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We perform a proof-of-concept implementation of the massively parallel algorithm [P. M. Lushnikov, Opt. Lett. 27,
939 (2002)] for simulation of dispersion-managed wavelength-division-multiplexed optical fiber systems.
Linear scalability of the algorithm with the number of computer cores is demonstrated. Exact result on the accuracy
of the implemented algorithm is found analytically and confirmed numerically as well as it is compared with the
accuracy of the standard split-step algorithm. © 2011 Optical Society of America
OCIS codes: 060.2330, 190.4370, 190.5530.

A wavelength-division-multiplexed (WDM) dispersion-
managed (DM) optical fiber system is the basis of current
high-bit-rate optical communications. The next genera-
tion of these systems will use both the amplitude and
phase of the optical signal as a carrier of information
(see, e.g., [1,2]) to achieve higher system performance.
WDM systems are weakly nonlinear ones with a linear
dispersion length typically in the range of tens of kilo-
meters while a nonlinear length is at several hundreds
of kilometers [3–6]. Nonlinearity is a major factor limiting
performance of such systems, while linear effects can be
significantly compensated by coherent detection.
WDM requires propagation of a wide range of frequn-

cies through optical fiber coupled by the nonlinearity.
Path-averaged group-velocity dispersion GVD effects
cause optical pulses in distinct WDM channels to move
with different group velocities. Consequently, modeling
of WDM systems requires simulating a long time interval,
which determines needed high resolution in the frequen-
cies. All that makes accurate numerical simulations
enormously challenging with very large number of
Fourier modes N needing to be resolved. The standard
algorithm for such simulation is an operator splitting,
or split-step algorithm (SS). It involves several Fourier
transforms for every spatial step along an optical fiber.
The fast Fourier transform (FFT) algorithm computes
each such transformation in OðN logNÞ operations of
multiplication. The efficiency of using supercomputers
for SS is limited because parallel algorithms for one-
dimensional FFT (contrary to multidimensional FFT)
provide only very moderate speed up. For example,
one of the leading implementations [7] shows at best four
times acceleration on 16 processor cores on the system
with shared memory. Further increase of the CPU num-
ber appears to be inefficient. Further increase of the
number of processors on conventional systems requires
use of a distributed memory approach (cluster), which
has higher latency of nodes interconnection media.
The experimental data shows [7] that at a number of
harmonics up to 221, a shared memory approach is more
efficient. At a higher number of harmonics, moderate

acceleration can be achieved on a cluster, although
scaling would still be far from linear.

Here we demonstrate the proof-of-concept realization
of the massively parallel algorithm (MPA) for simulation
of WDM systems that is free from all these limitations.
MPA was proposed by one of the authors of this Letter
in [8] and exploits weak nonlinearity of the WDM system.
We demonstrate the linear scalability of performance
with number of computer cores. We also obtain the exact
result on the accuracy of the algorithm in comparison
with SS. The results are in full agreement with numerics.

We neglect polarization effects, stimulated Raman
scattering, and Brillouin scattering. Then the propagation
of WDM optical pulses in DM fiber is described by a
scalar nonlinear Schrödinger equation
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propagation distance along an optical fiber; Aðt; zÞ is the
slow amplitude of light; β2 and β3 are the first- and
second-order GVD, respectively, which are periodic func-
tions of z; σ ¼ ð2πn2Þ=ðλ0AeffÞ is the nonlinear coeffi-
cient; n2 is the nonlinear refractive index; λ0 is the
carrier wavelength; Aeff is the effective fiber area; zk ¼
kza (k ¼ 1; 2;…; N) are amplifier locations; and γ is the
loss coefficient. Distributed amplification can be also
included in GðzÞ.
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and integration over z results in the integral equation

ψ̂ðω; zÞ ¼ ψ̂ðω; z0Þ þ i
Z

z

z0

σðz0ÞF̂ ½jAðt; z0Þj2Aðt; z0Þ�

× e
−iβðω;z0Þ−

R
z0
z0

Gðz00Þdz00
dz0; ð2Þ

where βðω; zÞ ¼ R
z
z0
½ω2

2 β2ðz0Þ þ ω3

6 β3ðz0Þ�dz0.

May 15, 2011 / Vol. 36, No. 10 / OPTICS LETTERS 1851

0146-9592/11/101851-03$15.00/0 © 2011 Optical Society of America



Case ψ̂ðω; zÞ ¼ const corresponds to the exact solu-
tion of the linear part of Eq. (1) [or, equivalently, setting
F̂ ½·�≡ 0 in (2)]. Assume that the nonlinearity is weak,
znl ≫ zdisp, where znl ≡ 1=jpj2 is a characteristic non-
linear length, zdisp ≡ τ2=jβ2j is the dispersion length, and
p and τ are typical pulse amplitude and width, respec-
tively. Then ψ̂ðω; zÞ is a slow function of z on any scale
L ≪ znl (see [4,9,10]). We solve Eq. (1) by iterations for
0 ≤ z − z0 ≤ L, where we have a freedom of choice of L
with the only condition that L≲ zdisp. For the first itera-
tion we set ψ̂ ð0Þðω; zÞ ¼ ψ̂ðω; z0Þ ¼ Âðω; z0Þ and, respec-
tively, Aðz;ωÞ ¼ ψ̂ ð0Þðω; zÞeiβðω;zÞþ

