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Abstract

Discussions on a form of a frequency spectrum of wind-driven sea waves just above the spectral maximum have continued for the last three
decades. In 1958 Phillips made a conjecture that wave breaking is the main mechanism responsible for the spectrum formation [O.M. Phillips,
J. Fluid Mech. 4 (1958) 426]. That leads to the spectrum decay ∼ ω−5, where ω is the frequency of waves. There is a contradiction between
the numerous experimental data and this spectrum. Experiments frequently show decay ∼ ω−4 [Y. Toba, J. Oceanogr. Soc. Japan 29 (1973) 209;
M.A. Donelan, J. Hamilton, W.H. Hui, Phil. Trans. R. Soc. London A315 (1985) 509; P.A. Hwang, et al., J. Phys. Oceanogr. 30 (1999) 2753].
There are several ways of the explanation of this phenomenon. One of them (proposed by Banner [M.L. Banner, J. Phys. Oceanogr. 20 (1990)
966]) takes into account the Doppler effect due to surface circular currents generated by underlying waves in the Phillips model.

In this article the influence of the Doppler effect on an arbitrary averaged spectrum is considered using both analytic and numerical approaches.
Although we mostly concentrated on the very important case of Phillips model, the developed technique and general formula can be used for the
analysis of other spectra.

For the particular case of Phillips spectra we got analytic asymptotics in the vicinity of spectral maximum and for high frequencies. Results were
obtained for two most important angular dependences of the spectra: isotropic and strongly anisotropic. Together with the analytic investigation
we performed numerical calculations in a wide range of frequencies. Both high and low frequency asymptotics are in very good agreement with
the numerical results.

It was shown that at least at low frequencies, the correction to the spectrum due to the Doppler shift is negligible. At high frequencies there is
an asymptotic with tail ∼ ω−3.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

There is a long discussion in the scientific world about the
form of wind generated sea wave spectrum in the “universal”
region of frequencies ω & ωp, where ωp is the frequency of the
spectral maximum.

There are at least two main points of view. The first one
proposed by O. Phillips in 1958 [1] gives us the Phillips’
spectrum in universal region

F(ω) '
αg2

ω5 , (1)
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where α is a dimensionless constant, which according to
experimental data appears to be rather small α ' 0.01. The
second point of view introduced by V.E. Zakharov and N.N.
Filonenko [8] gives us in universal region following spectrum

F(ω) '
βε

1
2 gv

ω4 , (2)

where β — is a dimensionless constant, v — is wind velocity,
ε ' ρa/ρw — is the ratio of ocean water and atmosphere
densities.

The formulae (1) and (2) are based upon completely opposite
propositions. The Phillips’ spectrum (1) takes place if the
spectrum at the high frequency region is mainly determined by
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the appearance of sharp crests and wave breaking, which are
strongly nonlinear phenomena.

On the other side, spectrum (2) is based on presumption
of small mean steepness — µ � 1 and based on the weakly
nonlinear waves interaction. Usually, for mature sea µ ' 0.1.

Following this ideology the wind generated waves’
ensemble is described by Hasselmann kinetic equation [6,7]

∂N

∂t
= Snl + p+

+ p−. (3)

Zakharov–Filonenko spectrum appears as an exact solution of
the particular case of Eq. (3)

Snl = 0, (4)

this is a classical case of Kolmogorov–Zakharov (KZ) spectra.
The theory of weak turbulence is far advanced both analytically
and numerically [8–18].

In the region of moderate frequencies in field experiments
with mature sea the ω−4 spectrum is dominating with
confidence [2–4]. From this fact the question of physical
interpretation of spectrum F(ω) ' ω−4 becomes very
important. Following Zakharov and Filonenko this spectrum
is just weakly turbulent KZ-spectrum. There are other
explanations, however.

One of them was proposed by Phillips in 1986 [19]. He made
the supposition that the spectrum ω−4 is a result of a balance of
all three terms of Eq. (3)

Snl ' p+
+ p−. (5)

This hypothesis is unlikely to be treated as a theory, because
the expression of p− is almost completely unknown. There are
only very rough empirical formulas. However, in that paper this
expression was taken in the form that gives us the balance in
Eq. (5). For now there are no strong arguments in favor of this
conjecture.

