. A second electron at  

r2  could then be attracted to it, so that a 
superconducting state would occur here as in a metal, but with the excitons of the side chains, A→ A* , 
playing the role of the phonons: 
 

e1 + A→ ′e1 + A*, e2 + A*→ ′e2 + A .      (2.26) 
 
Then, in analogy  with the derivation for the phonon-assisted superconductivity (2.9)-(2.25), one finds: 
 

 

gex  −
2 VSA

2 Eex

Eex[ ]2 − ε p1( )− ε ′p1( )⎡⎣ ⎤⎦
2 ⇒Tc  Eex exp − 2 ( gexν µ( ))⎡⎣ ⎤⎦; gex ≈ VSA

2 Eex    (2.27) 

 
where we have considered a single exciton state for the side chain, A*, having an energy Eex  and 
coupled to the conducting channel electron via a matrix element VSA . If the net energy for producing 
the charge separation in the side chains becomes negative, the system will be unstable to the formation 
of electron (Cooper) pairs. This mechanism would work “for achieving superconductivity at liquid 
nitrogen temperatures or perhaps even room temperature”, if not for the phase φ  fluctuations of the 
superconducting order parameter Ψ = Ψ eiφ , that ruin the superconducting long-range order in 1D 
conductors (T.M. Rice, 1964): 



 
Ψ x1( )Ψ x2( )  exp − x1 − x2 mT Ψ0

22⎡⎣ ⎤⎦ x1−x2 →∞
→ 0                  (2.28) 

 
Namely, as it follows from (2.28), the superconducting long-range order is absent in 1D conductor 
since the correlation function of the superconducting order parameter tend to zero in the long distance 
limit. The attempts to synthesize the higher-dimensional conductors with excitonic mechanism of 
superconductivity led (until 1986) to the failure in obtaining the high superconducting Tc . 
Nevertheless, it is very well possible that in the HTS compounds discovered since 1986 this 
mechanism does work in disguise. 
 
 
 


