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We study numerically the propagation of two-color light pulses through a metamaterial doped with active atoms
such that the carrier frequencies of the pulses are in resonance with two atomic transitions in the Λ configuration
and that one color propagates in the regime of positive refraction and the other in the regime of negative refraction.
In such a metamaterial, one resonant color of light propagates with positive and the other with negative group
velocity. We investigate nonlinear interaction of these forward- and backward-propagating waves and find self-
trapped waves, counterpropagating radiation waves, and hot spots of medium excitation. © 2013 Optical Society
of America
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1. INTRODUCTION
Recent advances in materials technology have led to the emer-
gence of a new branch of science, the physics of metamate-
rials. These are artificially engineered composites that exhibit
properties unattainable in nature and furnish exciting poten-
tial new tools for future technologies [1]. Electrodynamics of
metamaterials has opened avenues for manipulating light in
unforeseen ways, as well as presented new paradigms in basic
science [2–4]. Metamaterials exhibiting negative refractive
index within certain frequency ranges [5–10] provide a
particularly promising example, as they give rise to a number
of unusual optical properties impossible to observe in natural
materials. In addition to negative refraction, that is, reverse
Snell’s law [11], these properties include perfect lensing
[12,13], reverse Doppler shift [11], reverse Čerenkov radiation
[11,14], and, in particular, phase and group velocities pointing
in the opposite directions [15]. Negative refractive index was
first studied as a purely hypothetical concept and analyzed
using simple mathematical models [11,16,17]. Only relatively
recently was this concept realized experimentally using
metamaterials, first for microwaves [5] and subsequently
for infrared and visible light [8,9].

Nonlinearity in the interaction of light with metamaterials
can arise both from the host material or from the embedded
structures [15,18–25]. Particularly intriguing situations arise
on the boundaries of negative- and positive-refractive-index
regimes in metamaterials, be it in the physical or the fre-
quency domain. The former include, for example, nonlinear
optical vortices [26] and bistability [23]. For the latter, let

us recall that negative refractive index exists only inside
limited frequency ranges, while outside these ranges the
refractive index is positive. Nonlinearity can facilitate energy
interchange among different frequency components of optical
pulses traveling through a nonlinear metamaterial. Two pos-
sible scenarios can occur: pulses with broad spectra whose
wings belong to regions of different refractive-index sign, or
multiwave interaction in which the individual wave frequen-
cies belong to such regions [15,21,22,27]. One way to achieve
this latter scenario is to dope ametamaterial with active atoms
and launch into this metamaterial two-color light pulses that
resonate with two atomic transitions from a pair of energeti-
cally lower levels to a common upper level, with one transi-
tion frequency lying in the regime of positive and the other in
the regime of negative refraction. This transition configuration
is known as the Λ configuration [28]. Likewise, in a chiral
metamaterial [29,30], the opposite circular polarizations of
a monochromatic light pulse that travel in the opposite
regimes of the refractive-index sign can be coupled via the
interaction with active atoms through a pair of transitions
in the Λ configuration.

In this paper, we study two-color light pulses propagating
through metamaterials containing embedded active atoms
with two electron transitions in theΛ configuration, for which
one transition frequency lies in the positive-refraction and the
other in the negative-refraction regime. This physical setup
provides a perfect example of nonlinear interaction between
wave pairs propagating within the two refraction regimes in
the metamaterial. Because the group velocities of such wave
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pairs have opposite signs, it is not surprising to find that
resonantly interacting waves typically travel in the opposite
directions. This unusual interaction gives rise to a number
of effects. The first effect we find is self-trapping, resulting
in a pair of copropagating solitary-wave-type pulses similar
to the self-trapped pulses in metamaterials exhibiting second-
harmonic generation [31,32]. The second effect is the counter-
propagation of the linear waves shed by the incident pulse,
traveling at the two respective carrier frequencies. The third
effect is the stopping of a pulse as it switches energy from one
color to the other, accompanied by a hot spot of medium
excitation left in the metamaterial at the location of the color
switching and direction reversal.

