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Abstract— We consider slowly evolving, i.e. ADIABATIC,
operational regime within a transmission level (continental
scale) natural gas pipeline system. This allows us to introduce
a set of nodal equations of reduced complexity describing
gas transients in injection/consumption UNBALANCED (so-
called line-pack) cases. We discuss, in details, construction
of the UNBALANCED ADIABATIC (UA) approximation on
the basic example of a single pipe. The UA approximation
is expected to play a significant “model reduction” role in
solving control, optimization and planning problems relevant
for flawless functioning of modern natural gas networks.

I. INTRODUCTION

Natural gas transmission pipes extend over continents.

It is important to plan, build and operate flow of gas

through the system, which is injected at the gas terminals

or reservoirs, compressed at the compressor stations and

withdrawn/consumed by industrial and private customers.

Coordinating seamless work of all the components of the

system poses a significant challenge. Modeling and simu-

lations of the gas flow through the system is critical for

all problems in the system design, optimization and con-

trol. In the normal operational regime considered in this

manuscript (no fast/abrupt changes of an emergency type)

starting point for modeling gas flow is a system of spatio-

temporal and nonlinear PDEs, two per-pipe describing mass

and momentum transfer, supplemented by boundary condi-

tions at the junctions and compressors, and thermodynamic

relations describing pressure and flow transformations at

various nodal elements of the systems [1]–[5]. For majority

of operational problems (as well as many planning problems)

this large system of equations need to be solved in the

most general dynamic case [6]–[10], where consumption and

production of gas are not balanced. This unbalanced regime

is characterized by the so-called line-pack, thus emphasizing

that gas can accumulate or be withdrawn in different parts of

the systems globally unbalanced thus leading to significant

pressure transients.

Solving the system of nonlinear Partial Differential Equa-

tions (PDEs) in direct simulations is prohibitively expensive.

To overcome the challenge, researchers have focused on

looking for approximate but efficient computational tech-

niques, see e.g. [2], [3], [11]–[15]. In particular, of a

great interest are the so-called lump-element computational

methods [10], [16]–[21] which allow to replace the PDE

model by an Ordinary Differential Equations (ODEs) model,

where the ODEs are describing nonlinear dynamics of

relevant parameters (pressure, mass flow, and temperature)

only at a limited number of spatial positions along the

system. Moreover, an ultimate goal in this PDE-to-ODE

reduction consists in keeping in the description only critical

nodes, such as end-nodes of the pipes, compressor locations,

branching points and injection/consumption locations [10],

[16]–[18]. Two flavors of the the lump-element methods

were reported in the literature. First, it was suggested to

approximate spatial derivatives through a properly cho-

sen discrete approximation, e.g. resembling finite-element

schemes of different types [16], [18]–[21]. This approach

would normally be validated empirically through comparison

with high resolution methods (which are less efficient, but

more accurate). On the contrary, this manuscript focuses on

developing lump-element models of the second, so-called

adiabatic, type [10], [17]. The adiabatic models are exact

in the asymptotic regimes where characteristic time scale of

the input parameters (e.g. injection/consumption) becomes

infinite. (Some other restrictions on an adiabatic method

validity may apply as well – see below.) When the input time

scale is large but finite, the adiabatic methods provide leading

results with corrections, which can be computed (at least in

principle) systematically. (For the method to work well the

corrections should be sufficiently small with respect to the

small adiabatic parameter stated as the ratio of the largest

natural time scale of the system to the exogenous time scale

of the slowly changing input.) First adiabatic approximation

was suggested in [10], where it was noticed that allowing

parameters of a stationary flow solution to evolve slowly

allows to represent at least some part of the actual solu-

tion temporal dynamics. The approximation was improved

in [17] where it was shown how to make the adiabatic

description self-consistent. Systematic (as exact in the limit

when input/output characteristics freeze) and self-consistent

approximation was derived for a gas network in [17]. It was

shown in [17] how the approximation results in the reduced

description relating dynamics of pressures and mass flows to

the exogenously fixed injections/consumption or pressures at

the critical nodes only. However, one significant handicap of

the adiabatic approximation of [17] consisted in the fact that

the approximation also required, in addition to the slowness

of the inputs, that the transients remain sufficiently close

to possibly different but still balanced solutions. Smallness
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of the deviations explored in [17] was critically linked to

existence of a class of stationary, i.e. time independent and

thus balanced, solutions of the gas flow equations which

are analytically tractable. However, when deviations from

the balance situation persists for sufficiently long time the

Balanced Adiabatic (BA) approximation of [17] does not

apply.

