
On Dispersion Relation for Gravity Waves in the Presence of
Condensate.

A. O. Korotkevich

Department of Mathematics and Statistics, University of New Mexico, MSC01 1115, 1 University of New
Mexico, Albuquerque, NM 87131-0001, USA

L. D. Landau Institute for Theoretical Physics RAS, 2 Kosygin Str., Moscow, 119334, Russian Federation

Abstract. During direct numerical simulation of isotropic turbulence of surface gravity waves in the framework of Hamilto-
nian equations the formation of long wave condensate was observed. Here we study the influence of the condensate presence
on the dispersion relation for the gravity waves. Formation of the two side bands, corresponding to the interaction with conden-
sate, was observed. Distortion of the dispersion relation can be a factor influencing the spectra of inverse and direct turbulent
cascades.
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INTRODUCTION.

Here and further we shall follow notations from [1]. We consider a potential flow of ideal incompressible fluid. System
is described in terms of weakly nonlinear equations [2, 3] for surface elevation η(�r, t) and velocity potential at the
surface ψ(�r, t) (�r =

−−→
(x,y))

η̇ = k̂ψ− (∇(η∇ψ))− k̂[η k̂ψ]+ k̂(η k̂[η k̂ψ])+
1
2

Δ[η2k̂ψ]+
1
2

k̂[η2Δψ]+ F̂−1[γkηk],

ψ̇ =−gη− 1
2

[
(∇ψ)2− (k̂ψ)2]− [k̂ψ]k̂[η k̂ψ]− [η k̂ψ]Δψ + F̂−1[γkψk]+P�r. (1)

Here dot means time-derivative, Δ — Laplace operator, k̂ is a linear integral operator
(
k̂ =

√−Δ
)
, F̂−1 is an inverse

Fourier transform, γk is a dissipation rate (according to recent work [4] it has to be included in both equations), which
corresponds to viscosity on small scales and, if needed, "artificial" damping on large scales. P�r is the driving term
which simulates pumping on large scales (for example, due to wind). In the k-space supports of γk and P�k are separated
by the inertial interval, where the Kolmogorov-type solution can be recognized. These equations were derived as a
results of Hamiltonian expansion in terms of k̂η . From physical point of view k̂-operator is close to derivative, so we
expand in powers of slope of the surface. In most of experimental observations average slope of the open sea surface
μ is of the order of 0.1, so such expansion is very reasonable.

In the case of statistical description of the wave field, Hasselmann kinetic equation [5] for the distribution of the
wave action n(k, t) = 〈|a�k(t)|2〉 is used. Here

a�k =

√
ωk

2k
η�k + i

√
k

2ωk
ψ�k, (2)

are complex normal variables. For gravity waves ωk =
√

gk. In this variables, if we have a linear wave with wavenum-
ber�k, it will correspond to the only excited harmonics a�k. In other words, representation in terms of these normal
variables means representation in terms of elementary excitations in the system (linear waves).

NUMERICAL SIMULATION.

We simulated primordial dynamical equations (1) in a periodic spatial domain 2π×2π . Main part of the simulations
was performed on a grid consisting of 1024× 1024 knots. Also we performed long time simulation on the grid
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256×256. The used numerical code was verified in [6, 7, 3, 8, 9, 10]. Gravity acceleration was g = 1. Pseudo-viscous
damping coefficient had the following form

γk =

{
0,k ≤ kd ,
−γ0(k− kd)

2,k > kd ,
(3)

where kd = 256 and γ0,1024 = 2.7× 104 for the grid 1024× 1024 and kd = 64 and γ0,256 = 2.4× 102 for the smaller
grid 256×256. Pumping was an isotropic driving force narrow in wavenumbers space with random phase:

P�k = fkeiR�k(t), fk =

{
4F0

(k−kp1)(kp2−k)
(kp2−kp1)2 ,

0− if k < kp1 or k > kp2;
(4)

here kp1 = 28, kp2 = 32 and F0 = 1.5×10−5; R�k(t) was uniformly distributed random number in the interval (0,2π]

for each�k and t. Initial condition was low amplitude noise in all harmonics. Time steps were Δt1024 = 6.7×10−4 and
Δt256 = 5.0×10−3. We used Fourier series in the following form:

η�k = F̂ [η�r] =
1

(2π)2

2π∫
0

2π∫
0

η�re
i�k�rd2r, η�r = F̂−1[η�r] =

Nx/2

∑
−Nx/2

Ny/2

∑
−Ny/2

η�ke−i�k�r,

here Nx, Ny — are number of Fourier modes in x and y directions.
As a results of simulation we observed [1, 11] formation of both direct and inverse cascades (Fig. 1, solid line).

Average steepness was equal to
√
〈|∇η |2〉 = 0.14. What is important, development of inverse cascade spectrum was

arrested by discreteness of wavenumbers grid in agreement with [6, 8, 12, 13]. After that large scale condensate started
to form. As one can see, value of wave action |ak|2 at the condensate region is more than order of magnitude larger
than for closest harmonic of inverse cascade. Dynamics of large scales became extremely slow after this point. We
managed to achieve downshift of condensate peak for one step of wavenumbers grid during long time simulation on a
small grid 256×256 (Fig. 1, line with long dashes). As one can see we observed elongation of inverse cascade interval
without significant change of the slope. Unfortunately, inertial interval for inverse cascade is too short to exclude
possible influence of pumping and condensate.

In the case of linear waves harmonics a�k will have just rotation of phase with constant amplitude:

a�k(t) = A�k exp(−iωt + i�k�r),

with the dispersion relation ω(�k) =
√

gk.
In the case of weak nonlinearity this rotation is the fastest process, but amplitude A�k will be already slow function on

time due to nonlinear interaction of waves. Let us investigate how the dispersion relation is influenced by the nonlinear
interactions in the system. For this we record a�k(t) for different values of�k and then calculate a Fourier transform on
time, which leads to the function a�k(ω). In our numerical experiment we were recording every other harmonics on

the kx-axis, from�k = (4;0) till�k = (28;0) and every tenth harmonic from�k = (30;0) till�k = (250;0) and calculated a
Fourier transform. The resulting surface |a�k(ω)| is represented in Figure 2. The observed sidebands are due to nonlinear
interaction of waves with condensate. Although the nonlinear process supposed to be weak, the fact, that condensate
is more than an order of magnitude larger in amplitude makes them essential. Here are corresponding nonlinear terms:

a�k0
a�kc

= A�kA�kc
exp

[
−i(ω(k0)+ω(kc)+ i(�k0 +�kc)�r)

]
, a�k0

a∗�kc
= A�kA∗�kc

exp
[
−i(ω(k0)−ω(kc)+ i(�k0−�kc)�r)

]
, (5)

Here�kc - is the wavenumber of condensate and�k0 wavenumber of some wave. The first term corresponds to the upper
sideband, second — to the lower sideband. If we consider spectrum in the vicinity of condensate peak, one can see that
sidebands are of close amplitudes with respect to central peak, corresponding to the ω(k) =

√
gk dispersion relation.

Which means that at least for inverse cascade region distortion of the dispersion relation have to be taken into account.
For the direct cascade region, which is far from the condensate scale, influence on the dispersion is almost negligible.
Currently, the inverse cascade slope, observed in numerical simulations, is different from theoretical predictions of the
wave turbulence theory. This result can be one of the building blocks for the theory of inverse cascade in the presence
of condensate.
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FIGURE 1. Spectra 〈|ak|2〉. With condensate on the 1024× 1024 grid (solid); on the 256× 256 grid with more developed
condensate (long dashes).

 20  40  60  80  100  120
kx

 0

 2

 4

 6

 8

 10

 12

 14

ω

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

FIGURE 2. Surface |a�k(ω)|. Sidebands, corresponding to the interaction with condensate, are clearly visible.
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