Several known mechanisms currently exist that give rise to
a negative refractive index, such as chirality [29,30], hyper-
bolic materials [33,34], and metamaterials based on the mag-
netic response utilizing plasmonic resonance [5,8,9]. All these
approaches yield the same ultimate effect, and so, with no loss
of generality, we here focus on the last one. We begin with
Maxwell’s equations for the electric and magnetic fields,
coupled to material equations describing the magnetic and
dielectric response of the nanostructures and the additional
response of the active atoms in the Λ configuration. We
restrict our study to coherent phenomena, that is, the case
in which pulses are very short compared to all the relaxation
time scales. Under the assumption that light pulses are short
but still much longer than the individual wavelengths of the
light they contain, we have derived a set of Maxwell–Bloch
equations that describe the electric-field envelopes and the
medium polarizations and level-occupation densities. While
we only consider idealized, lossless propagation, our equa-
tions can be readily adapted to include terms describing
losses and pumping. This is important because metamaterials
are quite lossy, especially in the negative-refraction frequency
range, and doping them with active atoms has in fact been
used to successfully reduce these losses [35].

The remainder of the paper is organized as follows. In
Section 2.A we present our modeling assumptions and state
the basic physical model that we adopt for our investigation.
In addition, we determine the fundamental temporal and spa-
tial scales in this model. In Section 2.B, we sketch a derivation
from this model of the Maxwell–Bloch equations for the enve-
lopes of the electric-field components and material variables,
which we use in our numerical simulations. In Section 3.A, we
discuss the physical setup underlying our numerical simula-
tions. In particular, we discuss the choice of the parameters,
as well as the initial and boundary conditions. In Sections 3.B
and 3.C, we discuss the phenomena we have uncovered in
our model: copropagating pairs of self-trapped pulses,
counterpropagation of radiation components, and hot-spot
formation in the medium. Finally, in Section 4, we present
our conclusions.

2. MODEL
To set the stage for our numerical investigation, in this
section we briefly outline a derivation of the envelope equa-
tions that describe the propagation of optical pulses in a
Λ-configuration metamaterial with embedded nanoinclusions.
Ultimately, we will assume our model to describe a metama-
terial fabricated in such a way that one of the two allowed
atomic-transition frequencies takes place in a regime of

negative refractive index and the other transition frequency
in a regime of positive refractive index. Our goal is to inves-
tigate the interaction among waves propagating in the two
regimes and the resulting dynamic phenomena emerging from
this interaction.

A. Fundamental Equations and Metamaterial Model
Electromagnetic field propagation through a dielectric (meta)
material in the absence of macroscopic currents and free
charges is described by Maxwell’s equations,

∇ × E � −
1
c
∂B
∂t

; ∇ ×H � 1
c
∂D
∂t

; (1a)

∇ · D � 0; ∇ · B � 0; (1b)

where E represents the electric field, B the magnetic induc-
tion, H the magnetic field, and D the electric displacement
field. The constant c is the speed of light in vacuum. The
interaction between the electromagnetic field and the
(meta)material doped with active atoms is expressed through
the constitutive relations

B � H� 4πM; D � E� 4πP� 4πQ; (2a)

for the magnetization M and polarization P due to the nano-
inclusions, and the polarization Q due to the active atoms.

The dynamics of the magnetization M and polarization P
are modeled by the oscillator equations [36–38]

∂2P
∂t2

� ω2
PP � ω2

Pγ

4π
E; (2b)

∂2M
∂t2

� ω2
MM � −

β

4π
∂2H
∂t2

: (2c)

Here, ωP is the plasmonic oscillation frequency and ωM is the
magnetic resonance frequency associated with the inclusions,
and γ and β are form factors specific for the given inclusion
type and material properties of the surrounding dielectric in
the metamaterial, which can be evaluated by careful homog-
enization [39,40] or else obtained from the measured plas-
monic and magnetic resonance curves [41]. Equation (2b)
is the classical Lorentz model [36], and Eq. (2c) is its analog
in a magnetic material [22,42,43]

