
LECTURE 3 
The Ginzburg and Landau theory. Surface Energy, type-I and type-II superconductors. 
Quantization of magnetic flux. 
 

The derivation of Ginsburg-Landau equations 

Preamble In the previous lecture we discussed the origin of the inter-electron attraction in 

superconducting metals and derived the binding energy of the Cooper pair, which results from this 

attraction. On the other hand, considering the size of the Cooper pair as infinitesimally small (coarse 

graining) and neglecting the fermionic excitations in the system one can describe some important 

thermodynamic characteristics of the metal in the superconducting state solely on the basis of the study 

of collective behavior of the Cooper pairs condensate. This task was successfully accomplished by 

Ginzburg and Landau (1950). In the contemporary theoretical approach, that does not neglect the 

fermionic excitations, the thermodynamics is most elegantly (though not always rigorously) described 

using the functional integral representation of the partition function of the many-body electronic 

system followed by its mean-field “decoupling” using the Hubbard-Stratonovich identity and formal 

integrating out of the fermionic degrees of freedom. While the final outcome is the Ginzburg-Landau (GL) 

free energy functional (Gor’kov 1959), the important “transient observables” at the half-way of such a 

standard derivation is the Bogoliubov-de Gennes (BdG) equations.  

   The BdG equations describe fermionic quasi-particles in the superconductor in the presence of the two 

fields: the vector potential of the magnetic field, A (where rot A=H) and the field 
 
Ψ r( ) of the 

superconducting Bose-condensate of the Cooper pairs: 
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and 
 
uν
r( ), vν (

r )  are the amplitudes of the quasi-electron and quasi-hole, respectively, in the state with 

the quantum numbers set byν . The physical meaning of the complex field 
 
Ψ r( )  is that it represents 

the wave-function of the center of mass of the Cooper pair in the superconducting Bose-condensate of 

the pairs.  Solution of  BdG equations (3.1) with the homogeneous field: 
 
Ψ r( ) ≡ Δ , gives the spectrum 

of the fermionic excitations in the superconducting state: 

         
 
ε p( ) = Δ 2 + ξ2 p( ); ξ p( ) ≡ vF p − pF ,                (3.3) 

which is sketched with the dashed line in Fig. 8 of the Lecture 2.  It is obvious then, that −2Δ  is the 

binding energy of the Cooper pair derived in Lecture 2, Eq. (2.25). 



Remark1 While the Bogoliubov-de Gennes equations are derived from the microscopic Hamiltonian of 

the electron system in the superconductor, the complex field 
 
Ψ r( ) , the so-called order parameter, 

enters the Ginzburg-Landau free energy functional (1950), which was written before the microscopic 

BCS theory was proposed, based on the general conditions of the guage-invariance of the free energy 

of the electron system, and re-derived by Gor’kov (1959) on the basis of procedure sketched above. 

The GL free energy functional of the superconductor is: 

 

 
Ωs dV = Ωn

0( ) dV + ατ Ψ 2 + 1 / 2( )b Ψ 4 + 4m( )−1 i∇− 2e / c( )A( )Ψ 2
+ H 2 / 8π( ){ }dV∫∫∫ ,  (3.4) 

 

here   = 1, τ ≡ T −Tc Tc , α,b > 0 , and the charge 2e and mass 2m of the Cooper pair is substituted 

instead of the general charge e* and mass m* in the original paper.  Gor'kov (1959) demonstrated that 

the GL theory was exact limit of the microscopic theory under the conditions: a) Tc – T << Tc, b) 

 
δL  ξ0  vF Δ (T = 0)  . The state with p = 0 is the ground state of the Bose gas of the Cooper pairs 

under the homogeneous conditions. Below the Bose-condensation temperature there is a finite number 

of particles (in the thermodynamic limit) having the wave function 
 
 Ψ =  const ⋅exp(ipr /  +  iα ) with 

 

p = 0  for all particles, thus manifesting the coherence of the charged superfluid. It is assumed that the 

coherence is preserved under a weak (long wave) breakdown of the homogeneity related e.g. with 

applied external magnetic field, and that the function 
 
 Ψ(r) ≠ const characterizes all the particles in the 

condensate. Since Ψ 2 = ns 2  is the density of the Cooper pairs in the coherent Bose-condensate, Ψ is 

small near the critical temperature of 2nd order phase transition and the free energy Ωs can be expanded 

as the power series in Ψ 2 .  

     The gradient term in (3.4) describes the “rigidity” of the order parameter with respect to its modulus 

change or a “phase-twist” along the sample.  Zero value, Ψ = 0, should describe the minimum of Ωs 

above Tc, whereas below Tc : Ψ ≠ 0, thus the coefficient ατ must change its sign at the transition point 

Tc, with α > 0. The condition that Ψ = 0 provides the minimum of Ωs at the transition point as well, 

implies that b ≈ b(Tc) > 0. Some important relations between GL coefficients and measurable 

characteristics of the superconductor are derived by variation of the free energy Ωs with respect to the 

order parameter. At first, this is done approximately, by neglecting the size of the London penetration 

depth relative to the dimensions of a bulk sample, hence, assuming Ψ = const  :  

 

                Ψ(ατ + b|Ψ|2) = 0.                      (3.5) 

and: 

Ψ = 0, T > Tc; 

|Ψ|2 = –ατ/b ≡ Ψ0
2, T < Tc.            (3.6) 



Substituting the equilibrium value  in (3.4) under zero magnetic field, we have 

Ωn −Ωs = ατ( )2 / 2b( ) = Hcm
2 / 8π( )             (3.7) 

Here notation Hcm stays for the critical field of the bulk superconductor. The GL theory gives the 

correct temperature dependence for Hcm near Tc. The following microscopic formulas for the 

combination of the coefficients α and b stem from the comparison of (3.7) with the results of the BCS 

microscopic theory: 

 

 
α 2 / b = 4 / 7ξ 3( )⎡⎣ ⎤⎦Tc

2mp0 / 
3 = 4π / 7ξ 3( )⎡⎣ ⎤⎦ν µ( )Tc2 .            (3.8) 

 

In the magnetic field the field inside the superconductor and the order parameter Ψ depend on the 

coordinates. The energy of the magnetic field per unit volume is H2/(8π). Besides, since the order 

parameter Ψ has the meaning of the wave function of the Cooper pairs, its phase changes with the 

vector and scalar potentials. The guage invariance of the free energy under the guage shift of the vector 

potential of magnetic field: A → A + ∇ϕ is fulfilled provided that the “momentum” operator –

iћ∇ enters Ωs in the combination: –iћ∇ – (2e/c)A. This is the logics behind the expression [–iћ∇ – 

(2e/c)A]Ψ in Eq. (3.4).  

In order to find the functions 
 
 Ψ(r) , 


A(r)  that minimize the total free energy Ωs of the 

superconducting sample, one varies Ωs in Eq. (3.4) with respect to Ψ* at fixed 
 


A(r)  and vice versa, 

and equates obtained first variational derivatives to zero. The external magnetic field is taken as the 

boundary condition. The variation with respect to Ψ* at fixed 
 


A(r) leads to the following result: 

 

 
{ατ ΨδΨ *  +  b |Ψ |2 δΨ *  +  (4m)–1[–i


∇ – (2e / c)


A]Ψ[i


∇ –  (2e / c)


A]δΨ*}dV∫  =  0.         (3.9) 

 

After integrating by parts the term containing ∇δΨ∗  and using the Gauss theorem, one rewrites (3.9) in 

the equivalent form: 

 
 
 (i / 4m) ∫ δ Ψ * n ⋅[–i


∇ – (2e / c)


A]ΨdS  +  (4m)–1 ∫ δ Ψ *[–i


∇ – (2e / c)


A]2ΨdV = 0 ,               (3.10) 

here the integration in the first term is over the surface, S, of the superconductor (n is the unit vector 

normal to the surface). 