In this manuscript we address this caveat of the BA

approximation and show how to generalize it and thus

construct Unbalanced Adiabatic (UA) solution which is not

limited to the balanced case. Our approach consists of the

following two steps:

• Construction of a novel family of exact unbalanced,

and thus non-stationary, solutions of the basic gas-

flow PDEs. The non-stationary solutions grow or decay

exponentially in time, where thus the time-independent

(stationary) and balanced case being a marginal exam-

ple.

• Development of the adiabatic generalization of the

exact unbalanced solutions allowing for slow evolution

of the unbalanced solution parameters. This new UA

construction generalizes the BA construction described

in [17], thus allowing for significant deviations from the

balanced (stationary) case.

Even though the construction applies to networks, we focus

in this manuscript on the basic case of a single pipe, thus

leaving discussion of the network case for future publica-

tions.

The layout of material in the remaining part of the

manuscript is as follows. We introduce basic gas flow

physics and modeling assumptions/considerations/equations

in Section II. New family of exact dynamic solutions of

the basic system of PDE for a single pipe is described in

Section III. Section IV details construction of the family of

the UA solutions. Our theoretical construction is tested and

validated against direct numerical simulations in Section V.

Conclusions and path forward are discussed in Section VI.

Appendices are reserved for auxiliary/supplemental materi-

als.
II. MODIFIED EULER EQUATIONS FOR A PIPE

Natural gas is transmitted long-distances though a system

of pipes in the turbulent, Re ≈ 106, compressible/sub-sonic,

Ma ≈ 1/30 regime. Typical pressures in a d = 1 m

diameter pipe transmitting gas over hundreds to thousands

of kilometers, is in the range of p = 300−800 psi≈ 21−55
bar=2.1− 5.5× 106kg/(ms2), the gas flows with the speed

of u = 10 − 15m/s which is significantly smaller that

the speed of sound, cs ≈ 300m/s. So-called Weymouth

equations [13] accounting for dynamical balance of mass

and momentum through a pipe segment of length L (free of

injection, consumption or compression) are [3], [15], [22]

∂tρ+ ∂x(ρu) = 0, (1)

∂t(ρu) + ∂x(ρu
2) + ∂xp = −fρu|u|

2d
(2)

where x ∈ [0, L], ρ is the mass density and velocity u
along the pipe is averaged over diameter of the pipe. (Note

that velocity profile resolved across the pipe is close to the

equilibrium distribution where the average velocity has an

almost flat profile everywhere except of a narrow boundary

layer region near the walls.) The natural gas is modeled as

an ideal gas, thus pressure and density are in the standard

thermodynamic relation, p = c2sρ. Without loss of generality

(generalizations are straightforward) we assume iso-thermal

flow (temperature is constant) and ignore effects of gravity

(tilted pipe). We also assume that the turbulent friction term

in the momentum Eq. (2) is (approximately) Re number

independent. This approximation of the momentum equation

applies in the regime where the friction term and the pressure

terms are roughly in balance, while the dynamic (first)

and self-advection (second) terms are respectively order and

two orders of magnitude smaller [10], [13]. Indeed for

the actual parameters of the transmission system mentioned

above, one gets the following estimations for the ratio of

the first to third terms, |p∂t(1/φ)|/α ≈ 0.1, where α =
fc2s/d ≈ 900m/s2 and one estimates temporal scale of the

consumption/production variation in 100s, and φcs/p ≈ 0.03
for the ratio of second to first terms. This means, in particular,

that description of this manuscript applies only to normal

operations of the pipes when the dynamical changes take

place on the scale of minutes or slower. The dynamics is

typically driven by unsteady (but typical in terms of opera-

tions) changes of injection, consumption or compression. (In

other words our description applies only to the regime when

changes are forced by exogenous changes and no fast, high

frequency, waves or shocks are present.)

