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During previous numerical experiments on isotropic turbulence of surface gravity waves we observed forma-
tion of the long wave background (condensate). It was shown (Korotkevich, Phys. Rev. Lett. 101, 074504
(2008)) that the presence of the condensate changes a spectrum of direct cascade, corresponding to the flux
of energy to the small scales from pumping region (large scales). Recent experiments show that the inverse
cascade spectrum is also affected by the condensate. In this case mechanism proposed as a cause for the
change of direct cascade spectrum cannot work. But inverse cascade is directly influenced by the linear dis-
persion relation for waves, as a result direct measurement of the dispersion relation in the presence of con-
densate is necessary. We performed the measurement of this dispersion relation from the direct numerical
experiment. The results demonstrate that in the region of inverse cascade influence of the condensate cannot

be neglected.
DOI: 10.1134/S0021364013030053

Theory of wave or weak turbulence [1] applied to
gravity waves on the surface of the fluid is the base for
all current wave forecasting models, which are crucial
for ocean cargo communications and oil and gas sea
platforms operations. This is why it’s verification is
important and urgent problem. Numerous attempts to
get a spectrum of the direct cascade of energy from
ocean and sea observations give results which confirm
the wave turbulence theory [2, 3]. At the same time all
these experiments were working with wind generated
waves, which means broad spectrum pumping. As a
result it is hard to understand where we have so called
“inertial interval” (region of scale where we have only
nonlinear interaction of waves, while pumping and
damping influences are negligible). Narrow frequency
pumping can be realized in experimental wave tanks
and flumes. But this state of the art experiments were
producing very strange and contradictory results [4,
5], like dependence of the spectral slope on the ampli-
tude of pumping. The direct numerical simulation of
the primordial dynamical equations looks like a natu-
ral remedy for this problem. It provides us with all pos-
sible information about the system, but for the cost of
enormous computational complexity.

One of the first attempts was pioneering work [6],
which soon was followed by [7—9]. During the last
decade, the author together with colleagues were able

TThe article is published in the original form.

to find answers at least to some of the open questions
using direct numerical simulation of gravity waves. It
was shown, that on a discrete grid of wavenumbers
(common situation for both pseudo spectral numeri-
cal codes in a periodic domain and experimental wave
tanks which are usually rectangular basins of finite
size) the mesoscopic turbulence can take place [10,
11]. In the recent works [12, 13] the author demon-
strated that formation of the inverse cascade, corre-
sponding to the flux of wave action (analog of number
of waves), inevitably leads to the formation of the
strong long wave background, which we call conden-
sate (due to similarity with Bose—Einstein condensa-
tion in condensed matter physics). It was shown that
presence of the condensate changes the slope of the
direct cascade spectrum. In these recent experiments,
in spite of the short inertial interval for the inverse cas-
cade, the slope significantly different from the pre-
dicted by the wave turbulence theory was observed.
Recent reports [14] with long enough inertial interval
show that the slope indeed differs from the theoreti-
cally predicted one.

In the present Letter we report results of direct
measurement of the dispersion relation of the surface
gravity waves in the presence of condensate. As it will
be demonstrated later, the slope of the spectrum of the
inverse cascade directly depends on the power of the
dispersion relation. Although we were not able to
determine the change of this power, we demonstrate
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that in the region of the inverse cascade the dispersion
relation is strongly affected by the nonlinear interac-
tion with the condensate. This distortion cannot be
neglected and might be considered as a possible cause
of the change of the slope of the inverse cascade spec-
trum.

As in many previous works [15, 7,9, 12, 13] we shall
consider isotropic turbulence (no direct dependence
on angle) of gravity waves on the 2D surface of the 3D
fluid. The isotropic turbulence is a wonderful sandbox
for the turbulence simulation. In this case we can use
angle averaging of the resulting spectra in order to
decrease the natural peakedness of harmonics, instead
of averaging over different realizations which is unre-
alistic in this case, due to a long time of even one sim-
ulation.