Since the variation δΨ∗ is arbitrary in the bulk, condition (3.9) is satisfied identically when the 

factor behind δΨ∗  in the integrand entering the integral over the volume is set to zero: 

 

          
 
(4m)–1[–i


∇ – (2e / c)


A]2Ψ +  ατ Ψ +  b |Ψ |2 Ψ =  0                    (3.11) 

 



Besides, considering δΨ∗ as being arbitrary at the surface of the superconductor in the integrand of the 

surface integral in (3.10) leads to the boundary condition: 

                                                    
 

n ⋅[ – i

∇ – (2e/c)


A]Ψ|S  = 0 .                                               (3.12) 

Nothing new is obtained by varying (3.4) in δΨ instead of δΨ∗ , except the resulting equations become 

complex conjugates of the equations (3.11) and (3.12). 

The next step is variation of (3.4) with respect to the vector potential A. First of all, variation of H2 

gives: 2rotArotδA. Using the well known relation of vector calculus: div[ab] = brota – arotb, one 

finds:  

 
2rot

A ⋅ rotδ


A =2δ


A rot rot


A + 2div[δ


A × rot


A] .                                                          (3.13) 

Next, the volume integral of div transforms into the integral over the sample surface, S, where A is 

fixed and hence, δA vanishes. Equating the bulk variation of (3.4) with respect to δA to zero is 

equivalent to the combination of the following two equations:  

                   
 
 ∇×∇×


A =  4π c( ) j                   (3.14) 

                      
 


j = –(ie / 2m)(Ψ *


∇Ψ  –  Ψ


∇Ψ*) – (2e2 / mc) | Ψ |2


A .                                       (3.15) 

Equation (3.14) has the form of the Maxwell equation. Equation (3.15) is essentially the quantum 

mechanical current in the magnetic field, provided that the particle is characterized with the wave 

function Ψ, and the charge 2e and mass 2m, being the attributes of the Cooper pair in the 

superconducting state. The boundary condition fixes the magnetic field at the superconductor's surface. 

 

Remark2  Equation (3.15) differs from the Londons’ theory equation (1.4a) of Lecture 1 by the first 

term. The latter vanishes when the order parameter Ψ is real. The physical meaning of Ψ is the wave 

function of the Bose-condensed Cooper pair, and the wave function acquires phase shift when the 

guage is changed. This phase shift is then taken care of in the expression for the current density  

(3.15), so that the current density remains invariant under the change of the guage field  

A . 

 

 Remark3  Equations (3.11)-(3.15) contain two length-scales, this situation may be alternatively 

described by a single length-scale and a dimensionless scalar of the theory, called the Ginzburg-

Landau prameter. The latter description scheme is achieved by expressing all the lengths in units of the 

London penetration depth, δ, of the magnetic field into the superconductor:  

             δ = 2mc2 4πΨ0
2 2e( )2⎡⎣ ⎤⎦

1/2
; where:   2Ψ0

2 ≡ nS .                                             (3.16) 

here nS is the density of the “superconducting electrons”. Namely, after changing the variables: 

                                    ′Ψ = Ψ Ψ0 , ′H = H Hcm 2( ) ,                      (3.17a) 

, ′A = A Hcm 2δ( ) ,  Hcm = 2 πατ / b1/2         (3.17b) 



the GL equations expressed in the new variables acquire the form (we will not write primes in the new 

variables): 

                          

                                       
 
( – iæ–1


∇ –  


A)2Ψ –  Ψ + |Ψ|2Ψ = 0 ,                           (3.18) 

                                         
 

n ⋅ ( – iæ–1

∇ –  


A)2Ψ|S  = 0 ,                                                                    (3.19) 

                                    
 
rot rot


A = – (i/2æ)(Ψ*


∇Ψ –  Ψ


∇Ψ* ) –  |Ψ|2


A .                                           (3.20) 

 

The single scalar æ that enters equations (3.18) – (3.20) is the Ginsburg-Landau parameter, which then 

equals to: 

   æ = 23/2eHcmδ2/(ћc).                (3.21) 

The physical meaning of the second length scale  ξ=δ æ becomes most transparent from the 

calculation of the order parameter spatial evolution near the boundary between the superconductor and 

the normal metal. This phenomenon was neglected in the London theory, making impossible 

description of the surface energy at the normal-superconducting interface.  

 

The Landau correlation length ξ  

Consider the case when both Ψ and A depend only on one coordinate, say x, and A lies in the {yz} 

plane perpendicular to x-axis. In this geometry the general equations (3.18) – (3.20) simplify:   

     æ–2d2Ψ/dx2 + Ψ(1 – A2) – Ψ3 = 0,           (3.22) 

dΨ/dx|S = 0,                                                                   (3.23) 

        d2A/dx2 – Ψ2A = 0.                                        (3.24) 

Thus, it is easy to see, that the sought for solution Ψ(x) can be taken real, because the imaginary unity, 

i, drops out from the equations above. This , inturn, leads to the fact, that equations (3.22) and (3.24) 

can be solved in quadratures. Namely, one multiplies both (3.22) by dΨ/dx, and (3.24) by dA/dx, and 

then sums the resulting expressions and integrates them over x. Taking into account the boundary 

condition in the bulk of the superconductor: A x→∞( ) = 0,  Ψ x→∞( ) = 1 , one has: 

                  æ–2(dΨ/dx)2 + (dA/dx)2 + Ψ2(1 – A2) – Ψ4/2 = const = 1/2                                    (3.25) 

Suppose that superconducting phase is at x → ∞, and the normal phase is at x → –∞. We take into 

account the conditions H||z, A||y, H = dA/dx. In this case the boundary conditions are:  

x → ∞: Ψ = 1, H = A = 0, dΨ/dx = 0; 

                                  x → –∞: Ψ = 0, H = H0 = , dΨ/dx = 0                                 (3.26) 

 

(Ψ = 1 corresponds to Ψ0, and H0 =  corresponds to Hcm in usual units). Equations (3.22) – 

(3.24), in general, cannot be integrated in analytic form, except in the limiting case æ << 1 considered 



below. This case corresponds to:  ξ >> δ. It is obvious then that magnetic field  

H and vector potential 

 


A  vanish well inside the major part of the superconducting region of the thickness ~ ξ near the 

boundary with the normal metal. Setting accordingly  

A  =  


H  = 0 in (3.25) we obtain the equation: 

 

dΨ/dx = ± (æ/ )(1 – Ψ2) .      (3.27) 

 

The solution of this equation satisfying the boundary condition Ψ = 1 at x → ∞ and decreasing in the 

direction of the boundary (i.e. x→0) is: 

Ψ = th(æx/ ).               (3.28) 

It is necessary to take into account that this solution becomes incorrect in the region near x~0 of width 

δ, where the field  

H  penetrates inside, but this region is small due to adopted above condition:  ξ >> 

δ. Hence, we choose the origin at x = 0, where Ψ ≈ 0 for simplicity.  

Remark4 Result (3.28) is remarkable, since it reveals the meaning of the second length in the GL 

theory introduced above as: 

  ξ=δ æ .          (3.28a)  

Namely, ξ  is the correlation length of the Cooper pairs wave function that describes the Bose-

condensate. Hence, e.g. near the boundary with the normal metal the wave function Ψ changes from its 

bulk value to zero on the length scale ξ . 