Another explanation was proposed by Banner [5] and
developed by Donelan [20]. They considered the ω−4 spectrum
as “an artifact of the observation of time histories at a point
brought about by Doppler shifting of the short waves riding on
the orbital currents of the long waves” — citation from [20].

In the paper [5] yet another explanation was proposed. It is
based on taking into account the angle dependence of spatial
spectra. Today there is no common opinion about the exact
form of such a distribution. For example angular distributions
obtained by Donelan et al. [3] and Hwang et al. [4] in
field experiments differ significantly. Also, the universality of
angular dependence is not obvious yet.

The main goal of this paper is to find a frequency spectra
of waves from known space-spectra in the presence of the
Doppler effect. Let us suppose that spatial spectrum of the short
waves Φ(k) is known. The problem is to derive the frequency
spectrum F(ω) using only Φ(k). Normally we have to assume
that waves obey the same dispersion relation as in the linear
case. Thus the following simple expression takes place for
positive frequency part of the energy spectrum

F(ω) =

∫
Φ(k)δ(ω − ω(k))dk.

However in the presence of long waves the dispersion relation
of the short waves modifies due to Doppler effect at the orbital
velocity’s field Ev of the long wave component

ω(k) → ω(k)+ (EkEv). (6)

In the well-known article by Kitaigorodskii, Krasitskii,
Zaslavskii [21] it was considered that Ev is a random function
on time. In fact, it is a quasi-periodic function with random
envelope. In the present paper we simplify the problem and
assume that Ev is a pure periodic function. Another word, we
study modification of the spectrum due to a presence of a long
monochromatic wave. This assumption gives us an opportunity
to develop the analytical theory up to explicit formulae.

The present paper is devoted to the quantitative theory
of this, without any doubt, very important phenomenon. We
consider it in a very simplified way, supposing that Ev is a
sinusoidal function of time, i.e. assuming that the long wave is
strictly monochromatic. In spite of simplicity this assumption
no doubt gives us the correct order of magnitude.

In Section 2 we introduced the common notations (following
Phillips). In Section 3 the general formula for spectrum (taking
into account Doppler shifting) is derived. It is convenient
to introduce a new set of dimensionless variables, this is
considered in Section 4. In Section 5 we develop an important
case of dispersion ω2

= gk (“deep water” surface gravity
waves) where g is the gravity acceleration, k is the wave number
equal to 2π/λ. Here we also apply developed technique to
the important case of Phillips model. Section 6 is devoted to
numerical results. The conclusion is placed in Section 7.

In the case of relatively small background velocities (with
respect to phase velocity) the Doppler effect appears to be
too weak (the first correction to the Phillips spectrum is
proportional to ∼ (vω/g)2) in a wide range of frequencies. In
an opposite case of high speed background Doppler shifting
is very important and gives us at high frequencies another
asymptotic tail ∼ ω−3. Numerical results are in good agreement
with analytic asymptotics and give us information about spectra
distortion in the intermediate range of frequencies.

2. Formulation of the problem and notations

Following the notations of Phillips, the wave spectrum
for homogeneous stationary wave field can be introduced as
follows

X (Ek, ω) = (2π)−3
∫∫

+∞

−∞

ρ(Er , t) exp[−i(EkEr − ωt)]dErdt, (7)

where ρ(Er , t) = ξ(Ex, t0)ξ(Ex + Er , t0 + t) is the covariance of
the surface displacement ξ(Ex, t), Er is the spatial separation
vector, t is the time separation, Ek =

−−−−→
(k1, k2) =

−−−→
(k, θ) is the

wavenumber vector (the second expression is the wavevector
respresentation in polar coordinates) and ω is the radian
frequency. Obviously it can be rewritten in terms of Fourier
transforms of corresponding functions〈
ξ(Ek, ω)ξ∗( Ek′, ω′)

〉
= X (Ek, ω)δEk−Ek′δω−ω′ , (8)

X (−Ek,−ω) = X (Ek, ω).
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It is convenient to introduce additional spectra which are
reduced forms of Eq. (7)

Φ(Ek) = 2
∫

+∞

0
X (Ek, ω)dω, (9)

F(ω) = 2
∫ 2π

0

∫
+∞

0
X (Ek, ω)kdkdθ. (10)

In general case it is impossible to express F(ω) in terms of
Φ(Ek).