In summary, under realistic assumption that the following

dimensionless parameters are asymptotically small, 1 �
|p∂t(1/φ)|/α, |φ|cs/p, a single-pipe dynamics is well ap-

proximated by the following system of equations

c−2
s ∂tp+ ∂xφ = 0, (3)

∂xp+ α
φ|φ|
2p

= 0. (4)

where the first equation is a version of Eq. (1) and the second

equation is the reduced version of Eq. (2), both stated in

terms of φ and p.

Note (for the sake of generality) that the formal singularity

of Eqs. (2,4) at v, φ → 0 is not physical, as the conditions

of the phenomenological derivation of the turbulence dissi-

pation is obviously broken when the flow is slow, that is in

the laminar (not turbulent) regime. In the laminar regime the

dissipation is linear in velocity/flux. However, given that the

regions of the small/laminar flux velocity, where the flow

reverses its direction, are expected to be small in size (of the

order of d - the pipe diameter, we are ignoring this nuance

in what follows.

III. EXACT UNBALANCED SOLUTIONS

We look for solution of Eqs. (1,4) in the following form

p(t, x) = p0 exp

(
λc2s√
2α
t+ ψλ(x)

)
, (5)
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where p(t, x) ≥ 0. Eq. (5) implies according to Eq. (4)

φ(t, x)|φ(t, x)| = (6)

−2p20
α

exp

(
2
λc2s√
2α
t+ 2ψλ(x)

)
ψ′λ(x).

Assume that ∀t, x : φ > 0 (this assumption can be

relaxed), then consistently with Eq. (6), one finds that, ∀x :
ψ′λ(x) < 0, and substituting it into Eq. (7) one arrives at

φ(t, x) =

√
−2p20
α
ψ′λ(x) exp

(
λc2s√
2α
t+ ψλ(x)

)
.(7)

Substituting Eqs. (5,7) into Eqs. (3) one finds that ψλ(x)
satisfies,

λ
√
−ψ′λ − 2(ψ′λ)

2 − ψ′′λ = 0. (8)

Denoting, G(x;λ) = −ψ′λ, and then, ψλ(x) =
− ∫ x

0
dx′G(x′;λ), one gets from Eq. (8) that G satisfies

λ
√
G− 2G2 +G′ = 0. (9)

Integration of this equations results in the following formula

expressing, G, via x, λ and G0 implicitly

G0∫
G(x;λ,G0)

dz

λ
√
z − 2z2

= x. (10)

The integral on the lhs of Eq. (10) can be computed in

quadratures. Introduce the following function:

f(z, λ) =
22/3

3λ2/3

(
− log

(
λ1/3

21/3
−√z

)

+
1

2
log

(
λ2/3

22/3
+
λ1/3

21/3
√
z + z

)

+
√
3 arctan

(
1√
3

(
1 + 2

√
z
21/3

λ1/3

)))
,

then (10) becomes, f(G0, λ)− f(G, λ) = x.

It is instructive to check the special case of λ = 0. Then

by direct integration of (10) one arrives at

G(x, 0, G0) =
G0

1− 2G0x
,

obviously corresponds to the stationary solution, p =
p0
√
1− 2G0x.

IV. UNBALANCED ADIABATIC SOLUTIONS: THEORY

In this Section we explain how to generalize the Balanced-

Adiabatic (BA) approach of [17], developed based on the bal-

anced/stationary solution of Eqs. (1,4), to a new Unbalanced-

Adiabatic (UA) based on the exact solutions described in

the previous Section. The idea of how we extend the exact

solution into an adiabatic one remains the same: we allow

two parameters describing the exact solution to have in

addition dependence on time. The dependence is assumed

slow. Formally, it means that time derivatives of parameters

depending on time are sufficiently small (when compared

with other time scales of the system and of the base so-

lution), but not the parameters themselves. We substitute

adiabatic expressions for pressure and mass flow with added

corrections of the general type into Eqs. (1,4), linearize over

temporal derivatives of the slow parameters and unstruc-

tured small corrections to establish self-consistent relations

between the terms. These relations will then allow us to link

temporal evolution of the two adiabatic parameters and two

conditions for pressures or mass flows at the ends of the

pipe. (Different boundary conditions correspond to different

problems of interest.)