     It is important to clarify relation between ξ  and the Cooper pair size: 

      
 
ξ0 = vF πΔ (T = 0K ) ,                                                       (3.28b) 

as well as their relation to the London penetration depth δ . As it follows from Eqs. (3.16), (3.17a,b) 

and (3.21), (3.28a,b) the GL parameter æ has the temperature independent limit near the 

superconducting temperature Tc : æ ∝Hcmδ
2 ∝τδ 2

T→Tc
≈ const . Hence, it is a characteristic of the 

superconducting material, and so is the Cooper pair size too: ξ0 ≈ const . On the other hand, both the 

London penetration depth, δ , and Landau correlation length, ξ , diverge as 
 
1 T −Tc( ) Tc  . In the 

limit  T → 0K  δ  has finite value, that according to the BCS theory, is obtained from Eq. (3.16) by 

substituting the “superconducting density” ns  by the complete electron density ne. Hence, the GL 

parameter æ  can be formally calculated also at  T = 0K , and the result is : æ(0) ≈ 1.2 ÷1.3( )æ(Tc ) .  

Remark5 The Cooper pair size, ξ0 , is temperature independent and characterizes correlation between 

electrons inside a single pair, while the Landau correlation length, ξ , characterizes correlation 

between the centers of mass of the different Cooper pairs in the superconducting Bose-condensate, and 

diverges at Tc .  

Remark6 The BCS theory is valid in the weak coupling limit: 
 
kBTc  εF , and in this limit the binding 

energy is proportional to the density of the Bose-condensate of the Cooper pairs and, therefore, they 



both vanish at Tc : −2Δ T = Tc( )∝Ψ0
2 T = Tc( ) = 0 . In the strong coupling limit, 

 
kBTc  εF , the binding 

energy of the electron pairs is already non-zero at the superconducting (Bose-condensation) 

temperature Tc , and hence, the pairs are called “preformed”. The binding energy of the preformed 

pairs vanishes at a temperature T ∗ > Tc , that is, possibly, the case in the underdoped high-Tc cuprates. 

 

 

The surface energy at the boundary between the normal and the superconducting phases 

 

Remark7 The GL theory, by treating the possible inhomogeneity of the superconducting order 

parameter Ψ(x), provides an explanation of the origin of the surface energy at the boundary between 

the superconducting and normal metal parts of the sample. To see this, we first transform expression 

(3.4) for the free energy using dimensionless variables defined in (3.17): 

∫ΩsdV = ∫Ωn
(0)dV + ∫{–|Ψ|2 + |Ψ|2/2 + |(–i∇/æ – A)Ψ|2 + H2}dV.                         (3.29) 

Then, we integrate by parts the term containing ∇Ψ* as we did earlier. In this case the surface integral 

disappears because of the boundary condition (3.19). The remaining bulk integral is rewritten 

assuming that Ψ satisfies already the equation (3.18). As a result we have 

Ωs dV = Ωn
0( ) dV +

Hcm
2

4π
H 2 −

Ψ 4

2
⎛

⎝
⎜

⎞

⎠
⎟ dV∫∫∫ .                     (3.30) 

Consider the transition from the normal to the superconducting state under the influence of the external 

magnetic field. For the cylindrical geometry the free energy in the given external field can be obtained 

by subtracting of H0B/(4π), where H0 is the external field, and B is the magnetic induction, which is 

equal to the average field in the sample: 

B = V–1∫HdV.                                                            (3.31) 

For the normal phase: . 

Hence, we obtain (in the reduced units): 

                            ΩsH −ΩnH( )dV =
Hcm

2

4π
H − H 0( )2 − Ψ 4

2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dV∫∫ .                                              (3.32) 

Expression (3.32) enables us to find the surface energy between the normal and superconducting 

phases. Suppose that superconducting phase is at x → ∞, and the normal phase is at x → –∞. We take 

into account the conditions H||z, A||y, H = dA/dx. In this case we have the boundary conditions 

x → ∞: Ψ = 1, H = A = 0, dΨ/dx = 0; 

                   x → –∞: Ψ = 0, H = H0 = , dΨ/dx = 0                                 (3.33) 

(Ψ = 1 corresponds to Ψ0, and H0 =  corresponds to Hcm in usual units). We consider the limiting 

case æ << 1 solved above in (3.28). The integrand in (3.32) goes to zero both at x → ∞ and x → –∞. 



Notice, that in the x → ∞  limit the above statement is justified, because: H=0, H0= = Hcm , and 

Ψ = 1. In the x → –∞ limit: H − H 0  = 0,  Ψ =  0 , and the statement above is valid again. Thus, only 

the transition region contributes. The contribution corresponds to the excess energy associated with the 

boundary, i.e. to the σns. Substituting , H = 0 (as long as æ << 1) and Ψ from (3.28) in 

(3.32) we obtain: 

σ ns =
Hcm

2

8π
1−Ψ4( )dx =

0

∞

∫
Hcm

2

8π
1− th4 xæ

2
⎡
⎣⎢

⎤
⎦⎥
dx =

0

∞

∫  

               = Hcm
2

8π
ch2

0

∞

∫
xæ
2
1+ th2 xæ

2
⎡
⎣⎢

⎤
⎦⎥
dx  = 4 /(3æ).                                        (3.34) 

The lower limit of the integral over x is chosen to be at the point where Ψ vanishes and the field  

penetrates, i.e. . x = 0. In the usual units we get: 

                                       σ ns  = (4 δ/3æ)= 
Hcm

2

8π
 ξ4 2 3 .                                                 (3.35) 

Remark7 The calculation of σns for æ ≈ 1 is possible only numerically. In this case σns =0 at æ = 1/ , 

and σns becomes negative at larger æ: 

 

σ ns   − H
2
cm

8π
δ  .           (3.36) 

 

The small values of æ are obtained for the pure superconductors: æ = 0,16 for mercury; æ = 0,15 for 

tin; æ = 0,026 for aluminum. The change of sign of σ ns  when æ passes through 1 is sketched in       

Fig. 10 a,b.  

  
Fig. 10 a.          Fig. 10 b.  

 

Remark8 The origin of the surface energy σ ns  in Fig. 10a and Fig.10b: it is clearly seen that Eqs. 

(3.35) and (3.37) adequately describe the situation in the both cases of  æ1, and æ1. The 

superconductors with the positive surface energy: σ ns > 0, æ<1 2 ,  and with the negative surface 

energy: σ ns < 0, æ>1 2 ,  are called the type-I and type-II superconductors, respectively. As it is clear 

from the discussion above, the surface energy of the boundary between the normal and 



superconducting phases in the equilibrium arises due to the inhomogeneity of the Cooper pairs wave 

function (the superconducting order parameter) Ψ(x). 

 

Influence of impurities on the GL parameter æ 

If there is impurity scattering of the electron with the mean free path l , the diffusion coefficient D~lvF 

and the correlation length 
 
ξ0′  Dξ0 vF ≈ lξ0 , and 

 
′δ  δ ξ0 l , hence: 

                                                                                                                       

 
′æ ≈ ′δ ′ξ δ l ≈ δ ξ0 ξ0 l( ) ≈ æ ξ0 l( ) æ.                      (3.37) 

Therefore, adding impurities may change the sign of the surface energy from e.g. positive to the 

negative, and e.g. turn a superconductor from the I to II type. 

     

Validity and limitations of the GL theory: fluctuations 

To conclude this Lecture, let's estimate the size of the region where GL theory based on the mean-field 

approximation for the thermodynamics of the superconducting phase transition becomes not applicable 

because of the fluctuation effects. The domain of applicability of the GL approximation is defined by 

the condition: 

 
1>> τ >> m2b2Tc

2 / (α2 ) ,               (3.38) 

where, as before, τ = (T – Tc)/Tc. The dimensionless parameter 
 
m2b2Tc

2 / (α2 )  of the GL theory is 

called Levanuk-Ginsburg parameter, it measures the relative strength of the mean-field and 

fluctuations contributions to the specific heat of the superconductor near the second order phase 

transition at Tc (Levanuk 1959, Ginsburg 1960). 