Here and further we shall follow notations from
[12]. We consider a potential flow of ideal incompress-
ible fluid. System is described in terms of weakly non-
linear equations [1] for surface elevation n(r, ) and
velocity potential at the surface y(r, #) (r = (x, y))

M = ky - [V(V)] - k[nky] + k(k[nky])

+ %A[nzfﬂv] + %l}[n%\v] + F Iy,
(1)
W= —gn - [V’ - (ky)’] - [k Tilniey]

- ~]
—[nky]Ay + F [yy,] + P
Here, dot means time derivative, A is the Laplace

J-A),

F  is an inverse Fourier transform, v, is a dissipation
rate (according to recent work [16] it has to be
included in both equations), which corresponds to vis-
cosity on small scales and, if needed, “artificial”
damping on large scales, and P, is the driving term
which simulates pumping on large scales (for example,
due to wind). In the k-space supports of y, and P, are
separated by the inertial interval, where the Kolmog-
orov-type solution can be recognized. These equations
were derlved as results of Hamiltonian expans1on in

operator, k is a linear integral operator (k =

~

terms of kn From the physical point of view, k oper-
ator is close to derivative, so we expand in powers of
slope of the surface. In most of experimental observa-
tions average slope of the open sea surface p is of the
order of 0.1, so such expansion is very reasonable.
Additional details can be found in [7, 17—19].

In the case of statistical description of the wave
field, Hasselmann kinetic equation [20] for the distri-

bution of the wave action n(k, 1) = <\ak(t)]2> is used.

Here,
o, [k
= —_ —+ _ 2
ay 2knk 1 20)ka ()
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are complex normal variables. For gravity waves @, =

@. In this variables, if we have a linear wave with
wavenumber K, it will correspond to the only excited
harmonics g,. In other words, representation in terms
of these normal variables means representation in
terms of elementary excitations in the system (linear
waves). In reality we should use pair correlator for vari-
ables after canonical transformation which eliminates
nonresonant terms in the Hamiltonian [1, 17], but in
the case of gravity waves of average steepness

JVnl?) = 0.1 their relative difference is of the order
of few percent. Thus, we neglect this difference and
will be working with correlation function given above.

Numerical simulation. We simulated primordial
dynamical equations (1) in a periodic spatial domain
21 x 2m. Main part of the simulations was performed
on a grid consisting of 1024 x 1024 knots. Also we per-
formed long time simulation on the grid 256 x 256.
The used numerical code [21] was verified in [18, 7, 9,
10, 22, 23, 12, 13]. Gravity acceleration was g = 1.
Pseudo-viscous damping coefficient had the following

form
0, k<ky,
Y = i 3)
~Yolk—ky)", k>ky,
where k; = 256 and 7y, 194 = 2.7 x 10* for the grid
1024 x 1024 and k, = 64 and y,_,55 = 2.4 x 10? for the
smaller grid 256 x 256. Pumping was an isotropic driv-

ing force narrow in wavenumbers space with random
phase:

4F (k kpl)(kpZ k)

(kp2_ pl) (4)
0 ifk<k, or k>ky:

R (1)

szfke s fk:

here, k,; =28, k,, = 32, and F, = 1.5 x 107; Ry(7) was
uniformly distributed random number in the interval
(0, 2m] for each k and ¢ Initial condition was low
amplitude noise in all harmonics. Time steps were
Atyppa=6.7 x 107 and Aty5¢ = 5.0 x 103, We used Fou-
rier series in the following form:

2n2n
M = FIn,] Md’r,
(2 )
N,/2 N,/2
71 —ikr
Me=Fnd=> > me,
-N,/2-N,/2

where N, and N, are the numbers of Fourier modes in
the x and y directions, respectively.

As results of simulation we observed [12, 13] for-
mation of both direct and inverse cascades (Fig. 1,
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Fig. 1. Spectra (‘ak|2) . With condensate on the 1024 x

1024 grid (solid); on the 256 x 256 grid with more devel-
oped condensate (long dashes).