Consider the case when the boundary conditions in the dy-

namic solutions explained above in Section III change slowly

in comparison with the original/bare dynamics. Specifically,

let us assume that the boundary conditions for pressure on

two ends of the pipe are parameterized by λ(t) and G0(t)
according to

p(t, 0) = p0 exp

(
c2s√
2α

∫ t

0

dt′λ(t′)
)
, (11)

p(t, L) = p(t, 0) exp

⎛
⎝−

L∫
0

dx′G(x′;λ(t), G0(t))

⎞
⎠ , (12)

where the dependence of G(x;λ,G0) on x is set implicitly

by Eqs. (10).

Let us look for approximate solution of Eqs. (3,4) in the

form

p(t;x) = pUA(x;λ(t), G0(t)) + δp(t;x) (13)

φ(t;x) = φUA(x;λ(t), G0(t)) + δφ(t;x). (14)

where

pUA(x;λ(t), G0(t)) = (15)

p0 exp

⎛
⎝ c2s√

2α

t∫
0

dt′λ(t′)−
x∫

0

dx′G(x′;λ(t), G0(t))

⎞
⎠ ,

φUA(x;λ(t), G0(t)) = (16)√
2

α
pUA(x;λ(t), G0(t))

√
G(x;λ(t), G0(t)),

is the adiabatic (slowly changing) part of the solution and

δp(t;x) and δφ(t;x) are respective perturbative corrections.

(We also assume here that the dynamics does not drive a flow

reversal within the pipe. Generalization is straightforward.)

Then, substituting Eqs. (13,14,15,16) into Eqs. (3,4) and

linearizing the result over δp, δφ one arrives at

∂xδφ(t;x) + c−2
s ∂tδp(t;x) + ∂xφUA(x;λ(t), G0(t))

+c−2
s ∂tpUA(x;λ(t), G0(t)) = 0, (17)

∂x (δp(t;x)pUA(x;λ(t), G0(t)))

+αδφ(t;x)φUA(x;λ(t), G0(t)) = 0. (18)

Integrating Eq. (18) over the entire pipe and taking into

account that δp(t; 0) = δp(t;L) = 0 (correspondent to the

boundary conditions exogenously fixed) one derives

L∫
0

dxδφ(t;x)φUA(x;λ(t), G0(t)) = 0. (19)

5636



On the other hand the adiabatic approximation suggests to

ignore the second term in Eq. (17) in comparison with the

other terms. Integration of Eq. (17) with the second term

droped results in

δφ(t;x) = −
x∫

0

dx′
(
∂x′φUA(x′;λ(t), G0(t))

+c−2
s ∂tpUA(x′;λ(t), G0(t))

)
+ δφ(t; 0). (20)

Taking into account Eqs. (19) one derives

δφ(t; 0) =

L∫
0

dxφUA(x;λ(t), G0(t))
L∫
0

dxφUA(x;λ(t), G0(t))

x∫
0

dx′ (21)

(
∂x′φUA(x′;λ(t), G0(t)) + c−2

s ∂tpUA(x′;λ(t), G0(t))
)
.

Further, respective expression for δp(t;x) can be obtained

from (18) integrating both sides of the equation from 0 to x,

thus accounting for the boundary condition δp(t; 0) = 0:

δp(t;x) = −
α

x∫
0

dxφUA(x;λ(t), G0(t))δφ(t;x)

pUA(x;λ(t), G0(t))
. (22)

In summary, Eqs. (13-22) provide explicit dependence of

pressure and mass flow within the pipe on only two time-

dependent parameters, λ(t) and G0(t). The two parameters

can be expressed via two boundary conditions at the two ends

of the pipe, e.g. two pressures at the inlet and outlet or two

flows or a mix (say pressure at inlet and flow at the outlet).

Relations between the parameters (also involving according

to the equations above their temporal derivatives) result in

the system of ODEs which replace the original description

based on PDEs (1,4) we have started from.

An alternative choice of boundary conditions is discussed

(for completeness) in Appendix I.