R
z

z0
Gðz0Þdz0

on the right-
hand side (rhs) of Eq. (1), which gives the first iteration
ψ̂ ð1Þðω; zÞ for the left-hand side (lhs) of Eq. (1). Similarly,
substitution of ψ̂ ðn−1Þðω; zÞ in the rhs of Eq. (1) gives
ψ̂ ðnÞðω; zÞ in the lhs of Eq. (1) for n ¼ 1; 2;….
In simulations we use ψ̂ðω; z0Þ with z0 ¼ mL for a

givenm ¼ 0; 1;… to perform a total number of iterations
ntot to approximate ψ̂ðω; z0 þ LÞ as ψ̂ ðntotÞðω; z0 þ LÞ.
Then we use that approximate value as starter for the
next spatial interval by setting z0 ¼ ðmþ 1ÞL and pro-
ceeding in a similar way.
Assume that the interval z0 ≤ z ≤ z0 þ L includesM þ 1

equally spaced points z0; z1;…zM ¼ z0 þ L. The MPA is
based on these iterations as follows:

1. Âðω; z0Þ ¼ ψ̂ðω; z0Þ, copy ψ̂ðω; z0Þ in ψ̂ðω; zÞ at
all z.
2. Find Âðω; zÞ ¼ ψ̂ðω; zÞeiβðω;zÞþ

R
z

z0
Gðz0Þdz0

at all z.
3. In order to return to t-domain, calculate indepen-

dent Fourier transforms Aðt; zÞ ¼ F̂−1½Âðω; zÞ� at all z.
4. Calculate independent Fourier transforms

V̂ðω; zÞ ¼ F̂ ½jAðt; zÞj2Aðt; zÞ� at all z.
5. Numerical integration (summation) by trapezoidal

rule of the integral in Eq. (2) using V̂ðω; zÞ from step 4.
Save intermediate results of integration at every z.
6. For the second, third, etc., iterations go to step 2.
7. Reconstruct Âðω; zMÞ on the far edge of interval.

The MPA is schematically shown in Fig. 1. All steps of
the MPA are computed parallelly. The most time-
consuming steps are 3 and 4. All FFTs at each z are
independently performed in CPU cores (vertical bars
in Fig. 1). Calculations in steps 2 and 5 are done for every
harmonic independently (dashed horizontal arrow
in Fig. 1).
We implement the MPA for shared memory symmetric

multiprocessor (SMP) architecture. The only powerful
SMP computer in exclusive use was the HP SuperDome

64000 supercomputer, equipped with 64 HP PA-RISC pro-
cessors (http://jscc.ru). Both processors and memory
bandwidth are outdated and relatively slow. However,
for the proof-of-concept simulation the main criteria is
the number of processors in the system.

Simulations were performed in a setup identical to the
one used in [8] with pseudorandom sequences of optical
pulses in five channels of 20 periods of a WDM DM
system. The main difference between the current MPA
implementation and the original algorithm [8] is in a more
efficient way to handle summation in step 5, optimizing
CPUs cache use. We achieve ∼30 times speed up with
respect to a single processor version of the code. Figure 2
shows the scalability of performance. Scaling is close to
linear up to 32 processors. Then memory bandwidth
limitation of the available SMP computer makes further
parallelization less efficient. Another reason for that was
restriction on the memory usage, which limited the
number of Fourier harmonics. However, we see a clear
tendency of the scalability improvement with an
increase of the number of harmonics because the longer
time the computer spends in FFTs the less important
communications are.

To find the accuracy of the MPA we put the exact
solution of Eq. (1) in the operator form as

AexactðzÞ ¼ exp½iðL̂þ N̂ Þz�Að0Þ; ð3Þ

where L̂ represents all linear terms and N̂ represents the
nonlinear term in Eq. (1), and we set z0 ¼ 0. Here and
below for brevity we omit the argument t of function
Aðz; tÞ. We assume that β2ðzÞ, β3ðzÞ, σðzÞ, GðzÞ are con-
stant functions of z at each interval of length L, although
a generalization to more general dependence on z is
straightforward. SS uses the efficiency and high precision

of the simulations for exp½iL̂z�Að0Þ and exp½iN̂ z�Að0Þ.
But L̂ and N̂ do not commute and we need to approxi-
mate Eq. (3) for z ¼ L by the composite M steps of SS as