There are many complex mechanisms of long and short
waves interaction. They were considered by Phillips [22] at
the vicinity of spectral peak frequency ωp. According to this
paper, the first correction terms taking into account variable
effective gravity and other nonlinear effects are proportional to
steepness (which is supposed to be small in our consideration).
In our case, when the Doppler velocity does not depend on
steepness, the Doppler effect is also insensitive to roughness
of the waves. In the special case, when we consider influence of
a periodic current due to spectral peak we discuss this issue
in details. In this article we limit our consideration only by
Doppler effect. In this sense our model is different with respect
to one used by Banner [5]. Nevertheless, the results obtained are
in an agreement with experimental data by Donelan [3] which
show no or indistinguishable dependence of spectral slope with
moderate change of steepness. The more detailed consideration
can be an inspiration for future investigations.

Following Appendix A we shall use linearized relations for
spectra. For an isotropic spectrum we have (A.16)

X is(Ek, ω) =
1
2
Φ(Ek) (δ(ω − ωk)+ δ(ω + ωk)) , (11)

where ωk = ω(k) is the dispersion law and δ is the Dirac delta-
function.

In the weakly nonlinear approximation we consider
interaction between positive and negative-frequency parts of
the spectra to be negligible. This simplification let us to find
dependence between spatial and frequency spectra. From now
on we shall consider positive-frequency parts of spectra.

In this case in the isotropic case we shall get

X is(Ek, ω) =
1
2
Φ(k)δ(ω − ωk). (12)

In a unidirectional (or strongly anisotropic) case, when all
waves propagate in one direction, corresponding to angle θ0,
the relation is a little bit different (A.17)

Xan(Ek, ω) = Φ(k)δ(θ − θ0)δ(ω − ωk). (13)

From now on we shall, for the sake of universality, hide the
multiplier 1/2 in isotropic case in the angular dependence of
the spectrum. Finally, we get simplified relation for the spectra

X (Ek, ω) = Φ(Ek)δ(ω − ωk). (14)

Now one can rewrite Eq. (10) in the following form

F(ω) = 2
∫

+∞

0

∫ 2π

0
Φ(k, θ)δ(ω − ωk)dθkdk. (15)

Using the rules of integration of δ-function one can obtain

F(ω) =
2k

|ω′(k)|

∫ 2π

0
Φ(k, θ)dθ,

k = k(ω),

(16)

where k(ω) is the inverse function for ω(k).
In the deep water case ω =

√
gk

k =
ω2

g
, ω′(k) =

1
2

√
g

k
=

1
2

g

ω

F(ω) =
4ω3

g2

∫ 2π

0
Φ
(
ω2

g
, θ

)
dθ. (17)

For an isotropic spectrum (Φ(k, θ) = Φ(k)/2)

Fis(ω) =
4πω3

g2 Φ
(
ω2

g

)
. (18)

For a strongly anisotropic spectrum (Φ(k, θ) = Φ(k)δ(θ − θ0))

Fan(ω) =
4ω3

g2 Φ
(
ω2

g

)
. (19)

If the spectrum is determined by discontinuities of spatial
derivative (wedges) caused by wave breaking according to
Phillips [1], we have

ξ ∼
1

k2 , Φ(k) ∼
1

k4 . (20)

In the isotropic case substitution Eq. (20) to Eq. (18) gives

Fis0(ω) = 4πα
g2

ω5 . (21)

Similar calculation for Eq. (19) gives us the following result

Fan0(ω) = 4α
g2

ω5 . (22)

Here α is the so-called Phillips’ constant.
There is a recent work by Kuznetsov [23] which gives us

different spatial spectra for waves wedges due to more accurate
analysis. In this work we shall use spectrum (20) as an example,
because spectra of this type are still widely used in oceanology.
It should be stressed, that general formulae given below are
valid for the Doppler distortion of any waves spectra in a
weakly nonlinear approximation.

3. General formula for spectrum in the presence of Doppler
effect

Let us assume that we study waves on the background of
periodic current Ev(t) beneath the surface. Taking into account
the Doppler effect in the dispersion equation one can get the
following substitution

ω(Ek) −→ ω(Ek)+ Ekv(t).
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Suppose that this current is described by a one-dimensional
periodic function

v(t) = v cos(ω0t).