We illustrate the nonlinear adiabatic approach on numeri-

cal examples in the next Section.
V. NUMERICAL EXPERIMENTS: VALIDATION OF THE

ADIABATIC APPROACH

In our proof-of-concept validation experiments we choose

to experiment with

λ(t) = λ0(2 + cos(2πt/τ)) cos(πt/τ), G0(t) = const, (23)

thus testing the adiabatic approximations (UA and BA) in

the regime where parameters of the exact solution, λ and G,

may evolve on the time scale comparable to the time scale

of the bare/exact solution, and consider the following initial

and boundary conditions:

p(0, x) = pUA(x;λ(0), G0(0)), (24)

(pp) : p(t, 0) = pUA(0;λ(t), G0(t)),

p(t, L) = pUA(L;λ(t), G0(t)), (25)

(pφ) : p(t, 0) = pUA(0;λ(t), G0(t)),

p(t, L) = pUA(L;λ(t), G0(t)), (26)

where (pp) and (pφ) mark the two Boundary Condition (BC)

cases (discussed in the main text and in the Appendix I,

respectively).

For each BC setting we compare results of (a) numerical

integration of Eqs. (3,4,23,24) and Eq. (25) or Eq. (26) [solid

red in the Figures, the PDE integration is implemented in

Mathematica]; (b) UA solution plus correction computed via

numerical integration of the system of equations linearized

around the UA solution, i.e. Eqs. (13,14,17,18,23,24) and

Eq. (25) or Eq. (26) [dashed red in the Figures, the PDE

integration is implemented in Mathematica]; (c) UA solution,

also correspondent to the case (b) with the second term on

the lhs of Eq. (13) dropped [solid green in the Figures for

the UA solution plus perturbation and dashed green for the

UA solution only, where δp is dropped]; (d) BA solution (see

Appendix II) [solid blue in the Figures for the BA solution

plus perturbation and dashed blue for the BA solution only,

where respective δp is dropped].

To simplify analysis, notations and visualizations we show

results in the dimensionless/re-scaled units: time in the units

of T = 3600s = 1h, t̃ = t/T ; distance in the units of

L = 100km, x̃ = x/L; pressure in the units of p0 =
50Bar = 5 × 106kg/(ms2); and the flow in the units of

φ0 = p0L/(c
2
sT ) ≈ 1543kg/m2s. In these re-scaled units

Eqs. (3,4) become

∂t̃p̃+ ∂x̃φ̃ = 0, ∂x̃p̃+ α̃
φ̃|φ̃|
2p̃

= 0, (27)

where α̃ = αφ20L/p
2
0 = αL3/(c4sT

2) ≈ 8.57.

Figures show results of our experiments for λ̃0 =
λ0L

3/2 = 0.05, G̃0 = G0L = 0.3, τ = 2, t̃ = 5 in the

dimensionless units. We observe that

• The adiabatic approximation works reasonably well not

only in the asymptotics, when parameters of the exact

solution, λ and G, are frozen (in time), but also in

the borderline regimes when changes in the parameters

occur on the time scale comparable with the one of the

exact solution.

• The nonlinear adiabatics introduced and discussed in

this manuscript, generally, approximate exact results

more accurately than the Linear Adiabatics.

• Quality of the approximation is better for mass flows

than for pressures.

• Comparison of the two cases correspondent to the two

types of boundary conditions suggests that the adiabatic

approximation seems more accurate in the case when

the two temporal profiles of pressure are fixed at the

opposite ends of the pipe.

• Beyond adiabatic linearization (keeping and not ignor-

ing the second term on the lhs of Eqs. (17)) improves

nonlinear adiabatic approximation even more.

