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Abstract

During direct numerical simulation of the isotropic turbulence of surface gravity waves in the framework of Hamiltonian equations
formation of the long wave background or condensate was observed. Exponents of the direct cascade spectra at the different levels
of an artificial condensate suppression show a tendency to become closer to the prediction of the wave turbulence theory at lower
levels of condensate. A simple qualitative explanation of the mechanism of this phenomenon is proposed.
© 2010 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Description of the water waves appeals scientists attention during several centuries. At the same time, first attempts
to explain observed spatial and temporal spectra are relatively recent. One of the first and at the same time most famous
works is the paper by Phillips [26] which was, probably, the first attempt to give an explanation for power-like spectra
of surface gravity waves observed in numerous experiments. In just one decade statistical theory of water waves,
based on the the kinetic equation for waves derived by Hasselmann [15] and solutions of this equation obtained from
Zakharov’s theory of wave (or weak) turbulence [33,41]. These solutions [37,41] are stationary Kolmogorov solutions
of the kinetic equation corresponding to flux of energy from large to small scales (direct cascade) and flux of wave
action (waves “number”) from small to large scales (inverse cascade). Now the kinetic equation is a base tool for wave
forecasting.

The Hasselmann kinetic equation for waves was derived under some assumptions, which include Gaussian statistics
for the wave field and prevalence of resonant interactions [41]. These assumptions are subject to confirmation. Modern
numerical methods allow us to perform wave field modeling in the framework of kinetic equations faster than the
real processes in nature. At the same time, it is still not possible to create a wave forecasting model based on direct
numerical simulation of the primordial dynamic equations. Fortunately, in practical applications we do not need to
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know velocity and elevation at every point of the surface. Statistics, especially mean wave height and speed, are what
really matters for estimation of operational conditions of oil platforms and cargo ships. Such statistics are exactly the
subject of the theory of weak turbulence. As a consequence, the problem of confirmation and correction of the theory
of wave turbulence is of great practical importance.

Open sea observations confirm temporal and space spectra predicted by the theory of wave turbulence [8,16,30]. A
comprehensive review of experiments and comparison with the theory of the weak turbulence can be found in [2,3,36].
At the same time even the most recent, state of the art wave tanks experiments give strange results [6,13], demonstrating
dependence of the spectrum slope on the average steepness or forcing level.

One of the ways from this dead end is direct numerical simulation in the framework of dynamical equations. Such
numerical experiments can be separated in two major groups. In swell simulation experiments initial condition is some
spectral distribution, there is no pumping. Temporal evolution of such initial condition is simulated and than can be
compared with corresponding simulation in the framework of kinetic equation [21,25,29,31,39,40]. More interesting
and more complex is the simulation of the wave turbulence with pumping. Classical sandbox for such simulations is
an isotropic turbulence, which allows us to demonstrate of the features of the wave turbulence and, at the same time,
simplifies situation due to additional smoothing of the spectra after angle averaging. Although this situation looks
pretty artificial, the isotropic turbulence can be observed in the sea with large amount of broken ice, for example, where
waves create isotropic wave field after multiple reflections. But in such a case floating ice have to be taken into account,
which makes situation more complex. Simulation of isotropic wave turbulence already confirmed some prediction of
the theory of weak turbulence. Direct cascade spectra were obtained in [11,12,22]. Inverse cascade spectra, although in
simplified equations, were obtained in [1]. For the first time simultaneous simulation of direct and inverse cascades for
gravity waves in the framework of primordial dynamical equations was performed in [20]. Formation of the long wave
background (condensate) due to inverse cascade flux was observed. The condensate development was influenced by
the discreteness of the wavenumbers grid at the origin of the k-space. Such discreteness is unavoidable in finite basin
experiments with realistic size of experimental site corresponding to controllable weather conditions and reasonable
wavemaker equipment.