ASSðLÞ≡ exp½iL̂Δz=2�Q̂M exp½−iL̂Δz=2�Að0Þ; ð4Þ

where Δz≡ L=M , Q̂≡ exp½iN̂Δz� exp½iL̂Δz�. Taylor
series expansion of operators in Eqs. (4) and (3) gives
the following error r1 ≡ AexactðLÞ − ASSðLÞ of composite
SS for arbitrary M assuming L≲ zdisp ≪ znl:

r1 ¼ i½L3=ð2M2Þ�PL þ ½L3=M2�OðL̂N̂ 2A0Þ; ð5Þ

Fig. 1. Schematic representation of MPA.
Fig. 2. (Color online) Scalability of MPA on HP SuperDome
64000.
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where A0 ≡ Að0Þ, OðL̂kN̂ lA0Þ means different combina-
tions of terms with kth power of L̂ and lth power of
N̂ . Also, PL ¼ 1

6
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6 jA0j2L̂2A0 −

1
3 L̂ðjA0j2L̂A0Þ þ 1

12A
2
0L̂

2�A0 þ 1
6 L̂ðA2

0L̂�A0Þ þ 1
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represents all terms with the second power in L̂. Note
that the operator expansions for arbitrary M are not
trivial and require the extensive use of the symbolic
computations.
Discretization of iterations over z in Eq. (2) with

ψ̂ jðωÞ≡ ψ̂ðzj;ωÞ, zj ¼ jΔz, j ¼ 0; 1;…; M at each N
discrete values of ω is given by
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where l ¼ 1; 2; …; M , V ðnÞ
j ≡ σðzjÞF̂ ½jAðnÞ

j j2AðnÞ
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0 GðzÞdz�, and ψ̂ ðnÞ
l ðωÞ is the nth iteration of ψ while

for zero iteration ψ ð0Þ
j ¼ A0, j ¼ 0; 1; 2;…; M . From com-

parison of the operator expansion for nth iteration with
the operator expansion of the exact solution in Eq. (3) we
obtain (again assuming that β2ðzÞ, β3ðzÞ, σðzÞ, GðzÞ are
constant functions of z) that the error r2 ≡ AexactðLÞ −
AðnÞðLÞ of composite SS for arbitrary M :

r2 ¼ i
L3

M2 PL þ
L3

M2 OðL̂N̂
2A0Þ þ OðN̂ nþ1A0Þ; ð7Þ

where PL is the same as in Eq. (5) and we assume that
n ≥ 3, which ensures that r2 at leading order OðL3Þ does
not depend on n. For n ¼ 2 the additional error term is
Oð½L4=M2�L̂3N̂A0Þ, which can be of the same order as
L3PL=M2 provided L ∼ zdisp. But for practical realization
of the MPA we expect that L ≪ zdisp, and then ntot ¼ 2
can be also an optimal choice.
Error term∝PL dominates in Eq. (5), while in Eq. (7) it

competes with the last term on the rhs, which has the
order OðN̂ nþ1A0Þ ∼ ðL=znlÞnþ1A0 and is independent of
M because it results from the iterations of Eq. (2) in
the continuous limit M → ∞. An increase of n ensures
dominance of ∝PL in Eq. (7) because L≲ zdisp ≪ znl.
Then we conclude from comparison of Eqs. (7) and
(5) that SS error is twice smaller than the MPA. So to
match the accuracy of SS it is enough for the MPA to take
M by a factor 21=2 larger. Respectively, the MPA requires
a minimum 21=2nþ 1 CPU cores to outperform SS (21=2n
would be the exact match of performance). For example,
in simulations with the parameters of Fig. 2, 250 DM per-
iods and n ¼ 2, we obtained the ratio 9.2 of SS and MPA
computation times at equal accuracy and 32 cores, which
is close to the theoretical prediction 2−1=232n−1.
To check these analytical predictions we simulated a

three-channel WDM system over one period of a DM fiber
system with 211 frequency harmonics, L ¼ 20 km for
the standard fiber, and other parameters as in [8]. As a

“numerically exact” we used SS with 221 grid steps over
one DM system period. Figure 3 shows that the error of
the MPA with n ¼ 3 scales as one for SS. That is, n ¼ 3 is
enough to neglect OðN̂ nþ1A0Þ term in Eq. (7). Errors for
MPA and SS are different by a factor 2 in full agreement
with Eqs. (5) and (7). We also compared MPA and SS for
simulation of the transoceanic distance 104 km (250 DM
periods) of the realistic WDM system with 20 channels
using N ¼ 213, M ¼ 214, L ¼ 1:25 km. That system has
ð20=3Þ2 higher nonlinearity than above so we decreased
L. The inset of Fig. 3 shows the error of the MPA with
n ¼ 3 in that case. A ratio of MPA and SS L∞ errors
(i.e., max over t in that inset and similar for SS) is
≃2:1, again close to 2.

In conclusion, we have demonstrated the feasibility of
the MPA. Scaling of the parallel version on the available
SMP machine was close to linear up to 32 processing
threads even on outdated architecture and with a very
restricted size of FFT arrays. We propose using a shared
memory model for parallel computation, which has lower
penalties due to interprocess communications, and ex-
ploiting the power of modern graphics processing units
(GPUs). Nvidia Tesla C2070 GPU has 448 cores and 6GB
memory, which appears quite suitable for the MPA.
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