VI. CONCLUSIONS & PATH FORWARD

Our main conclusion is that the newly suggested Unbal-

anced Adiabatic solution outperforms the Balanced Adiabatic

solution introduced originally in [17] in the regimes where

deviations from the balanced solutions occur sufficiently fast
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Fig. 1: Pressure profiles (top) and mass flow profiles

(bottom) shown in the middle of the pipe for the case of the

pressure boundary conditions fixed at the two ends of the

pipe for direct numerical integration of Eqs. (3,4) [solid red

- considered as the ground truth], UA solution plus linear

correction computed via direct integration of Eqs. (17,18)

[dashed red], UA solution with perturbative correction [solid

green], UA solution only [dashed green], BA solution with

perturbative correction [solid blue], BA solution only [dashed

blue].

and are significant by amplitude. However, the improvement

does not come for free – even though the newly developed

UA solution is more accurate (in terms of approximating the

ground truth) it is also more complicated to find (stated im-

plicitly via an inverse of an explicitly known transcendental

function, while BA is stated explicitly in terms of elementary

functions).

In the (relatively short term) future we plan to develop

and test efficient computational schemes to model natural

gas dynamics over extended networks, i.e. in the setting

consisting of many elements (loads/generators, compressors,

branching points, etc). It will be important to validate per-

formance of UA and BA approximations in the realistic

setting. To achieve an even better quality of approximation,

we also plan to extend the approximation and account for

linear corrections to the solutions which are beyond the

adiabatic approximation. Strategically, once the adiabatics

0 1 2 3 4 5
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Fig. 2: Pressure profiles (top) and mass flow profiles

(bottom) shown in the middle of the pipe for the case of

the pressure boundary conditions fixed at the two ends of

the pipe. Style and color-coding of lines is the same as in

Fig. (1).

(and beyond) are tested and validated, we plan to utilize the

approximations to boost solutions of multi-level optimization

and control problems, e.g. of the type discussed in [18], [20],

[21], [23]–[25].
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APPENDIX I

MIXED (PRESSURE AND FLOW) BOUNDARY CONDITIONS

In the main part of the manuscript we describe the case

when the pressure(s) are fixed at the two ends of the pipe.

In this Appendix we discuss the mix case, when pressure

is fixed only at one end of the pipe, while fixed mass flow

is controlled at the other end of the pipe. (Two clarifying

remarks, on what would be other boundary conditions to

consider, are in order. First, note that even though fixing

pressure and flow at one side of the pipe would be for-

mally/mathematically allowed, we do not believe that this
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case is physically/practically enforceable, thus excluding it

from the consideration. Second, fixing two mass flow con-

ditions at the two different ends of the pipe is not discussed

either - now because we were not able to formulate a well-

posed adiabatic approximation in this case.)

Consider pressure fixed at the “incoming” (along the flow)

side of the pipe and the mass flow is fixed at the outgoing side

of the pipe. These conditions apply, e.g., when a consumer

of gas, extracting a prescribed (and possibly time dependent)

amount of the mass, is positioned at the outgoing side of

the pipe. In this case, in addition to the boundary condition

(11) at x = 0 one also maintains the following boundary

conditions at x = L:

φ(t, L) = p(t, 0) exp

⎛
⎝−

L∫
0

dx′G(x′;λ(t), G0(t))

⎞
⎠

×
√

2G(L;λ(t), G0(t))

α
. (28)

This setting assumes that δp(t, 0) = 0 and δφ(t, L) = 0.

Then Eq. (20) is substituted by

δφ(t;x) =

L∫
x

dx′
(
∂x′φUA(x′;λ(t), G0(t)) (29)

+c−2
s ∂tpUA(x′;λ(t), G0(t))

)
, (30)

while (22) stay the same.

APPENDIX II

BALANCED ADIABATIC APPROXIMATION

The adiabatic approximation developed in this paper is a

generalization of the Balanced Adiabatic (BA) approximation

which was developed and discussed in details in [17]. In this

Appendix we briefly discuss/remind adaptation of the BA

approximation to the cases with different boundary condi-

tions (discussed in the main text and also in the preceding

Appendix I).

The BA analogs of Eqs. (15,16) are

pBA(x; pin(t), pout(t)) = (31)√
(pin(t))2 − x

L
((pin(t))2 − (pout(t))2)

φBA(pin(t), pout(t)) =

√
(pin(t))2 − (pout(t))2

α
. (32)

Then respective versions of Eqs. (20,21,22) and all other

follow up relations for the two cases of interest (pressures

are fixed at the both sides of the pipe, pressure and flow are

fixed at the opposite sides of the pipe) are derived simply by

substituting pUA, qUA by pBA, qBA.
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