Substituting α/ b2 from Eq. (3.8) for the pure superconductor, we obtain: 

1 >> |τ | >> (Tc/εF)4,                      (3.39) 

here εF ∝ pF
2 /m  is the Fermi energy. Generally (but not for the high-Tc cuprates), Tc/εF doesn't exceed 

10–3. Hence, the relative temperature interval around the Tc , where fluctuations are strong and mean-

field fails, is of the order of 10–12. In the case of dirty superconductors, i.e. when l << ξ, the relative 

interval of the strong fluctuations is: 

                                                             
 
1>> τ >> Tc  /τ ttr( )2 / εF4 .                                   (3.40) 

This requirement is weaker than (3.39), but in practice it excludes the fluctuation region as well, except 

in the new high-Tc superconducting materials discovered since 1986. The physical reason for this 

difference is as follows. In the “common” superconductors the Landau correlation length ξ is several 

orders of magnitude greater than the crystal lattice constant, and hence, the overlap between the 

Cooper pairs is syrong. On the contrary, in some of the high-Tc superconducting materials ξ reaches a 

few lattice constants, and hence, the fluctuations become important. Nevertheless the cases can exist 

when the role of the fluctuations increases noticeably even in the “common” superconductors with big 



ξ, and hence, the fluctuations can lead to the observable effects. This takes place for the kinetic effects 

(e.g. electric conductivity) in the superconducting samples with small dimensions, i.e. thin films or 

filaments. 

The limitations of the Ginsburg and Landau theory from the low temperature side come from the 

demands: |τ| << 1, δ >> ξ0, same as in the London theory. The latter condition fails in the type-I 

superconductors at low enough temperatures. Therefore, both requirements can be expressed via a 

single condition, that is derived using both of the facts: i.e., that ξ0 ∝ ξ(0) ∝ δL(0)/æ, and that δ(T) ∝ 

δL(0)|τ|–1/2 at |τ| << 1. The restriction δ(T) >> ξ0 can be re-written as |τ|1/2 << æ. Thus, the final  

condition for the applicability of the GL theory is: 

 

                                      
 
min(æ2, 1)  >> τ >> m2b2Tc

2 / (α2 )                      (3.41) 

 

The formula (3.41) is applicable for the superconductors with impurities as well.  

 

Magnetic flux quantization 

The phenomenon of the flux quantization can be readily deduced from the GL equations (3.14), (3.15) 

applied in the case of e.g. the hollow cylinder with the walls having thickness more than the London’s 

δ. Consider the expression (3.15) for the superconducting current and express the function Ψ via 

modulus and phase: Ψ = |Ψ|exp(iχ). Then the current acquires the form: 

 

         j = (ћe/m)|Ψ|2[∇χ – (2e/ћc)A].      (3.42) 

 

Next, we divide j by |Ψ|2  and integrate along the closed contour which encircles the hollow and lies 

inside the cylinder wall away from the outer and inner surface layers of thickness δ. Thus, we obtain: 

                                                 .                                     (3.43) 

Since the contour lies inside the tube's wall, the supercurrent j on the contour equals zero. On the other 

hand, the second integral in the right hand side of Eq. (3.43) equals in accord with the Stocks theorem 

to: 

                                                          .                                  (3.44) 

As to the first integral it is not necessarily zero. Since the function Ψ = |Ψ|exp(iχ) is single-valued the 

phase χ , when going around the closed contour, may change only by 2πn, where n is integer. Thus, we 

have: 

.                                                (3.45) 



Combining (3.44) with (3.45) one finds, while equating (3.43) to zero, that flux through the cylinder is 

quantized:  

Φ = nΦ0,         (3.46) 

                                                
 

Φ0  = 1
2
hc e( ) ≡ 1

2
Φ0  = 2,07 ⋅10–7  Oe ⋅cm2             (3.47) 

The quantity Φ0 is called the superconducting flux quantum.  

Remark9  The quantum of the magnetic flux in the superconductor is half the quantum of the magnetic 

flux 
 
Φ0 ascribed to a single electron in a Landau level state in the external magnetic field: see Lecture 

1, Section 2,  Eq. (1.12).  

 

LECTURE 4 
 
Mixed state of type-II superconductors. Abrikosov vortex lattice. Surface superconductivity. 

 

Magnetic properties of the type-II superconductors  

Preamble The famous topological defect of the GL superconducting order parameter Ψ(r) is the 

Abrikosov vortex (1957) predicted and discovered in the type-II superconductors in the external 

magnetic field. Being the macroscopic quantum object, the vortex in the superfluid liquid helium was 

first discovered by Onsager, 1949 and Feynman, 1955. Importantly, the pinning of the Abrikosov 

vortices in the type-II superconductors provides the possibility of use of superconducting devices in 

strong magnetic fields much greater than bulk critical field Hcm. 

 
Fig. 11. Magnetic-force microscopy of Abrikosov vortex lattice. A. Volodin et al., Katholieke 
Universiteit Leuven, Europhys. Lett. 58, 582 (2002). 
 
    The peculiarity of the type-II superconductors is that they are characterized with GL parameter       

æ > 1/  and, hence, possess negative surface energy σns < 0. Allowing for the latter, one concludes 

that the first order phase transition into the normal state at H=Hcm is impossible in the type-II 

superconductor, since condition σns < 0 makes energetically favorable splitting into normal and 

superconducting layers parallel to the magnetic field. But the critical field of the thin superconducting 

layer, e.g. of thickness d,  is proportional to Hcmδ/d , and hence, can considerably exceed Hcm. Thus 

(unlike in the type-I superconductors with σns > 0), in the type-II superconductors it is energetically 



favorable for such layers remain superconducting in the fields higher than Hcm. The analytical solution 

of the GL equations found by Abrikosov (1957) indicated, that in reality, the type-II superconductors 

possess normal-core vortices rather than thin layers in magnetic field, and the vortices prove to be 

energetically stable in the fields that exceed Hc1 < Hcm, called the lower critical field, up to field H c2 

>Hcm , called the upper critical field, at which the normal cores coalesce and superconductivity 

vanishes via the second order phase transition.  

 

 
Fig. 12. Diamagnetic moment M of the type-II superconductor as function of the external magnetic 

field H.  

Analytical solution for æ>>1 
 
Consider the limiting case of the type-II superconductor with GL parameter æ>>1, and hence: δ(T) >> 
ξ, one can solve the GL equations describiun a single Abrikosov vortex analutically.  Consider the 
vortex centered at the origin of the cylindrical coordinate system with coordinates r,θ, z . 
 

 
 
Fig. 13. Polar coordinates in the plane perpendicular to the symmetry axis z of the Abrikosov’s vortex. 
 
Consider region r>> ξ, so that Ψ(r) ≡|Ψ | exp iθ{ } ≈ Ψ0 exp iθ r( ){ } , where Ψ0 is order parameter in the 
bulk. Then, applying curl to both sides of the Eqs. (3.14) and (3.15) of Lecture 3 one finds: 

        

    
 


H +δ 2∇×∇×


H =

Φ0

2π
∇ ×∇θ = Φ0nδ r( ) ẑ; n = 1,...     (4.1) 

 
where the Dirac delta-functionδ r( )  arises when we neglect length scale ~ξ , and ẑ is unit vector along 
the z-axis of the vortex. In the above the integer n on the right hand side of Eq. (4.1) manifests the 
magnetic flux quantization and will be put to 1 from the minimal energy considerations. Then, solution 
of (4.1), vanishing at r→∞ , is : 
 

H =
Φ0

2πδ 2
K0 r δ( ) , ξ << r < ∞      (4.2) 

 



where K0 (x) is the Macdonald function: 
 

 

K0 (x) ≈
ln 2 γ x( )⎡⎣ ⎤⎦; x1

π exp −x( ) 2x; x1

⎧
⎨
⎪

⎩⎪
                (4.3)  

 
where 

 
γ  1.78 is the Euler’s constant. Hence, magnetic field H behaves logarithmically in the region  

 
ξ  r δ , and decreases exponentially (Meissner effect) in the region  r  δ . At the vortex core, in the 
limit x ~1  of K0 (x) , we find from Eq. (4.2): 
 