Current paper is a continuation of the work [20], which was a brief declaration of the results of two initial numerical
experiments (with fully developed and partially suppressed condensate). Although simulations explained some results
of other authors [13,6], there was significant amount of questions which needed to be answered and for which only hints
for solutions were proposed. The present article will concentrate on the condensate generation and its influence on the
direct cascade spectra of wave turbulence of surface gravity waves. A more detailed and deep insight in the mechanism
of the condensate influence is presented. Starting from the results of isotropic turbulence simulation author will explore
in details how presence of the condensate changes the slope of direct cascade spectrum. It will be demonstrated that the
presence of the inverse cascade is also important. At the same time, in the close to pure situation with suppressed both
condensate and inverse cascade, observation shows spectrum slope close to previous numerous results of simulations
[11,12,22]. A simple qualitative explanation of the mechanism of spectrum distortion is provided. Direct analysis of
the simulation results supports the theory.

2. Theoretical background

Author follows previous works in theoretical description of the system under consideration [11,12,21,20].

2.1. Dynamical equations

We study the potential flow of an ideal inviscid incompressible fluid with the velocity potential ¢ = ¢(x,y,z;1):
A¢p =0,

in the infinitely deep domain occupied by the fluid. Equations for the boundary conditions at the surface are the
following:

+gn=0. (1)

=n
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Here n(x,y;t) is the surface elevation with respect to still water, g is the gravity acceleration. Eq. (1) are Hamiltonian
[34] with the canonical variables n(x,y;¢) and ¥ (x,y;f) = ¢(x,y,n(x,y;1);1):

op _SH Y SH

— o - o (2)
a oy o 51

where H is the Hamiltonian of the system:

1 —+0o0 5 n )
H= / dx dy (gn +/ V| dz>,
2 ) —00

Unfortunately H cannot be written in the close form as a functional of n and 1. However, one can limit Hamiltonian
by first three terms of expansion in powers of 7 and :

H=Hy+H +H+...,
1 R
Hy= - / (gn2+1/fk¢) dx dy,

2
1 » 3
Hi= 5 [ 0[IVoP = Go)’] axay ©
1 A Ao
Hy =5 [ ko) ko) + 0 9] ddy.

Here A =932/0x%+92/3y? is the Laplace operator, k is a linear integral operator (k = v/—A), such that in k-space it
corresponds to multiplication of Fourier harmonics:

1 - 1 -
Vi= o / vl = / npe'" dr. (4)

by k = /kZ + k%. For gravity waves this reduced Hamiltonian describes four-wave interaction.

Then dynamical equations (2) acquire the form:

N A A A a 1 A 1. N
i = kv = (VOV) = kinky] + krknkyD) + S ADky] + Sk Ayl = F~ ],
(5)
. 1 ~ PN ~ o N
V=—gn—; [(vw - (kwﬂ — tkylklnky) — kylAy — F~ ' [yeynd + FULP).

Here dot means time-derivative, #~! is an inverse Fourier transform, yy is a dissipation rate (according to recent work
[7] it has to be included in both equations), which corresponds to viscosity on small scales and, if needed, “artificial”
damping on large scales. P; is the driving term which simulates pumping on large scales (for example, due to wind).
In the k-space supports of y; and P; are separated by the inertial interval, where the Kolmogorov-type solution can
be recognized. These equations were derived as a result of Hamiltonian expansion in terms of k5. From the physical
point of view the k-operator is close to the derivative operator, so we expand in powers of the slope of the surface. In
most of the experimental observations average slope of the open sea surface u is of the order of 0.1, so such expansion
is very reasonable.

These are dynamical equations which will be subject for modeling in a significant part of this article. In order to
understand the motivation of the paper we need to introduce statistical description of the wave field.

2.2. Kinetic equation

For the analysis of the wave field it is natural to use the Fourier representation (4). Wave field functions (7, r) and
n(7, t) are real valued functions, so their Fourier transforms have Hermitian symmetry:

S * Lo *
Vi=v.  me=np
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As a result we have two complex functions and each of them use effectively only half of the wavenumbers plane. For
further derivation is is convenient to introduce so called normal variables:

Wk ) k

In this variables for a wave field of one plain wave with wavevector ko only harmonics a; will be nonzero. We can
state that we introduced elementary excitations of the system. Hamiltonian equations in this variables has canonical
form:

. 0H 7
(17( = —1 ¥
&llz
Hamiltonian in this terms allows us to separate different wave interaction processes:
— 212 g%
Ho= [ wrlayf? di.
1 1 Z() - - - - - -
H = 677 Elzllzz(alzlalzzako + ak ak al; )8(k1 + ky + ko) dky dky dkg
LL (b apat +at at g )s + Ko — ko) diy dbo di
t35, i, A0, 95,9, T a4z, az )8kt + k2 — ko) dky dk dko,
L1 (&)
H, = ZW / W,;l;z;ﬂa(a,;lalzza&am + a a a~ a ) X 8(k1 + kz + k3 + k4) dk1 dk2 dk3 dk4
1 1 T T
+ Zw Fk1k2k3k4(a akzak%a/m + aklak k 4) X 8(ky — ko — k3 — kq) dky dky dks dky
1 1 e
+ ZW Dk1k2k2k4(ak1ak2a 3(/(1 + kQ — k3 ka)dky dky dks dky.

We omit formulae for matrix elements of these processes (they can be found in [18]) for the sake of conciseness.
For gravity waves on the surface of the deep fluid dispersion relation is w; = +/gk and resonant conditions:

Wiy = Wk +a)k21 kO = kl +k2’

are never fulfilled, which means that three-waves processes of decaying and merging of the waves are prohibited. Such
dispersion relations are of the “non-decay type”.

In this case it is well known fact that cubic terms of the Hamiltonian (8) can be eliminated by proper canonical
transformation a(k, t) — b(k, t). Hamiltonian in new variables looks as follows:

Ho= [ aulbgPt.

H; =0,
1o L
=300 / i b b by by 0+ R — s — Ky dRadRsdRs.

The formula of the matrix element T} Foliaks is too bulky to give it here and can be found in [27].
If we suppose, that for our wave field phases and amplitudes are not correlated one can introduce pair correlator:

<a,;af/> = 8k — k). )

This is a hypothesis, although quite reasonable for the real sea surface. Even more, our observations show that initially
not completely random spectrum (for example, with random phases but correlated amplitudes) become stochastic after
several tens of charachteristic wave periods due to multiple nonlinear phase and amplitude mixing. We can verify it
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by direct numerical simulation, but this question is out of the scope of present article. The nj is measurable quantity,
connected directly with observable correlation functions. For instance, from a definition one can get:

1 wy
= (I = 5 2 0u +np), (10)
2¢g
For gravity waves we can also use the following correlation function:
<b,;b§,> — NSk — k). (11)

Because in the case of variables b; all non-resonant processes are excluded this is the correlation function for which
kinetic equation is derived.
The relation connecting n; and Ny is very simple (in the case of deep water) [35]:
nr — Ni
— =, (12)
ng
where = (ka)?, here a is a characteristic elevation of the free surface. In the case of the weak turbulence u < 1.
The correlation function Vi obeys the kinetic equation [15,33,41]:

ON}
? = Sui(N, N, N) + Sin(k) — Saiss(k), (13)
Here S;, corresponds to input of energy, Sy;s; is the dissipation of energy in the system, and

2
X (Niy Niy Niy + NgNiy Ny — NNy Ni, — NiNi, Niy)

Su(N. N, N) = 4x / Tk,

Sk + ki — ky — k3)8(wx + g, — oy — wiy) dky dky dks, (14)

describes nonlinear interaction of waves. Expression for T 71 ks CAN be found in [27].

2.3. Kolmogorov—Zakharov solutions of kinetic equation
Let us consider stationary solutions of the kinetic equation assuming that:

e The medium is invariant with respect to rotations.
e Dispersion relation is a power-like function w = ak®.

o L .‘_’_’_’_’_'3_’_)_’_~
° Tk,k],kz,k} is a homogeneous function: Tek,sk;,skg,elq =¢ Tk,kl,kz,k3'

Under these assumptions Zakharov [33,37,41,42] obtained Kolmogorov-like solutions corresponding to fluxes of two
integrals of motion (energy and wave action or number of waves):

nl) = € PV (CHH-D),

15
n](f) — C,0' Bk (@B~)/3)=d), (1)

Here d is a spatial dimension (d=2 in our case). In the case of gravity waves on a deep water w = /gk (¢=1/2) and,
apparently, 8=3. As a result one can get:

n) = PPk,

16
n](?) — C2Q1/3k_23/6- ( )