This allows us to rewrite our substitution in the following form

ω(k) −→ ω(k)+ kv cos(ω0t) cosψ, (23)

where ψ is the angle formed by Ek and Ev vectors. Without loss
of generality one can take ψ = θ .

We can now find a range of velocities when we can consider
only positive frequencies. In general such conditions gives us
v ≤ w(k)/k = cp, where cp is the phase velocity. In the special
case of the Doppler shift due to spectral peak currents, using
(A.6) one can get

k Apωp ≤ ω.

Which gives us

ω ≤
1
µ
ωp, (24)

where µ = kp Ap is a steepness of spectrum peak wave. For
the usual value µ = 0.1 we get ω ≤ 10ωp which is more then
enough for interpretation any open sea experimental data. Even
in the case of quite rough sea µ = 0.2 we cover frequency
bandwidth of most of current open water experiments.

Using expression (23) one can write average value of
expression (15) as

F(ω) =
2
T

∫ T

0

∫
+∞

0

∫ 2π

0
Φ(k, θ)δ(ω − ω(k)

− kv cos(ω0t) cos θ)dθkdkdt, (25)

where T is the period equal to 2π/ω0. It is useful to take the
average value of this expression with respect to t as the first
step. Let us denote this factor to the part of the integral as M

F(ω) =

∫
+∞

0

∫ 2π

0
Φ(k, θ)M(k, θ)dθkdk,

M(k, θ) =
1
π

∫ T

0
δ(ω − kv cosω0t cos θ − ωk)d(ω0t).

The δ-function in this expression gives us an equation for t0

ω − ωk = kv cos θ cos(ω0t0), (26)

This equation have the following roots

ω0t0 = ± arccos
ω − ωk

kv cos θ
, (27)

when the following inequality is satisfied∣∣∣∣ ω − ωk

kv cos θ

∣∣∣∣ < 1. (28)

Using (27) and delta function integration rules one can get the
function M

M(k, θ) =
2

π

∣∣∣∣kv cos θ
√

1 −
(ω−ωk )

2

k2v2 cos2 θ

∣∣∣∣

=
2

π
√

k2v2 cos2 θ − (ω − ωk)2
. (29)

Using this expression one can get

F(ω) =
2
π

∫ ∫
Φ(k, θ)dθkdk√

k2v2 cos2 θ − (ω − ω(k))2
. (30)

The limits of integration have to be chosen in order to satisfy
inequality (28).

4. Convenient set of dimensionless variables

For further consideration it is convenient to introduce a new
variable and a parameter

ζ =
kv2

g
, λ =

vω

g
. (31)

One can see that ζ is a dimensionless analogue of k, and λ is an
analog of ω. In these variables the spectrum Eq. (30) takes the
following relatively simple form

F(λ) =
2
π

g

v3 B
∫

+∞

0

∫ 2π

0

Φ(ζ, θ)dζdθ√
cos2 θ −

(
λ−λζ
ζ

)2
, (32)

where B is the dimensional constant which has an origin in
substitution k → ζ in Φ(k). For instance in the Phillips
spectrum case Eq. (20) one can get

Φ(k) = αk−4
= α

(
ζg

v2

)−4

= α
v8

g4 ζ
−4

= Bζ−4,

thus the constant takes the form B = αv8/g4.
The physical meaning of the variable λ becomes more clear

if we transform it to the following form

λ =
ω

ωp

v

cp
, (33)

where ωp = g/cp is the peak-frequency (this is the only
frequency-like scale in the model) and cp is the phase velocity
corresponding to the spectral peak.

For the case of strongly anisotropic spectrum (Φ(k, θ) =

Φ(k)δ(θ)) one can easily obtain the following result by a simple
substitution in Eq. (32)

Fan(λ) =
2
π

g

v3 B
∫

+∞

0

Φ(ζ )dζ√
1 −

(
λ−λζ
ζ

)2
. (34)

If the spectrum is isotropic (Φ(k, θ) = Φ(k)/2) things
become a little bit more complex. Following Eq. (32) we have

Fis(λ) =
4
π

g

v3 B
∫

+∞

0
Φ(ζ )dζ

∫ π/2

0

dθ√
cos2 θ −

(
λ−λζ
ζ

)2
,

(35)
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An analysis of the θ -part gives [24]∫ π/2