The polarization contribution Q due to the active atoms is
modeled as

Q � N
X3
l≠j
l;j�1

hha�l ajii · rlj ; rlj � r�jl; rll � 0; (2d)

where al, l � 1, 2, 3, are the quantum amplitudes of the three
active atomic levels in each individual atom, N is the density
of the active atoms in the metamaterial, rlj are the electric di-
pole moments of the transitions between the lth and jth states,
and hh·ii denotes averaging over all the atoms in an infinitesi-
mally small volume at the location z. For every atom, the
amplitudes am satisfy the equation

iℏ
∂
∂t
am � ℏωmam −

X3
n�1

E · rmnan; (2e)
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form � 1, 2, 3, which can be derived from Schrödinger’s equa-
tion [44]. Here ℏ is Planck’s constant and ℏωm are the energies
of the three working levels in the active atoms embedded in
the metamaterial, with ωm being the corresponding quantum
frequencies. In what follows, we assume that they are
narrowly distributed around three fixed values throughout
the metamaterial sample.

For active atoms that have a pair of transitions in the Λ
configuration, we assume that the frequency ω1 corresponds
to the excited energy level, and ω2 and ω3 to the two lower
energy levels. In this configuration, the transition between
the two lower levels is forbidden, and so the corresponding
electric dipole moments vanish,

r23 � r32 � 0: (3)

B. Maxwell–Bloch Envelope Equations
We assume wave propagation in the medium to be one-
dimensional, varying in the z direction only, so that the fields
E, B, P, M, D, and H all lie in the xy plane. Equations (1b) are
then satisfied automatically. We nondimensionalize Eqs. (1),
(2b), (2c), (2d), and (2e) using a number of fundamental
scales in the system. We let ω0 � maxj≠kjωj − ωkj denote
the typical size of the quantum frequencies ωn in Eq. (2e),
which is inversely proportional to the wavelengths of the light
absorbed and emitted in the corresponding atomic transitions.
We let d � max jrmnj denote the typical electric dipole
strength of the electron transitions. We define the cooperative
frequency

ωc �
���������������������
2πNd2ω0

ℏ

s
; (4)

which is the typical response scale of the active atoms in the
medium, while its reciprocal is proportional to the temporal
width of the light pulses involved in the interaction with the
metamaterial. Using the scales ω0, ωc, and d, we rescale the
spatial and temporal variables as ωcz∕c → z and ωct → t;
the frequencies as ω∕ω0 → ω, ΩP � ωP∕ω0, ΩM � ωM∕ω0,
and Ωm � ωm∕ω0 for m � 1, 2, 3; the electromagnetic-field
and material variables as dE∕ℏωc → E, dH∕ℏωc → H,
4πdP∕ℏωc → P, and 4πdM∕ℏωc → M; and the electric dipole
moments as αlj � rlj∕d.

We restrict our study to the case of the slowly varying
envelope approximation when light pulses include many
electric-field oscillations, that is, ωc ≪ ω0. We thus assume
the electric field to be a sum of slowly varying modulated
plane waves,

E�z; t� � E��z; t�eiθ� � E−�z; t�eiθ− � c:c:; (5)

where c.c. stands for complex conjugate, ω� are the carrier
frequencies of the electric fields, and the fast phases are de-
scribed by the expressions

θ� � ω0

ωc
�k�z − ω�t�: (6)

We assume the fields H, P, and M behave in a like manner.
Here, the dimensionless wavenumbers and frequencies satisfy
the usual dispersion relation,

k2�ω� � ω2μ�ω�ϵ�ω�; (7a)

where ϵ�ω� and μ�ω� are the dielectric permittivity and mag-
netic permeability, respectively, given by the expressions

ϵ�ω� � 1� γΩ2
P

Ω2
P − ω2 ; μ�ω� � 1� βω2

Ω2
M − ω2 ; (7b)

which follow from the oscillator equations, Eq. (2b), describ-
ing the medium polarization P and magnetization M.