The first spectrum ng) corresponds to the direct cascade, describing flux of energy from large scales (pumping)

to small scales (dissipation). The second spectrum n,({z) describes to inverse cascade, corresponding to flux of number
of waves (or wave action) from small scales (pumping) to larger scales. In the case of swell or decaying turbulence
inverse cascade reveals itself as a downshift of spectral maximum to smaller wavenumbers, resulting in growing long
waves.
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2.4. Verification of the kinetic equation

As it was shown during derivation of kinetic equation, we neglect some processes, such as multiple harmonics
generation, because they are non-resonant. Also, statistical description by definition does not take into account rare or
catastrophic events, for example solitons, freak wave formation, and wave breaking or whitecapping which could be
very important. It means that we need to verify these assumptions using real life or numerical experiments.

Broad program of verification of kinetic equation for gravity waves was fulfilled during the last decade. The key
method of verification is numerical simulation in the framework of primordial Hamiltonian equations for shape of the
surface n(7, t) and velocity potential on the surface (7, r). Such numerical experiments provide complete information
about the system, including phase and amplitude of calculated function at every points of the surface at every moment
of time. Of course such luxury comes at a great cost of enormous computational complexity. Due to rapid progress of
computers available for computations and numerical algorithms during last couple of decades such simulations became
possible. The first work which presented successful simulation of weak turbulence of gravity waves was published in
the beginning of 2000s [25]. It was simulation of the decaying turbulence. Decaying turbulence experiments start from
initial spectral distribution close to realistic swell which is propagating without pumping, decaying (loosing energy)
due to nonlinear transfer from spectral peak to the dissipative scale. In the paper [25] formation of weak turbulent
Kolmogorov—Zakharov [41] spectral tail was confirmed. In the series of works [11,12,18] the first confirmation of
Kolmogorov—Zakharov spectra in systems with pumping was provided as well as confirmation of Independence of
spectrum exponent from the pumping force in some reasonable interval of input fluxes. Shortly after that some possible
obstacles for verification of Hasselmann equation through wave tank experiments were pointed out [39]. In papers
[21,40] idea of modification of the dissipation term Sg;ss in order to take additional energy transfer to the dissipation
scales due to whitecapping and wavebreaking was developed through a series of massive numerical simulations of
decaying turbulence. In a recent paper [20] some consequences of whitecapping influence on a Kolmogorov—Zakharov
spectra in wave tanks experiments were briefly analyzed.

3. Numerical simulation
3.1. Simulation parameters

Here we continue investigation of the problem which was started in [20]. We simulated the primordial dynamical
equations (5) in a periodic spatial domain 27 x 2. In order to save computation time multigrid approach has been
used. Because formation of the inverse cascade is the most time consuming part of calculations (characteristic nonlinear
time is about wy/p =~ 10wy, and wi~~/k), we completed this calculation on the relatively small grid 256 x 256. After
that we gradually increased resolution up to 1024 x 1024 nodes. To check whether we loose something in the high
frequency region long time simulation on grid 256 x 256 was performed. It demonstrated absence of change in the
inverse cascade, pumping and high frequencies region.

The used numerical code was verified in [10-12,21,39,40]. Gravity acceleration was g=1. The pseudo-viscous
damping coefficient had the following form:

k—ky)?, itk > kg,
kz{)/o( d) d (17

0, ifk < ka;

where k;=256 and yg 1024 =2.7 X 10* for the 1024 x 1024 grid and ky=64 and yp256 =2.4 X 10? for the smaller
256 x 256 grid. Pumping was an isotropic driving force narrow in wavenumber space with random phase:

k — ko —
4F()( kpl)( p2 k),

P = fie'®i®,  fi = (kp2 = kp1)? (18)
0 ifk <kpiork > kpo;
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Fig. 1. Spectra <|ak |2 > With condensate on the 1024 x 1024 grid (solid); on the 256 x 256 grid with more developed condensate (dashed); without
condensate on the 1024 x 1024 grid (dotted); without inverse cascade on the 1024 x 1024 grid (dashed-dotted).

here kj1 =28, k2 =32 and Fp=1.5 x 1073; Ry (1) was a uniformly distributed random number in the interval (0,27]
for each k and 7. The initial condition was low amplitude noise in all harmonics. Time steps were Atjgp4 =6.7 X 104
and Atyse=5.0 x 1073, We used Fourier series in the following form:

Ny/2—1Ny/2—1

. 1 2r 2w -, . .
7 = F[ -’] = / / *elkrdzr’ > = F_l[ -’] = "e_lkr,
up ny el A A ny ny ny § § n;

—Ny/2 —Ny/2

3.2. Results

As it was reported in [20] as a result of simulation we observed formation of both direct and inverse cascades (Fig. 1,
solid line), although exponents of power-like spectra were different from weak turbulent solutions (16). It is important
to note that development of the inverse cascade spectrum was arrested by the discreteness of the wavenumber grid in
agreement with [10,17,23,39]. After that, a large scale condensate started to form. The reason of this phenomenon is
the following. It can be shown that resonant conditions for four-waves interaction of gravity waves are never fulfilled
exactly on the discrete grid of wavevectors (integer number for 27 x 27 box):

Wiy + Wy — Wp; — Wiy * 0.
Nonlinear frequency shift /™ weakens resonant condition, now resonant curve has finite width:
|k, + @k, — Wk — gy | < T

Nonlinear frequency shift depends on T Tofisia® which is homogeneous function. It grows as k3 when £ is increased.
This is the reason why it is much easier to get resonant interaction in the direct cascade region (high wavenumbers).
It also decreases as k3 when k— 0. It means that effectively grid become more and more coarse at large scales. It
means that at some scale inverse cascade is stopped because four-waves nonlinear interaction is “turned off”. At the
same time flux of action still brings new waves to this scale. We have “condensation” [9] of waves. Similar processes
were observed in 2D-hydrodynamics [5] and plasma [28]. It is worth to mention, that the same mechanism provides
broadening of the resonant curve in the high wavenumbers. As a result, the finest numerical grid in our experiment
(1024 x 1024) is definitely beyond the threshold which secures resonant interactions for high frequencies (high-k)
modes of direct cascade. Reasonable results were obtained already on the grid 256 x 256 in [11] and universality was
confirmed later in [12].

As one can see, the value of wave action <|ak |2> at the condensate region is more than an order of magnitude higher
than for the closest harmonic of the inverse cascade. The dynamics of large scales became extremely slow after this
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Fig. 2. Surface of the fluid 7(#) with (left) and without (right) condensate.

point. We managed to achieve downshift of the condensate peak by one step of the wavenumber grid during long time
simulation on a small grid (256 x 256) (Fig. 1, line with long dashes). As one can see, we observed elongation of the
inverse cascade interval without significant change of the slope. Unfortunately, the inertial interval for inverse cascade
was too short to exclude the possible influence of pumping and condensate.

The question whether these spectra are stationary or not is still open. It was nearly impossible to understand this
from the numerical results. Spectrum of inverse cascade was growing very slowly, which resulted in further propagation
of the condensate by one step in k-space. A the same time, after the grid was increased and we got direct cascade tail,
spectrum was visually stabilized. We were unable to observe any significant change during several hundreds of periods
of peak wave. The hypothesis is that due to condensate stimulated whitecapping we have “friction” of condensate and
small scale waves (mechanism is described below) which leads effectively to drain of wave action from the region
of large scales and stabilization of the spectrum. The confirmation of this hypothesis requires long time simulations
in order to compare directly the results obtained on small grid and on large grid at the same moment of time. This
simulations are hardly possible with available code and are definitely out of scope of the current article.

For direct cascade spectra we also used a log—log scale. Results are present in Fig. 3 (left). Formally, in this case we
have quite a long inertial interval 32 <k <256, but in reality damping has an influence on the spectrum approximately up
to k>~ 180. Nevertheless, in this case we have more than half of a decade in k-space. The theory of weak turbulence gives
us dependence ~k~* (16), known as Kolmogorov—Zakharov direct cascade spectrum for gravity waves. Nevertheless,
one can see that we observe k=2, known as Phillips [26,24] spectrum. Possible explanation was provided in [20].
The main idea was the following: presence of the condensate stimulated additional whitecapping and wavebreaking
processes by local increase of steepness. These processes provide additional transfer of energy to the dissipation region.
When this dissipation is strong enough to balance flux of energy, such mechanism should give Phillips spectrum as a
result [24]. The detailed analysis of the fluxes and their balance is a topic of separate work. In order to estimate dissipa-
tion due to whitecapping we need to know at least dependence of dissipation function on average steepness. Our recent
findings [38] show that we cannot use currently available empirical formulae. At the same time, value of the dimen-
sionless Phillips constant 1073 is consistent with the results of experimental observations given in [32]. It was shown,
that suppression of the condensate (see Fig. 2) changes spectrum exponent to some value closer to the theory of weak
turbulence. However, at that time we failed to avoid long waves’ influence on the direct cascade spectrum completely.
The longest waves of inverse cascade were providing long wave background which influence distorted the spectrum.