H (0) ≈ Φ0

2πδ 2
lnæ - 0.18( ) ,     (4.4) 

 
where the last term in the braces is the correction to the approximate result (4.2), which allows for 
|Ψ |→ 0, inside the vortex core: r ≤ ξ . Next, using the Maxwell equation in the polar coordinates:  
 

−
dH
dr

=
4π
c
j        (4.5) 

 
we derive the radial distribution of the supercurrent expressed via the magnetic field from Eq. (4.2): 
 

 

j = −
cΦ0

8π 2δ 2
dK0 r δ( )

dr
≈

cΦ0

8π 2δ 2r
; ξ  r δ

cΦ0

27 2π 3 2δ 2 δr
exp − r δ( ); r  δ

⎧

⎨
⎪
⎪

⎩
⎪
⎪

              (4.6) 

 
 
 
Finally, using the first GL equation (3.18) in the polar coordinates and substituting in it the solution for 
the supercurrent from (4.6) in the region 

 
ξ  r δ  extended to the region 

 
ξ0  r δ , we find 

equation for the order parameter modulus |Ψ |  of the Cooper pairs condensate expressed in the 
dimensionless form as |Ψ |≡ Ψ0 f r( ) :  
 

æδ( )−2 r−1
d
dr

r
df
dr

⎛
⎝⎜

⎞
⎠⎟
− r−2 f⎡

⎣⎢
⎤
⎦⎥
= f 3 − f       (4.7) 

 
Solution of Eq. (4.7) is : 

 

f (r) ≈
1− ξ r( )2 ; ξ  r δ
const ⋅ r ξ ; ξ0  r  ξ

⎧
⎨
⎪

⎩⎪
                                                     (4.8) 

 
Actually, solution in the region 

 
ξ0  r  ξ  obtained in (4.8) has used somewhat “illegally” the solution 

for the supercurrent from Eq. (4.6) obtained for the interval 
 
ξ  r δ . Nevertheless, obtained result 

proves to be qualitatively correct, as it fits smoothly with the solution in the region 
 
ξ  r δ , 

provided the constant is chosen properly, and, importantly, gives finite kinetic energy of the 
supercurrents in the vortex core, as we’ll see below. 
 
Remark1 Summarizing the results derived for the radial distributions of the magnetic field, order 
parameter modulus and supercurrent in the Abrikosov vertex, we arrive at the following “anatomic” 
picture of this object, see Fig. 14. 
 



 
Fig. 14. Morphology of the Abrikosov vortex in the type-II superconductor: the radial distributions of 
the thermodynamic parameters. 
 

Free energy of the Abrikosov vortex: the lower and the upper critical fields Hc1 and Hc2 
 
     Using now Abrikosov vortex characteristics (4.2)-(4.8) we are able to consider the thermodynamics 
of the origination of a single vortex in the Meissner state. The free energy of a single vortex line 
consists of the energy associated with the magnetic field (4.2) that penetrates in the superconductor 
with the vortex, and of the kinetic energy of the supercurrents (4.6): 
 

 

Fv =
1
8π


H 2∫ dV +

δ 2

8π
∇ ×

H( )∫

2
dV       (4.9) 

 
In this expression the second integral logarithmically diverges in the interval 

 
ξ  r δ , thus 

producing the “big logarithm” – the fame of XX-th century theoretical physics, while the first integral  

Gives relatively small contribution: 

 

ε0 = Fv L ≈
Φ0

4πδ
⎛
⎝⎜

⎞
⎠⎟
2

ln δ
ξ
≡

Φ0

4πδ
⎛
⎝⎜

⎞
⎠⎟
2

lnæ               (4.10) 

 

where  is the energy per unit length of the vortex line. The second integral in (4.9) producing the  

dominant contribution (4.10) can be rewritten equivalently as: 

 

δ 2

8π
∇ ×

H( )∫

2
dV ≡

ρs
v2s
2∫ dV; ρs

vs ≡
m
e

j                  (4.11) 

with given in (4.6). Thus, (4.10) is indeed, the kinetic energy of the Cooper pairs providing the 

suprcurrent in the vortex body. Despite the superfluid velocity 
 
| vs |  still diverges ∝1 r ,when r→ 0 , 

the density of Cooper pairs vanishes in the vortex core even faster, i.e. in accord with (4.8):  

    
 
ρsvs

2 ~ 2m Ψ0 f (r)( )2 vs ∝ r2 ⋅ r−1 = r; ξ0  r  ξ                        (4.12) 

and hence, the density of the kinetic energy vanishes as well.  

 

Remark2 Relation (4.10) explains why Abrikosov’s vortices carry single quantum of magnetic flux 

Φ0 : in case a single vortex would carry flux nΦ0  its linear density of energy would be ε0n2 , which is 

greater than the energy nε0 of  n vortices, each carrying fluxΦ0 . 



 

The lower critical field Hc1 

Besides the increase in the free energy (per unit of length), ε0 , see Eq. (4.10),  the vortex also brings a 

decrease of the free energy FM due to the paramagnetic effect of the Abrikosov vortex in the external 

magnetic field H 0 : 

FM L = −H 0M L = −H 0
1
2c

jsr[ ]
ξ

δ

∫ 2πrdr ≈ −H 0
1
2c

cΦ0

8π 2δ 2
2πr dr

ξ

δ

∫ = −
H 0Φ0

16π
         (4.13) 

 

Hence, the total balance of Fv + FM  becomes negative when the external field H 0 exceeds the lower 

critical field Hc1 , at which Fv + FM = 0 : 

   

             Hc1 =
Φ0

πδ 2
lnæ ≈ Hcm

lnæ
æ

.             (4.14) 

  
 
            The upper critical field Hc2 (an estimate) 

      

In the phase diagram the boundary between the normal and superconducting state of the type-II 

superconductor defines the upper critical field Hc2 (Abrikosov, 1957).  

The order of magnitude of the field Hc2 can be estimated qualitatively. The Cooper pairs 

coherence in the superfluid Bose-condensate breaks down as a consequence of their rotation in the 

magnetic field. Obviously, the Cooper pair can sustain coherence in a field, at which the Larmor radius 

is larger than Landau correlation length, ξ, i.e. : 

rL ∝ cp⊥/(eH) > ξ .                                                      (4.15) 

Here p⊥ is the component of the pair center of mass momentum in the plane perpendicular to the 

magnetic field. Hence p⊥ ≤ p ∝ mvs, where vs is the superfluid velocity. It follows from the Landau 

criterion that vs < Δ/p⊥, else the superfluidity breaks down. Allowing for the Heisenberg uncertainty of 

the center of mass motion: p⊥ < ћ/ξ, we obtain the chain of estimates: 

                                              ξ < cp⊥/(eH) < cћ/(ξeH),                                                            (4.16) 

or 

 
H < c/(eξ2 ) Φ0 ξ2

  Hc2 .               (4.17) 

The field Hc2 can be expressed in terms of Hcm: 

 
Hc2 Φ0 ξ2  æΦ0 ξδ( )  æHcm .                               (4.18) 

So far we considered the pure superconductor. If it contains the impurities and l << ξ , then ξ should be 

substituted by ξ′ ∝ (ξl)1/2 in the formula (4.18). In this case we obtain 

Hc2 ∝  Hcmδ/l ∝ Hcmæ.        (4.19) 



Therefore the field Hc2 has the order of magnitude of Hcmæ in both cases, but the estimate (4.19) is 

important. It follows from (4.19) that one can increase considerably Hc2 , and hence, the region of 

fields sustainable for the superconducting wire may be increased by means of raising the impurity 

concentration and thus decreasing the mean free path (l ∝ ni
–1). The mean free path of order of 

interatomic distances would lead to the upper critical fields, that taking into account the ordinary 

values Hcm ∝ 102 – 103 Oe, and δ ∝ 10–5 – 10–3 cm, would be of order of:  

                                           Hc2 < 103(10–5/10–8) Oe ∝ 106 Oe=102T                                          (4.20) 

These fields are of order of the so-called Klogston paramagnetic limit, i.e. field that orients both  

spins in the Cooper pair parallel to the magnetic field: 

µBHcp ≈ 2Δ ,                                                     (4.21) 

where µB  is the Bohr magneton. Taking maximal Tc about 100 K, we have that Hcp and Hc2  are of the 

same order of magnitude of 100 tesla. 