For the polarization Q due to the active atoms, defined in
Eq. (2d), we assume the form

Q � −i
Z

∞

−∞
�ρ��z; t; ν�α��eiθ� � ρ−�z; t; ν�α�−eiθ− − c:c:�g�ν�dν;

(8)

where α� � α12 and α− � α13, and the components ρ��z; t; ν�
are detuned from the exact resonance with the carrier
frequencies ω� of the electric-field components E��z; t� by
the amount �ωc∕ω0�ν. In other words, we assume that the re-
spective atomic transition frequencies Ω1 −Ω2 and Ω1 − Ω3

are related to ω� and ω− by the relations ω� � Ω1 −Ω2 �
�ωc∕ω0�ν and ω− � Ω1 −Ω3 � �ωc∕ω0�ν. The detuning ν arises
mainly due to the motion of the active atoms, which gives rise
to a Doppler shift in the transition frequencies; ν is therefore
distributed according to a function g�ν� with

R
∞
−∞ g�ν�dν � 1,

which describes the shape of the spectral line [36]. In assum-
ing that the actual detuning is of the size �ωc∕ω0�ν, we assume
that this line is very narrow as compared to the typical size of
the variations of the dielectric permittivity ϵ�ω�, magnetic per-
meability μ�ω�, and the wave vector k�ω�with the frequencyω.

The polarization components ρ�, corresponding to the two
atomic transitions in the Λ-configuration medium, are ex-
pressed in terms of the atomic level amplitudes ak as
ρ��z; t; ν� � iha1�z; t�a�2�z; t�ie−iθ� and ρ−�z; t; ν� � iha1�z; t�
a�3�z; t�ie−iθ− , where h·i denotes ensemble averaging over all
the atoms in the sample in an infinitesimal volume at the lo-
cation z and time t, whose transition frequencies are detuned
by �ωc∕ω0�ν from the resonance with the frequencies of the
respective electric-field components. Likewise, we express
the variable describing the degree of coherence between
the two lower levels as ρ�z; t; ν� � ha2�z; t�a�3�z; t�iei�θ�−θ−�,
and the level-occupation numbers as N � hja1j2i, n� �
hja2j2i, and n− � hja3j2i.

For the electric-field components E� � 2E� · α� and
E− � 2E− · α−, and the macroscopic polarization, coherence,
and occupation variables, ρ�, ρ, N , and n�, we derive the
set of Maxwell–Bloch equations

∂E�
∂z

� 1
v�

∂E�
∂t

� 2ω�

������
μ�
ϵ�

r
jα�j2

Z
∞

−∞
ρ��ν�g�ν�dν; (9a)

∂ρ�
∂t

� iνρ� � 1
2
�E��N − n�� − E−ρ

��; (9b)

∂ρ−
∂t

� iνρ− �
1
2
�E−�N − n−� − E�ρ�; (9c)
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∂ρ
∂t

� 1
2
�E��ρ− � E−ρ

���; (9d)

∂N
∂t

� −
1
2
�E�ρ�� � E��ρ� � E−ρ

�
− � E�

−ρ−�; (9e)

∂n�
∂t

� 1
2
�E�ρ�� � E�

�ρ��; (9f)

where μ� � μ�ω�� and ϵ� � ϵ�ω��, and the group velocities
v� � v�ω�� are computed from the dispersion relation in
Eq. (7a) via the formula v�ω� � 1∕k0�ω�, with the prime denot-
ing the derivative with respect to the frequency ω, which leads
to the expression

1
v�

� ω�
2

����������������������������������������������������������������������
1� γΩ2

P

Ω2
P − ω2

�

��
1� βω2

Ω2
M − ω2

�

�s

×
�
2
ω�

� γΩ2
P

�Ω2
P�1� γ� − ω2

���Ω2
P − ω2

��

� βΩ2
M

�Ω2
M � ω2

��β − 1���Ω2
M − ω2

��

�
: (10)

We will investigate the solutions of Eqs. (9) numerically in the
remainder of this paper.