In order to eliminate this influence let us suppress inverse cascade completely by artificial damping in low wavenum-
bers. The result of simulation is shown in Fig. 3 (right panel).

For comparison we have put in the same figure initial spectrum for direct cascade (left). As one can see, the exponent
of the spectrum changed and now almost coincides with the prediction of the weak turbulent theory. The tiny difference
may be a result of the influence of the left peak, which is the result of insufficient length of damping region. At the
same time, longer artificial damping can start to influence the pumping area and change the input flux significantly.

3.3. Discussion and explanation

A qualitative explanation of the condensate’s influence on the short waves could be the following: let us consider
a propagating wave with some given slope at its front; a much longer wave can be treated as a presence of a strong
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Fig. 3. Compensated direct cascade spectra C <|ak |2> k* with condensate and inverse cascade (left) and without them (right).

backgroun"_tj‘-.periodic-uéhr.rgnt
Fig. 4. Initial wave (solid line) become steeper (dashed line) in the result of interaction with the background current.

background flow. If the direction of the flow is opposite to direction of the wave’s propagation (it always happens
somewhere on the surface at least in the case of isotropic turbulence), the slope of the wave’s front will increase (see

Fig. 4). This is what we see in our simulations. The average steepness u = 4/ <|§n|2> has changed: with condensate

ne >=0.14 (Fig. 5), without condensate w,. ~0.12 (Fig. 6), after suppression of inverse cascade w,. >~ 0.1 (Fig. 7).
We should mention that very high values of gradient of the surface (higher that value for a limiting Stokes wave) are
possible in our model only due to very strong damping at high wavenumbers and relatively narrow inertial interval,
which prevents waves from real breaking by strong dissipation of energy for every breaking onset. We regularize our
model by this dissipation. At the same time here we do not need to know details of the energy dissipation (how in
details wave breaks and produce very short waves), all we need is to dissipate all the energy involved in the breaking.

| Pr——
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[vnl

0.6

0.4

0.2

Fig. 5. Gradient of some part of the surface. In the presence of condensate.



A.O. Korotkevich / Mathematics and Computers in Simulation 82 (2012) 1228-1238 1237

1

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1
Y

Fig. 6. Gradient of some part of the surface. In the absence of condensate.
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Fig. 7. Gradient of some part of the surface. In the absence of inverse cascade.
4. Conclusion

The observed phenomena of condensate formation and its influence on the direct cascade have to be quite common for
experiments in experimental wave tanks. Finite size of the surface area gives us the same discrete grid of wavevectors
as in the case of periodic boundary conditions. It means that at some large scale four-waves nonlinear interaction
will be arrested, which provides conditions for condensate formation due to flux corresponding to inverse cascade.
Such condensate will distort the direct cascade spectrum, changing its exponent through stimulation of whitecapping,
resulting in additional dissipation. It is worth to note that this is threshold phenomenon with respect to average
steepness as it was shown in [4]. If such dissipation is strong enough to balance the flux of energy, following [24]
we shall get Phillips spectrum, as it was demonstrated in the present paper. Gradually suppressing condensate and
inverse cascade one can achieve spectrum corresponding to the stationary solution of the kinetic equation. Simple
mechanism of condensate interaction with short waves of direct cascade was proposed. This interaction along with
other distortion possibilities (see, for example, [19]) can be the reason of observed spectra deviation from the weak
turbulence predictions. These results can be used for explanation of experimental data obtained in the wave tanks.

Acknowledgments

The author would like to thank V.E. Zakharov, V.V. Lebedev, and 1.V. Kolokolov for fruitful discussions.