Quantitative theory of the upper critical field Hc2  

Remark3 The superconducting transition at Hc2 is second order, hence, at H = Hc2  the stationary 

infinitesimally  small superconducting nuclei can exist. Hence, the GL equation (3.11) (or 

dimensionless Eq. (3.18)) can be linearized with respect to the order parameter Ψ(r) . Another 

important consequence is that magnetic field can be considered as uniform in the sample at Hc2 and 

coincident with the external field in the absence of the superconductor. 

The above observations lead to a conclusion, that farther simplification is possible, namely, the 

solution of the GL equations could be sought for in the form of a function of the single argument (one-

dimensional solution): 

              æ–2d 2Ψ / dx2  +  Ψ(1 –  A2 )  =  0 ,                                (4.22) 

d 2A / dx2  =  0 .                          (4.23) 

It follows from (4.23) that A = H0x (we choose: 

H || ẑ , and

 


A || ŷ ), the origin of the coordinate system 

can be taken anywhere inside the superconductor. Substituting this A(x) in (4.22) we have: 

 

–d 2Ψ / dx2  +  æ2x2Ψ =  æ2Ψ.           (4.24) 

We have to find solution that remains finite at x → ± ∞. Equation (4.24) has the form of the 

Schrödinger stationary equation for a harmonic oscillator: 

–(ћ2/2m)d2Ψ/dx2 + (k/2)x2Ψ = εΨ.           (4.25) 

As it is well known from the quantum mechanics the latter equation has vanishing at x → ± ∞ solution, 

provided that: 

                                                                 ε = ћω(n + 1/2),                 (4.26) 

where ω = (k/m)1/2. Comparing (4.24) with (4.25) we obtain: ћω =  2æH0 , and hence, the sought for 

solution exists when æ2 = 2æH0(n + 1/2), or:  



                                                                  H0 = æ/(2n + 1).                                      (4.27) 

Thus, the maximal field, which provides nonvanishing solution Ψ ≠ 0 corresponds to n = 0 and equals: 

        Hc2 = æ,                                                           (4.28) 

or in the dimensionful units: 

Hc2 = æ Hcm.            (4.29) 

This result agrees with the estimate (4.18). Note that for æ > 1/  the condition Hc2 > Hcm is satisfied. 

 

LECTURE 5 
 
Tunnel junctions. Stationary and non-stationary Josephson effect.  International standard of 
volt.  SQUID. 
 
Preamble  Quantum particle can tunnel through the potential barrier while possessing the energy 

which is below the barrier height. The current-voltage (I-V) characteristic of the tunnel junctionof two 

conductors is widely used as an indicator of electron correlations reflected in the electron density of 

states (DOS): information about electronic DOS provide curves of dI/dV vs V. As well, the electron-

lattice inelastic scattering in solids can be also investigated: information about bosonic modes coupled 

to electronic system provide curves of d2I/dV2 vs V. The research using scanning tunneling microscopy 

(STM) is based on the tunnel junction theory. Besides, the superconducting tunnel junction introduced 

by Giaever stimulated theoretical prediction of the Josephson effect. 

 

Tunnel junction: single-particle tunneling current 

 

The tunneling probability (transmission coefficient) through the barrier in the quasi-classical 

approximation is given by the exponential factor: 

 

W ∝ exp −
2

Im px( )dx∫⎡

⎣⎢
⎤
⎦⎥
= exp −

2 2m( )1/2


U x( )− E⎡⎣ ⎤⎦
1/2 dx

x1

x2

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.      (5.1) 

The integration is performed over the region where U(x) > E , see Fig. 15. The probability of the 

tunneling through the barrier decreases with increase of both its height (Umax – E) and width (x2 –x1), 

as well as the mass of the particle, m. 

 



 
Fig. 15. Schematic drawing of the potential barrier in the problem of quantum tunnelling. 

 

Quantitative estimates suggest that in the common experimental setup, tunneling is plausible event for  

electrons, and if the barrier is the dielectric layer, its thickness should be no more than several inter-

atomic distances. The most simple is to use the natural oxide layer arising on the surface of various 

metals such as aluminum, tin, lead, etc. By evaporating either another or the same metal onto the 

surface of a given metal one obtains the so called tunnel junction (Giaever, 1960), this simple device is 

a very useful experimental tool for investigation of the superconductivity. 

 

Tunnel junction between two metals in the normal state (N-N) 

The chemical potentials of the metals connected via the tunnel junction (contact) are the same in the 

equilibrium, Fig. 16 a. When a potential difference is applied to the contact, all this potential difference 

falls only over the dielectric layer due to the large resistance of the latter. Therefore, the chemical 

potentials of both metals are at different levels (the levels difference is eV, Fig. 16 b). Considering the 

height of the barrier to be much greater than eV, we conclude that the number of electrons which are 

able to enter the free states in the other metal is proportional to eV, and all of these electrons pass 

through the barrier with the same probability. Therefore the current is proportional to the potential 

difference V , that agrees with the Ohm's law (Fig. 17, curve 1).  

 

  
Fig. 16 a. The N-N tunnel junction  Fig. 16 b. The N-N tunnel junction under the   
                                                                                         potential difference V.   

  
 



 
Fig. 17. I-V characteristics of the N-N, N-S, and S-S tunnel junctions. 

 

The quasi-particle current density through the tunnel junction can be expressed as follows: 

 

J(V) ∝ ∫Wν1(ε – eV)ν2(ε){n1(ε – eV)[1 – n2(ε)] – n2(ε)[1 – n1(ε – eV)]} = 

= ∫Wν1(ε – eV)ν2(ε)[n1(ε – eV) – n2(ε)]dε = 

                                      = Wν1nν2n∫|ε – eV|[(ε – eV)2 – Δ2]–1/2[n1(ε – eV) – n2(ε)]dε.        (5.2) 

Here ν1(ε) and ν2(ε) are the densities of quasi-particle states on the left (1) and right (2) sides of 

the tunnel junction, and the energy is counted from the Fermi-level; n(ε) is the Fermi-Dirac 

distribution of the quasi-particles, W is transmission coefficient through the potential barrier.  

Remark1  Eq. (5.2) signifies that the current flowing from one metal to another must be proportional to 

the tunneling probability, the number of the occupied states in the first metal, the number of the vacant 

states in the second metal and the product of the densities of states in the both metals. 

 

 

 Tunnel junction between normal metal and superconductor (N-S) 

Now let one metal to be in the normal state, and another one - in the superconducting state. 

Consider zero temperature case: T = 0. In the equilibrium, at zero potential difference V=0, the 

chemical potentials are equal: µ1 = µ2 , Fig. 18 a. 

           
Fig. 18 a. S-N junction at V=0.            Fig. 18 b. S-N junction at V ≠ 0 . 

 

At the same time the electrons in the superconductor are bound in the Cooper pairs, the latter are in the 

Bose condensate. Therefore, the chemical potential µ1  is just the chemical potential of the pair, see 

Fig. 18 a. Hence, fermionic quasi-particles may eneter the superconductor only when applied to the 



junction potential difference eV exceeds the binding energy per electron: eV > Δ , Fig. 18 b and Fig. 17 

(curve 2). This means that to transmit an electron from the normal metal to the superconductor it is 

necessary supply it with the additional energy that exceeds Cooper pair binding energy per electron, Δ .  