3. RESULTS
Our goal in the remainder of this paper is to investigate a
doubly resonant interaction between light pulses and a meta-
material doped with active atoms in the Λ configuration,
such that one of the two corresponding atomic transitions
takes place in the positive and the other in the negative
refractive-index regime. Using numerical simulations, we
uncover several phenomena that arise as consequences of this
interaction.

A. Physical Setup
We simulate light pulses with carrier frequencies that are cen-
tered around the values ω� and ω−, as depicted in Fig. 1,
around which the transition frequencies of the atoms in
the Λ configuration embedded in the resonant metamaterial,
Ω1 − Ω2 and Ω1 −Ω3, are also narrowly centered. In a typical
metamaterial, light interacts resonantly with metallic nano-
inclusions embedded in it, and due to the resonant nature of
the negative refraction, the value of the refractive index is neg-
ative, n < 0, only within a limited interval of frequencies. We
will study the case when ω� is in the regime of positive refrac-
tion, n > 0, and ω− is in the regime of negative refraction,
n < 0 (see Fig. 2), so that the group velocities of the two pulse
components point in opposite directions. To focus on the op-
posite directionality of the two electric-field-component group
velocities v�, we consider an idealized version of Eqs. (9) in
which we set all constants to 1 except v�, which we set to
v� � �1. This choice may also correspond exactly to the case
of a chiral metamaterial, in which the two Λ-configuration
transitions in the embedded active atoms correspond to the
same frequency but different polarizations of light [29,30].
In addition, we consider the limit of a narrow spectral line,
when g�ν� � δ�ν�, where δ�·� is the Dirac delta function.

The physical setup that we consider in our simulations
is as follows: initially, the system is in the ground state,
N�z; 0; ν� � 0, which is characterized by a relative distribution
of the ground-level populations n��z; 0; ν� and n−�z; 0; ν�; the
medium polarization due to the two allowed atomic transi-
tions is absent, ρ��z; 0; ν� � ρ−�z; 0; ν� � 0; the ground states
are coupled through the initial coherence variable ρ�z; 0; ν� �
ρ0�z; ν�. There is no light in the medium initially,
E��z; 0� � E−�z; 0� � 0, and a right-propagating incident
pulse, E��0; t� � E�0�t�, is injected at the left edge of the
metamaterial sample. We set E−�l; t� � 0, where l is the z
coordinate of the right edge of the sample, as we inject no
left-propagating electric-field component into the metamate-
rial. In the simulations to follow, we take for the boundary
condition E�0�t� the Gaussian function given by

E�0�t� � Ae−�t−td�
2∕2σ2 ; (11)

where A is the amplitude, td is the delay time, and σ the width
of the injected pulse. Specifically, for the latter two parame-
ters, we fix the dimensionless quantities td � 3 and σ � 1
throughout our investigation. In addition, we fix the length
of the sample to be l � 40.

In the majority of previous studies, the initial coherence
variable ρ0�z; ν� was assumed to vanish, which corresponds
to the absence of coherence between the two lower-energy
states in the Λ-configuration medium. A Λ-configuration

ω−

ρ
0

ω+

Fig. 1. (Color online) Λ-configuration system with transition
frequencies ω� and ω−. The transition with the frequency ω� corre-
sponds to the response of the metamaterial in a regime with a positive
index of refraction, and the transition with the frequency ω− corre-
sponds to the response of the metamaterial in a regime with a negative
index of refraction. The medium is initially prepared so that a nonzero
coherence value, ρ0, between the two lower levels is present.

ω+ ω−

n>0 n<0

Fig. 2. (Color online) Due to the resonant nature of the negative-
refractive-index phenomenon, the sign of the refractive index depends
on the frequency. The intermediate (forbidden) range of frequencies,
in which ϵ and μ have (real parts with) opposite signs and there is no
wave propagation, is depicted by the green dot.
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medium with nonzero ρ0 can be prepared by irradiating it with
a two-color electromagnetic field in such a way that the
transition between the two lower levels is in a two-photon
resonance. This can be achieved if the difference between
the frequencies of the two colors of the light used in preparing
the medium equals ω� − ω−. Because a dipole transition
between these two lower levels is forbidden, the induced
coherence between them, reflected in ρ0, will persist much
longer than the polarization components or the excitation
of the upper energy level. The nonzero value of ρ0 provides
an immediate, nonlinear coupling between the two electric-
field components E�, regardless of their size.