solid line). Average steepness was equal to »/(|Vn|?) =
0.14. What is important, development of inverse cas-
cade spectrum was arrested by discreteness of wave-
numbers grid in agreement with [18, 10, 24, 25]. Then
large scale condensate started to form. The mecha-
nism of condensate formation is the following. We
have a flux of wave action (number of waves) from the
pumping to the large scale region. This flux is due to
nonlinear resonant interaction of waves. In [10] it was
shown, that on a discrete grid of wavenumbers, which
is typical for both finite experimental wave tanks and
computer simulations, resonance conditions are never
fulfilled exactly. What makes it possible for them to
exist is the finite width of the resonant curve due to
nonlinear frequency shift. As a result, this thick reso-
nant curve covers some knots of the wavenumbers grid
[18]. The nonlinear frequency shift is proportional to
the matrix element (coupling coefficient) of interac-
tion of waves, which is homogeneous function of the
order 3 (with change of k it behaves as k*). Which
means that we have good coverage of the grid knots in
high wavenumbers, characteristic for the direct cas-
cade, and worse and worse situation as we move toward
the origin of the k-plane. So at some stage the resonant
interactions turn off due to discreteness of the wave-
numbers grid and flux cannot propagate further. At the
same time, new waves are still brought to this threshold
scale from the pumping region. As a result we have an
accumulation of waves at some large scale, i.e., con-
densation.

. 2
As one can see, value of wave action |a,|” at the

condensate region is more than order of magnitude
larger than for closest harmonic of inverse cascade.
Dynamics of large scales became extremely slow after
this point. We managed to achieve downshift of con-

densate peak for one step of wavenumbers grid during
long time simulation on a small grid 256 x 256 (Fig. 1,
line with long dashes). As one can see we observed
elongation of inverse cascade interval without notice-
able change of the slope. Unfortunately, inertial inter-
val for inverse cascade is too short to exclude possible
influence of pumping and condensate, we can roughly
estimate its slope as k=3 [12], which is slightly less
than the prediction of the theory of weak turbulence
k=236 ~ =333 Resent findings [14] with significantly
longer inertial interval for the inverse cascade support
this result and propose the slope k=313,

Let us discuss possible reason for this deviation
from the theory of weak turbulence. The direct cas-
cade of energy and inverse cascade of wave action cor-
respond to two Kolmogorov-type solutions of the
Hasselmann kinetic equation for waves [20]. These
solutions were derived by Zakharov in the middle of
sixties under a few reasonable assumptions: media is
isotropic with respect to rotations, dispersion relation
is a power-like function ®, = k*, matrix element of
nonlinear interaction (nonlinear coupling coefficient)
for waves is a homogeneous function 7(ek,, €k,, €k,
eky) = ePT(Kk,, k,, k3, k;). Under these assumptions
Zakharov [1, 26—28] obtained Kolmogorov-like solu-
tions corresponding to fluxes of two integrals of
motion (energy and wave action or number of waves):

nl(c]) _ C1P1/3k_2ﬁ/3_d, .
nf) _ C2Q1/3k—(2ﬁ—a)/3—d.

Here, d is a spatial dimension (d = 2 in our case). In

the case of gravity waves on a deep water = Jg7€ (o=
1/2) and, apparently, B = 3. As a result one can get:

nzl) _ C1P1/3k74, n;{z) _ C2Q1/3k723/6' (6)

The first spectrum nf) corresponds to the direct cas-

cade. In this work, we are more interested in the sec-

2 . . .
ond spectrum nfc ), which describes the inverse cas-

cade, corresponding to flux of number of waves (or
wave action) from small scales (pumping) to larger
scales. As one can see, inverse cascade spectrum for-
mula directly depends on a, the power of the disper-
sion relation. So it would be helpful for understanding
of the situation to measure directly the dispersion rela-
tion of waves. How one can do this measurement?

In the case of linear plane wave, for harmonic a,
will have just rotation of phase with constant ampli-
tude a (1) = Avexp(—iw.t), with circular frequency
corresponding the linear dispersion relation w(k) =

JQ{ . So if one would write down the a,(7) as a function
on time and then calculate Fourier transform from
time domain to the frequency domain, the result of
such transformation will be d-function in m-space.
JETP LETTERS Vol. 97
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Fig. 2. (Color online) Surface ‘ak(m)|. Normed to the

maximum for every given value of k. Bright vertical line
shows the pumping region. Sidebands, corresponding to
the interaction with condensate, are clearly visible. Side-

bands estimations: long dashes (black)— cozp+ =0 +

®©, ; solid line (red)—mzp_ = 0, _; + 0 ; dashed—

+

. . 1 .
dotted line (ollve)—(okOW = 04, — O ; dotted line

low—

(brown)—w, = 0y _; — o ; line with short dashes

(blue) is the linear dispersion relation o, = Jg7c .