The same is true for a transition of the electron from the superconductor to the normal metal. First, one 

has to break the Cooper pair, i.e. spend the amount of energy Δ per one electron, and after that the 

electron can pass to the normal metal. 

Remark2 According to Eq. (5.1), and allowing for the facts that: 1) the Cooper pair has the double 

charge 2e, which increases U(x), and 2) it also has double mass, 2m; one concludes that, comparing 

with the single electron, the tunneling probability of the Cooper pair as a whole is vanishingly small, 

unless the quasiparticle current is blocked by the insufficient potential difference at low temperatures. 

This conclusion is not true for the weak links exhibiting the Josephson effect, which is considered 

farther. 

  

I-V characteristic of the N-S tunnel junction 

The voltage threshold for the quasi-particle current through the N-S tunnel junction, see Fig. 17 and 

Fig. 18 b, is:  

           eV = Δ.          (5.3) 

Here it is assumed that the potential difference is applied as is shown on Fig. 18 b. The total current 

flowing from the superconductor to the normal metal is the difference between the currents flowing in 

the forward and backward directions. The zero of the energy is counted from the Fermi-level of the 

superconductor µ1 . The I-V characteristic is the dependence J(V). To integrate over the energy in (5.2) 

one has to know the density of states. The density of states in the normal metal is equal to: 

ν 2 ≡ νn = p0m/(π2ћ3) = const                    (5.4)   
   

The density of the quasi-particle states in the superconductor is:  
 

      ν1 ≡ ν s =
νn | ε | / ε

2 − Δ2( )1/2 ; | ε | > Δ

0; | ε | < Δ

⎧
⎨
⎪

⎩⎪
                    (5.5) 

Here ε > 0 corresponds to the quasi-particles created in the superconductor, e.g. due to the incoming 

electrons from the normal metal side, and ε < 0 correspond to the fermionic quasi-particles created by 

Cooper pair-breaking, that may then tunnel into the metal. The significant fact is that νs(|ε| → Δ) → ∞, 

though this divergence is integrable, i.e. the total number of states in the small energy interval near |ε| 

= Δ is small . 

Substituting (5.4) and (5.5) into (5.2) and assuming, for simplicity, zero temperature limit T=0, we 

may integrate, allowing for the simple conditions: n(ε) = 0 at ε > 0 and n(ε) = 1 at ε < 0. Therefore, the 

difference n1 – n2 equals unity in the interval 0 < ε < eV and zero outside this interval. The density of 



states entering the integrand is non-zero when |ε – eV| > Δ, i.e. in this case  ε < eV – Δ. Hence, the 

current is indeed absent when eV < Δ. When eV > Δ one finds: 

                    j ∝Wν1nν2n eV − ε( ) eV − ε( )2 − Δ2⎡⎣ ⎤⎦
−1/2

dε =Wν1nν2n eV( )2 − Δ2⎡⎣ ⎤⎦
1/2

0

eV−Δ

∫ .          (5.6) 

The difference between the normal metal and the superconductor must disappear when eV >> Δ, i.e. 

the current must be the same as it is in the contact of two normal metals. Thus we have  

j/jn = [(eV)2 – Δ2]1/2/(eV).                                          (5.7) 

The result is shown on Fig. 17 (the curve 2). 

 

I-V characteristic of the S-S tunnel junction 

 

Consider now the tunnel contact between the two superconductors, that for simplicity we assume 

to be the same on the both sides of the tunnel junction. We find analogously to the derivation path 

from Eq. (5.2) to Eq. (5.6) :  

 

J(V )∝Wνn
2 eV − ε( ) eV − ε( )2 − Δ2⎡⎣ ⎤⎦

−1/2
ε ε 2 − Δ2( )−1/2 dε

Δ

eV−Δ

∫                            (5.8) 

 

Now the quasi-particle current through the junction is different from zero provided that eV >2Δ. 

Calculation in  (5.8) gives the following answer: 

 

J / Jn = E eV( )2 − 2Δ( )2⎡⎣ ⎤⎦
1/2

eV( )− 2 Δ eV( )2 K eV( )2 − 2Δ( )2⎡⎣ ⎤⎦
1/2

eV( )            (5.9) 

 

where K and E are complete elliptic integrals of the first and second kind respectively: 

 

K(k)= 1− k2 sin2 φ( )−1 2
0

π 2

∫ dφ,

E(k)= 1− k2 sin2 φ( )1 2
0

π 2

∫ dφ.
                        (5.10) 

 

Again, in the limit eV >> Δ, J / Jn →1 . At eV = 2Δ : 

J Jn = π 4 ,                                (5.11) 

and J=0 when eV < 2Δ . 

Finally, we mention that besides the fermionic quasi-particle current, that exists due to tunneling from 

one metal to another and that vanishes at zero bias voltage, (single-particle current), there is also 

superconducting current through the contact. In the next section we study this phenomenon.  



 

The Josephson effect 

Remark3  So far we considered tunneling of the fermionic excitations between both sides of the contact 

neglecting correlations between electrons (holes) in the Cooper pairs. In fact the electron transition 

through the barrier is itself the result of the electron wave function propagation over the contact and, 

therefore, the consistent theory should consider the coherent state forming in the whole electronic 

system. Hence, the Cooper pairs formed of electrons belonging to different sides of the junction may 

carry supercurrent with the transmission coefficient of the order of the one assigned to the single-

particle tunneling, but at zero voltage across the junction. This effect was first proposed by Josephson 

in 1962 and since that is called the Josephson effect.   

To calculate the Josephson supercurrent we use the modified boundary conditions at the junction 

surface S, that differ from Eq. (3.12) by the non-vanishing right hand side allowing for extended over 

the junction Cooper pairs: 

                 
 

n ⋅[ – i

∇ – (2e/c)


A]Ψ

S1
 = Ψ

λ S2

; n ⋅[ – i

∇ – (2e/c)


A]Ψ

S2
 = Ψ

λ S1

   (5.12) 

Specify the coordinate system, as is shown in Fig. 19, and choose the magnetic field 
 


H = 0,0,H{ }  

along the z-axis (parallel to the junction plane) and the vector potential along the x-axis 

 


A = Ax y( ), 0,0{ } . Then, rewrite the boundary conditions (with 1 λ  being the electron (hole) 

 
Fig. 19. A sketch of the Josephson junction realized via “weak link” between the superconducting 
sides 1 and 2. 
 
 
transmission coefficient between the sides 1 and 2 ), and the supercurrent equation (3.15) in the 
following form: 
 

 

∂Ψ1

∂x
 – 2ie
c

AxΨ1  = Ψ2

λ
;  ∂Ψ2

∂x
 – 2ie
c

AxΨ2  = Ψ1

λ
;            (5.13) 

 

j = – ie
2m

Ψ1 *
∂Ψ1

∂x
 –  Ψ1

∂Ψ1 *
∂x

⎛
⎝⎜

⎞
⎠⎟

– 2e2

mc
| Ψ1 |2 Ax .              (5.14) 



Then, express derivatives  of Ψ1  and Ψ *1  in algebraic form via Ψ2  from the boundary conditions in 

Eq. (5.13), and then substitute those into Eq. (5.14). This “pathway” terminates in expression for the 

stationary Josephson current:  

 

jJ = −
ie
2mλ

Ψ *1 Ψ2 −Ψ1Ψ *2( ) = e
mλ

Ψ 2 sin θ2 −θ1( ) ,     (5.15) 

where in the last equality in the right hand side of (5.15) it is assumed that the order parameters Ψ1  

and Ψ2  differ only by the phase angles:Ψ1,2 = Ψ exp iθ1,2{ } . 

Remark4 It is natural, that since the Josephson current depends on the phase (difference) of the order 

parameter, it should be periodic function of this difference, since the phase itself is defined modulo 

2π . The amplitude of the Josephson current, though finite at zero voltage bias V=0, vanishes at Tc 

linear with Tc-T, since it is proportional to the density of the superconducting Bose-condensate, Ψ 2 . 