We are primarily interested in the physical setup in which a
right-traveling electric-field component is injected into a
metamaterial containing active atoms in the Λ configuration,
and a left-traveling electric-field component is generated via
the nonlinear coupling. A schematic of this setup is displayed
in Fig. 3. Here, the red light, labeled “Pump,” is injected into
the metamaterial and propagates to the right. The goal is for
the red light to be converted into blue light, labeled “Signal,”
which would propagate in the negative-refractive-index
regime and so to the left, and would eventually exit the
medium at the same end at which the red light entered it.

We now describe the phenomena we have observed in our
numerical simulations, which arise as a consequence of the
color conversion discussed above.

B. Self-Trapping and Counterpropagation
The results of the simulations we display in Figs. 4 and 5 show
a self-trapped, copropagating pair of nonlinear pulses with
oscillating amplitudes, which forms in both electric-field com-
ponents, E� and E−, from the incident pulse with the nonzero
component E�0�t� in Eq. (11). These components travel
simultaneously in the same direction and with the same
velocity despite the fact that the linear group velocities v�
corresponding to their respective refraction regimes point
in opposite directions.

In the simulation depicted in Fig. 4, the amplitudes E� and
E− of the self-trapped pulse pair contain virtually all the en-
ergy of the incident pulse. These amplitudes are almost equal,
and the resulting trapped pair of pulses appears to propagate
at a constant velocity and considerably more slowly than the
group velocity v� of the positive-refraction regime. The two
copropagating pulses maintain rather complicated, in-phase,
oscillatory shapes during their propagation and shed a small
amount of radiation.

In Fig. 5, we display a different setup in which the ampli-
tude of the incident pulse E�0�t� and the initial coherence ρ0
are smaller, while the initial population difference has the
opposite sign from that used to generate Fig. 4. In this case,
the emerging copropagating pulse pair not only propagates
more slowly than the linear group velocity v� of the posi-
tive-refraction regime but also appears to decelerate during

propagation. Note that the amplitude of the pulse component
E− shown in Fig. 5, propagating in the negative-refraction
regime, is considerably smaller than that of the pulse compo-
nent E�, propagating in the positive-refraction regime.

The spatiotemporal distribution of the electric-field compo-
nent E� in Fig. 5 shows a forerunner wave propagating with
the linear group velocity v� of the positive-refraction regime
and with an oscillatory distribution of its tails, followed by the
self-trapped pulse and the waves in the region behind this
pulse. The forerunner wave creates an oscillatory continuous-
radiation field in the component E− with a much smaller am-
plitude than the component E�. Both these components
propagate in the region between the forerunner wave and
the self-trapped pulse. Another source of continuous radiation
is the self-trapped pulse itself, which largely sheds radiation in
the region behind it. Note that these two regions of continuous
radiation exhibit very distinct features: one can easily notice
the radiation in E− to emerge from the peaks in the oscilla-
tions of the self-trapped pulse and propagate backward in the
region behind this pulse; the propagation direction is
indicated by the arrow in Fig. 5. Note that this radiation again
travels more slowly than the group velocity v− in the negative-
refraction regime.

From the middle two panels in Fig. 5, one can clearly see
the excitation of the medium polarizations ρ� and ρ− induced
by the copropagating pulse pair. A closer look shows that the
electric-field and polarization oscillations along this pulse
have the opposite phase, indicating that an oscillatory ex-
change of energy between the electric field and the medium
takes place as the pulse propagates. Note the sharp dip of
the polarization component ρ� along the pulse trajectory,
which is where the amplitude of this component changes sign.
In addition, a depletion of the electron population density n�
appears along the pulse trajectory, accompanied by a corre-
sponding increase in the population density n−.