In the case of weak nonlinearity this rotation is the
fastest process, but amplitude A, (#) will be already slow
function on time due to weakly nonlinear interaction
of waves. Let us investigate how the dispersion relation
is influenced by the nonlinear interactions in the sys-
tem. For this we record a,(¢) for different values of k
and then calculate a Fourier transform on time, which
leads to the function g, (®). Because we have isotropic
with respect to angle situation, we can limit ourselves
with harmonics on any ray starting at the origin of the
k-plane. In our numerical experiment we recorded
every other harmonics on the & -axis, from k = (4; 0)
till k = (28; 0) and every tenth harmonic from k = (30; 0)
till k = (180; 0) (for further wavenumbers the plot
becomes extremely noisy, also it is already range of
artificial dissipation) and calculated a Fourier trans-
form. The resulting surface |a,(®)| is represented in

Fig. 2. The observed sidebands are due to nonlinear
interaction of waves with condensate. Although the
nonlinear process supposed to be weak, the fact, that
condensate is more than an order of magnitude larger
in amplitude (for harmonics further from the conden-
sate difference is even bigger) makes them essential. If
we consider the simplest case of three-wave nonlinear
interaction of plane waves a,(r, f) = A, expli(kr — wf)],
we shall get the following nonlinear terms:

ag ay, = A A exp{-i(o(k) + o(k.) +i(k, +k)r)},
ayai = A Ai exp{~i(o (ko) - o(k.) +i(ky—k)r)}.
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Fig. 3. (Color online) Sections of the surface |ak(0))| .

Solid line (red): spectral line for k = (10; 0); dashed line
(blue): spectral line for k = (20; 0). Dotted vertical lines of
both colors correspond to linear dispersion relation ®; =

Jgk .

Here, k. is the wavevector of condensate and kK, is the
wavevector of some wave. The first and second terms
correspond to the upper and lower sidebands, respec-
tively. For example, let us suppose that we measured
frequency spectrum of some wave with wavevector K,
then it has to be k = k;, + k, for the upper sideband and
k =k, — k. for the lower sideband. Let us recall that we
have isotropic situation, which means that our con-
densate in k-space is situated on a circle with radius £,
(really it is an annulus of finite width). Which means
that for every case we have projection on the k, axis
changing from k. to —k_. As a result our sidebands has
to be between o, = o, , + ©, and ol =

O+, T o for the upper sideband and between

low— low+
O =0, — o, and o,
lower sideband. Of course for the complete consider-
ation we need to take into account the four wave inter-
action terms. Most probably this is the reason for not
so perfect agreement of our primitive estimate and the
measurements (Fig. 2). On this stage of the investiga-
tion we are satisfied with this simple qualitative expla-
nation.

= O, — O forthe

If we consider spectrum in the vicinity of conden-
sate peak, one can see that sidebands are of close
amplitudes with respect to central peak, correspond-

ing to the w(k) = Jg7c dispersion relation (Fig. 3).
This means that at least for inverse cascade region dis-
tortion of the dispersion relation have to be taken into
account. For the direct cascade region, which is far
from the condensate scale, influence on the dispersion
is almost negligible, although the central line is slightly
shifted by the nonlinear frequency shift.
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To summarize, we performed a direct numerical
simulation of the isotropic turbulence of the surface
gravity waves. Currently, the inverse cascade slope,
observed in numerical simulations, is different from
theoretical predictions of the wave turbulence theory.
In order to investigate possible reasons we measured
the dispersion relation for waves in the presence of
condensate. It was shown that in the region of inverse
cascade sidebands are of the same order of magnitude
as the central line corresponding to the linear disper-
sion relation. It means that in the vicinity of conden-
sate we have to take the influence of the condensate
into account. One of the possible ways is to use the
Bogoliubov transformation in order to calculate the
augmented dispersion relation, in the same style as it
was done for phonons in liquid Helium. This is prob-
lem for future work, because in our case situation is
much more difficult, since condensate is located on
the finite k£, and coupling coefficient for gravity waves
is immensely more complex. We hope that our current
result can be one of the building blocks for the theory
of inverse cascade in the presence of condensate.
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