This work was partially supported by RFBR grants 09-01-00631-a, 07-01-92165-NCNI-a Federal Targeted Program
of the Russian Federation “S&S PPIR”, the Program “Fundamental problems of nonlinear dynamics” from the RAS
Presidium and “Leading Scientific Schools of Russia” grant NSh-6885.2010.2.

The author would also like to thank the creators of the free open-source fast Fourier transform library FFTW [14]
for this fast, cross platform, and reliable software.



1238 A.O. Korotkevich / Mathematics and Computers in Simulation 82 (2012) 1228-1238

References

[1] S.Y. Annenkov, V.I. Shrira, Direct numerical simulation of downshift and inverse cascade for water wave turbulence, Phys. Rev. Lett. 96 (2006)
204501.
[2] S.I. Badulin, A.V. Babanin, D. Resio, V.E. Zakharov, Weakly turbulent laws of wind-wave growth, J. Fluid Mech. 591 (2007) 339-378.
[3] S.I. Badulin, A.N. Pushkarev, D. Resio, V.E. Zakharov, Self-similarity of wind-driven seas, Nonlinear Proc. Geophys. 12 (2005) 891-946.
[4] M.L. Banner, A.V. Babanin, I.R. Young, Breaking probability for dominant waves on the sea surface, J. Phys. Oceanogr. 30 (2000) 3145-3160.
[5] M. Chertkov, C. Connaughton, I.V. Kolokolov, V.V. Lebedev, Dynamics of energy condensation in two-dimensional turbulence, Phys. Rev.
Lett. 99 (2007) 084501.
[6] P. Denissenko, S. Lukaschuk, S.V. Nazarenko, Gravity wave turbulence in a laboratory flume, Phys. Rev. Lett. 99 (2007) 014501.
[7] F. Dias, A.I. Dyachenko, V.E. Zakharov, Theory of weakly damped free-surface flows: a new formulation based on potential flow solutions,
Phys. Lett. A 372 (8) (2008) 1297-1302.
[8] M.A. Donelan, J. Hamilton, W.H. Hui, Directional spectra of wind generated waves, Phil. Trans. R. Soc. Lond. A315 (1985) 509.
[9] A.L Dyachenko, G. Falkovich, Condensate turbulence in two dimensions, Phys. Rev. E 54 (1996) 5095-5099.
[10] A.L. Dyachenko, A.O. Korotkevich, V.E. Zakharov, Decay of the monochromatic capillary wave, JETP Lett. 77 (9) (2003) 477-481.
[11] A.L. Dyachenko, A.O. Korotkevich, V.E. Zakharov, Weak turbulence of gravity waves, JETP Lett. 77 (10) (2003) 546-550.
[12] A.IL Dyachenko, A.O. Korotkevich, V.E. Zakharov, Weak turbulent kolmogorov spectrum for surface gravity waves, Phys. Rev. Lett. 92 (13)
(2004) 134501.
[13] E. Falcon, S. Fauve, C. Laroche, Observation of intermittency in wave turbulence, Phys. Rev. Lett. 98 (2007) 154501.
[14] M. Frigo, S.G. Johnson, The design and implementation of fftw 3, Proc. IEEE 93 (2) (2005) 216-231, http://tftw.org.
[15] K. Hasselmann, On the non-linear energy transfer in a gravity-wave spectrum part 1. General theory, J. Fluid Mech. 12 (4) (1962) 481-500.
[16] P.A. Hwang, D.W. Wang, E.J. Walsh, W.B. Krabill, R.N. Swift, Airborne measurements of the wavenumber spectra of ocean surface waves.
Part i. Spectral slope and dimensionless spectral coefficient, J. Phys. Oceanogr. 30 (2007) 2753-2767.
[17] E. Kartashova, S.V. Nazarenko, O. Rudenko, Resonant interactions of nonlinear water waves in a finite basin, Phys. Rev. E 78 (2008) 016304.
[18] A.O. Korotkevich, Numerical simulation of weak turbulence of surface waves, Ph.D. Thesis, L.D. Landau Institute for Theoretical Physics,
Moscow-Chernogolovka, Russia, 2003.
[19] A.O. Korotkevich, On the doppler distortion of the sea-wave spectra, Physica D 237 (21) (2008) 2767-2776.