Signal

Pump
MediumΛ

Fig. 3. (Color online) Schematic of the physical setup investigated
numerically: in this case red light, the pump, is injected into the
Λ-configuration metamaterial. This red light is partly converted into
blue light, the signal, which travels in the opposite direction.

Fig. 4. (Color online) Self-trapped, copropagating pulse pair. Non-
vanishing initial conditions: ρ0 � 0.3, n� � 0.8, n− � 0.2. Amplitude
of the injected Gaussian pulse E�0�t�: A � 2.
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C. Hot Spot
The incident pulse with the nonzero component E�, displayed
in Fig. 6 propagating in the positive-refraction regime, slows
down to a halt and decays in time until it is virtually extin-
guished. Part of this pulse switches into the component E−,
which contains a considerable amount of radiation propagat-
ing backward. Note that the amplitude of the incident pulse
E�0�t� is the same as in Fig. 4; the initial coherence between
the two lower levels, ρ0, is the same as in Fig. 5; and the initial
population densities are equal.

In addition, we see that at the location at which the entire
incident pulse has disintegrated and switched into the com-
ponent E−, a strong excitation in the medium polarization
ρ� and depletion of the occupation density n� emerges.
A considerable amount of energy appears to be deposited
in the medium at this location. This energy forms a stationary
hot spot of medium excitation, which also does not appear to
noticeably decay in time. The polarization ρ− and occupation

density n− appear to also reflect the underlying backward-
propagating continuous radiation in the component E− of
the electric field.

4. CONCLUSIONS
In this paper we have investigated the nonlinear coupling and
consequent flow of energy between light pulses propagating in
the positive-refractive-index regime and light pulses propagat-
ing in the negative-refractive-index regime (or vice versa)
within a resonant metamaterial doped with active atoms in
the Λ configuration.

Phenomena we have observed in our numerical simulations
include the creation of a self-trapped, copropagating, nonlin-
ear pulse pair that propagates with neither of the group veloc-
ities. In particular, this pulse behaves in an oscillatory fashion
and propagates in the same direction but with a velocity
slower than the original incident pulse. The radiation this pair

Fig. 5. (Color online) Self-trapped, copropagating pulse pair and counterpropagating radiation. Nonvanishing initial conditions: ρ0 � 0.2,
n� � 0.3, n− � 0.7. Amplitude of the injected Gaussian pulse E�0�t�: A � 1.4.

Fig. 6. (Color online) Hot spot. Nonvanishing initial conditions: ρ0 � 0.2, n� � n− � 0.5. Amplitude of the injected Gaussian pulse E�0�t�: A � 2.
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sheds typically propagates in the directions indicated by the
linear group velocities of its respective colors.

We have also observed a pulse with the color correspond-
ing to a positive-index regime to almost completely switch
into the negative-index regime where radiation is created,
which travels backward. Simultaneously, a hot spot of perma-
nent medium excitation is formed when the pulse in the
positive-index regime slows down and eventually stops. From
the location of this hot spot, the electric field in the negative-
index regime sheds backward-propagating radiation. The
energy deposited in the hot spot appears to remain stationary
in space as time increases.

In the simplest, most idealized case of light interacting with
a Λ-configuration optical medium and in the absence of any
initial medium polarization excitation or coherence between
the two energetically lower levels, we have predicted a par-
ticularly transparent version of polarization and/or color
switching [45,46]. In particular, if one lower level is initially
more populated along the medium sample than the other,
the electric-field polarization or color of any pulse propagat-
ing through this medium switches until the pulse interacts
with the medium only through the transition between the
excited upper level and the less populated of the two lower
levels. In the presence of a nonvanishing initial coherence
ρ0, the system instead asymptotically approaches a specific
combination of the two transitions, whose details depend
on the value of ρ0 [47]. Further simulations aimed at drawing
analogies and comparisons between these idealized results
and the dynamics of the light–metamaterial interaction inves-
tigated here will be conducted in future investigations.
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