 

Remark5  The contacts with resistance less than 0,1 Ohm⋅cm2 are commonly used to observe 

experimentally the Josephson effect. In practice, one can make junctions with even smaller resistances 

of 10–4 Ohm⋅cm2. The corresponding critical current density can reach 102 ÷103  A/cm2. Comparing 

this value with the current density of 108 A/cm2 destroying the Cooper pairs in the massive 

superconductor we see that maximal Josephson current is relatively small. Thus, the Josephson effect 

and the associated phenomena are called sometimes the “weak superconductivity”. 
 

When a finite bias voltage V is applied to the junction, the wave functions Ψ1,2  acquire different time-

dependent factors, e.g.:  

 
Ψ1 ∝ exp −i2eV1t / { }; Ψ2 ∝ exp −i2eV2t / { }; V1 −V2 =V    (5.16) 

where the charge of the Cooper pair is 2e. Substituting (5.16) into (5.15) (keeping the constant part of 

the difference of phases intact) one finds expression for the non-stationary Josephson current: 

 

 

jJ = −
ie
2mλ

Ψ *1 Ψ2 −Ψ1Ψ *2( ) = e
mλ

Ψ 2 sin θ2 −θ1 +
2eVt


⎛
⎝⎜

⎞
⎠⎟
≡ jc sin Δ21 +

2eVt


⎛
⎝⎜

⎞
⎠⎟

,   (5.17) 

where jc  is the amplitude of the Josephson current, and the phase difference without the external 

magnetic field is denoted with Δ21 . 

 
International standard of volt.  
 

Since 1990 the volt has been maintained internationally for practical measurement using the non-

stationary Josephson effect, where a conventional value is used for the Josephson constant, KJ, fixed 

by the 18th General Conference on Weights and Measures as: 

 

KJ-90 = 2e/h = 0.4835979 GHz/µV.              (5.18) 



 

This is typically used with an array of several thousand or tens of thousands of junctions, excited by 

microwave signals between 10 and 80 GHz (in the several array designs). 

  

The Josephson effect in magnetic field 

Finally, we introduce the external magnetic field applied e.g. along the z-axis and, hence, the 

corresponding vector potential aligned along the x-axis, the latter being perpendicular to the plane of 

the junction {e,z}. Allowing for fulfillment of the guage invariance condition the phase of the order 

parameter Ψ  and the vector potential  

A should enter in the combination: 

 


∇θ  –  (2e/c)


A                                                                                (5.19) 

 

 This allows to integrate the above combination over x from the point 1 in the depth of the left 

superconductor till the point 2 in the depth of the right one, see Fig. 19, and obtain 

                                 
 

Δ12 = θ2 −θ1 −
2e
c

Ax dx
1

2

∫ ≈
2e
c
Hzy2δ; jJ = jc sin

2e
c
Hzy2δ

⎛
⎝⎜

⎞
⎠⎟

,                      (5.20) 

where we neglect the width of the junction in comparison with the London penetration depth of 

magnetic field, while the latter eneters in the region of the junction parallel to {y,z} plane, along the z-

axis. Substituting the result in (5.19) into (5.17) one finds that the Josephson current in the external 

magnetic field acquires the coordinate dependence along the y-axis perpendicular to the applied 

magnetic field H. Then, averaging the expression (5.20) for the Josephson current over tha junction's 

{y,z} plane we find: 

 

j = L−1 j(y)dy =
0

L

∫ jc
c

2eHL2δ
− cos −Δ21 +

2e
c
HzL2δ

⎡
⎣⎢

⎤
⎦⎥
+ cos Δ21( )⎧

⎨
⎩

⎫
⎬
⎭

            (5.21) 

where HL2δ = Φ  is magnetic flux through the junction. Using this equality we rewrite Eq. (5.21) in the 

final form, that represents an expression for the  Josephson current in the external magnetic field 

parallel to the plane of the tunnel junction: 

 

j = jc
Φ0

πΦ
sin πΦ

Φ0

⎛
⎝⎜

⎞
⎠⎟
sin −Δ21 +

πΦ
Φ0

⎛
⎝⎜

⎞
⎠⎟

            (5.22) 

where  Φ0  is the quantum of magnetic flux in Landau-Ginzburg theory, see Fig. 20. 

 
Fig. 20. Dependence of the Josephson current on the external magnetic field. 



Thus, choosing the bare phase difference Δ21 such, that the second sine-factor in (5.22) becomes ±1 , we 

conclude that the amplitude of the Josephson current oscillates according to the following expression: 

jmax = jc
Φ0

πΦ
sin πΦ

Φ0

⎛
⎝⎜

⎞
⎠⎟

      (5.23)  

The above result in Eq. (5.23) provides the possibility to measure the London penetration depth 

entering the definition of the magnetic flux: HL2δ = Φ . 

As the Josephson current is very weak we can omit the magnetic field, which is created by this current.  

 

 

SQUID 

One of the important practical applications of the Josephson effect is the superconducting quantum 

interference device (SQUID), used as, e.g. a quantum magnetometer with precision reaching 10-10 Oe. 

The schematic drawing of  SQUID in Fig. 21 explains the basic physical principle lying behind this 

device: the interference between the Josephson currents through the parallel Josephson junctions in the 

external magnetic field H, that produces the magnetic fluxΦ  through the hollow inside the contour C 

drawn within the bulk of the superconducting circuit. The total supercurrent I flowing through the 

device equals the sum of the supercurrents flowing in the two parallel legs:  

 
Fig. 21. Schematic drawing of the SQUID. 

 

I = Ic1 sinθ1 + Ic2 sinθ2                (5.24) 

Here θ1 and θ2 are the jumps of the phase across the corresponding Josephson junctions (JJ). Assuming 

that external magnetic field is directed perpendicular to the plane of the SQUID, and choosing the 

corresponding vector potential A in the plane perpendicular to the field, one can write the following 

induced extra phase gradient of the superconducting order parameter: 

 



 


∇θ =

2e
c

A       (5.25) 

Hence, the total phase-shift along the contour C drawn in the bulk of the superconducting circuit, Fig. 

21, equals the multiple of the angle period 2π , necessary for well defined order parameter Ψ as 

function of the coordinate: 

 

θ1 −θ2 +
2e
c

Φ ≡θ1 −θ2 + 2π
Φ
Φ0

= 2πn .            (5.26) 

Using Eq. (5.26) one may accordingly assign the effective phase shifts to the angles entering the 

supercurrents through the JJ: 

θ1 = θ −π Φ
Φ0

+ 2πn, θ1 = θ +π Φ
Φ0

.      (5.27) 

Then, the total current through the SQUID equals: 

 

I = Ic1 sin θ −π Φ
Φ0

⎛
⎝⎜

⎞
⎠⎟
+ Ic2 sin θ +π Φ

Φ0

⎛
⎝⎜

⎞
⎠⎟

     (5.28) 

Hence, the external magnetic field shifts the phases of the enterfering JJ. Assuming for simplicity that 

both  JJ are identical, Ic1 = Ic2 = Ic , one finds: 

 

     
 

I = 2Ic cos π Φ
Φ0

⎛
⎝⎜

⎞
⎠⎟
⋅sinθ ≡ Ic sinθ                (5.29) 

Hence, we see that the effective critical current of the interferometer 
 
Ic oscillates with the flux of the 

external magnetic field: the total supercurrent through the SQUID turns into zero when:  

Φ = n +1 2( )Φ0 .     (5.30) 

Since the flux quantum is small: Φ0 = 2 ⋅10
−7Oe ⋅cm2 , with the SQUID one can achieve measurement 

accuracy of the order of 10-10 Oe. In reality the measurement of the gradient of the external magnetic 

field by the SQUID gives the most accurate results weakly dependent on the noise. 

  

 