[20] A.O. Korotkevich, Simultaneous numerical simulation of direct and inverse cascades in wave turbulence, Phys. Rev. Lett. 101 (7) (2008)
074504.
[21] A.O. Korotkevich, A. Pushkarev, D. Resio, V.E. Zakharov, Numerical verification of the weak turbulent model for swell evolution, Eur. J.
Mech. B: Fluids 27 (4) (2008) 361-387.
[22] Y. Lvov, S.V. Nazarenko, B. Pokorni, Discreteness and its effect on water-wave turbulence, Physica D 99 (1) (2006) 24-35.
[23] S.V. Nazarenko, Sandpile behaviour in discrete water-wave turbulence, J. Stat. Mech. (2006) L02002.
[24] A.C. Newell, V.E. Zakharov, The role of the generalized phillips’ spectrum in wave turbulence, Phys. Lett. A 372 (2008) 4230-4233.
[25] M. Onorato, A.R. Osborne, M. Serio, D. Resio, A. Pushkarev, V.E. Zakharov, C. Brandini, Freely decaying weak turbulence for sea surface
gravity waves, Phys. Rev. Lett. 89 (2002) 144501.
[26] O.M. Phillips, The equilibrium range in the spectrum of wind-generated ocean waves, J. Fluid Mech. 4 (1958) 426—434.
[27] A. Pushkarev, D. Resio, V.E. Zakharov, Weak turbulent approach to the wind-generated gravity sea waves, Physica D 184 (2003) 29-63.
[28] M.G. Shats, H. Xia, H. Punzmann, G. Flakovich, Suppression of turbulence by self-generated and imposed mean flows, Phys. Rev. Lett. 99
(2007) 164502.
[29] M. Tanaka, Verification of hasselmann’s energy transfer among surface gravity waves by direct numerical simulations of primitive equations,
J. Fluid Mech. 444 (2001) 199-221.
[30] Y. Toba, Local balance in the air—sea boundary processes iii: on the spectrum of wind generated waves, J. Oceanogr. 29 (1973) 209-220.
[31] N. Yokoyama, Statistics of gravity waves obtained by direct numerical simulation, J. Fluid Mech. 501 (2004) 169-178.
[32] LR. Young, Wind Generated Ocean Waves, Elsevier, Amsterdam, Oxford, 1999.
[33] V.E. Zakharov, On the theory of surface waves, Ph.D. Thesis, Budker Institute for Nuclear Physics, Novosibirsk, USSR, 1967.
[34] V.E. Zakharov, Stability of periodic waves of finite amplitude on a surface, J. Appl. Mech. Tech. Phys. 9 (1968) 190-194.
[35] V.E. Zakharov, Statistical theory of gravity and capillary waves on the surface of a finite-depth fluid, Eur. J. Mech. B: Fluids 18 (3) (1999)
327-344.
[36] V.E. Zakharov, Theoretical interpretation of fetch limited wind-driven sea observations, Nonlinear Proc. Geophys. 12 (2005) 1011-1020.
[37] V.E.Zakharov, N.N. Filonenko, Energy spectrum for stochastic oscillations of the surface of a liquid, Sov. Phys. Dokl. 11 (1967) 881-884.
[38] V.E. Zakharov, A.O. Korotkevich, A.O. Prokofiev, On dissipation function of ocean waves due to whitecapping, AIP Proc. CP1168 2 (2009)
1229-1231.
[39] V.E. Zakharov, A.O. Korotkevich, A. Pushkarev, A.I. Dyachenko, Mesoscopic wave turbulence, JETP Lett. 82 (8) (2005) 487-491.
[40] V.E. Zakharov, A.O. Korotkevich, A. Pushkarev, D. Resio, Coexistence of weak and strong wave turbulence in a swell propagation, Phys. Rev.
Lett. 99 (16) (2007) 164501.
[41] V.E. Zakharov, V.S. Lvov, G. Falkovich, Kolmogorov Spectra of Turbulence I, Springer-Verlag, Berlin, 1992.
[42] V.E. Zakharov, M.M. Zaslavskii, The kinetic equation and kolmogorov spectra in the weak turbulence theory of wind waves, Izv. Atmos.
Ocean. Phys. 18 (1982) 747-753.