0

dθ√
cos2 θ −

(
λ−λζ
ζ

)2

=
1√

1 −

(
λ−λζ
ζ

)2
K

 1√
1 −

(
λ−λζ
ζ

)2


= K

√1 −

(
λ− λζ

ζ

)2


+
i√

1 −

(
λ−λζ
ζ

)2
K

(
λ− λζ

ζ

)
, (36)

where K is the complete elliptic integral of the first kind. Let us
have a look at inequality (28). This is nothing but a condition
which guarantees that our spectrum is a pure real function. In
addition:∣∣∣∣λ− λζ

ζ

∣∣∣∣ ≤

∣∣∣∣λ− λζ

ζ cos θ

∣∣∣∣ ≤ 1.

It means that all functions in (36) are real and we can omit
the part with imaginary unit i. After substitution Eq. (36) into
Eq. (35) one can obtain

Fis(λ) =
4
π

g

v3 B
∫

+∞

0
Φ(ζ )dζK

√1 −

(
λ− λζ

ζ

)2
 . (37)

Expressions (34) and (37) are valid for an arbitrary dispersion
relation λζ = ω(k(ζ ))v/g.

5. Deep water case

For further study of the spectrum we have to introduce the
explicit form of the dispersion relation. Here we consider one
of the most important cases, i.e. deep water surface gravity
waves. In the case of a deep water ωk =

√
gk, correspondently

λζ =
√
ζ . Let us consider an isotropic case

Fis(λ) =
4
π

g

v3 B
∫

+∞

0
Φ(ζ )dζK

√1 −

(
λ−

√
ζ

ζ

)2
. (38)

Now we have to take into account condition (28)

ζ 2
−

(
λ−

√
ζ
)2

≥ 0. (39)

Solutions of this inequality give us integration domains

when λ ≤
1
4(

−
1
2

+

√
1
4

+ λ

)2

< ζ <

(
1
2

−

√
1
4

− λ

)2

,

when λ >
1
4
,

(
−

1
2

+

√
1
4

+ λ

)2

< ζ < +∞,

(40)

so we have following expressions for spectra

when λ ≤
1
4
, Fis(λ) =

4
π

g

v3 B

∫
(

1
2 −

√
1
4 −λ

)2

(
−

1
2 +

√
1
4 +λ

)2 Φ(ζ )

× K

√1 −

(
λ−

√
ζ

ζ

)2
 dζ

+

∫
+∞(
1
2 +

√
1
4 −λ

)2 Φ(ζ )K

√1 −

(
λ−

√
ζ

ζ

)2
 dζ

; (41)

when λ >
1
4
, Fis(λ) =

4
π

g

v3 B
∫

+∞(
−

1
2 +

√
1
4 +λ

)2 Φ(ζ )dζ

× K

√1 −

(
λ−

√
ζ

ζ

)2
 . (42)

Let us explore special case, when Φ(ζ ) is a quickly going down
to zero function, e.g. Phillips spectrum Φ(ζ ) = 1/ζ 4. In this
case we can take into account only the first term in Eq. (41)
at λ < 1/4. Calculation of the expansion of the spectrum
correction is placed in Appendix B and (B.7) gives us the
following result

Fis(λ) = Fis0

(
1 +

1
4
λ2

+ · · ·

)
, (43)

where

Fis0 = 4πα
v5

g3

1

λ5 , (44)

this is simply the Phillips spectrum Eq. (21) at the absence of
Doppler effect for isotropic distribution.

For the one-directional spectra we can use exactly the same
approach, but all calculations become simpler. The domains of
integrations (which correspond to Eqs. (41) and (42)) are the
following

when λ ≤
1
4
,

Fan(λ) =
2
π

g

v3 B

∫
(

1
2 −

√
1
4 −λ

)2

(
−

1
2 +

√
1
4 +λ

)2

Φ(ζ )dζ√
1 −

(
λ−

√
ζ

ζ

)2

+

∫
+∞(
1
2 +

√
1
4 −λ

)2
Φ(ζ )dζ√

1 −

(
λ−

√
ζ

ζ

)2

 ; (45)

when λ >
1
4
,

Fan(λ) =
2
π

g

v3 B
∫

+∞(
−

1
2 +

√
1
4 +λ

)2
Φ(ζ )dζ√

1 −

(
λ−

√
ζ

ζ

)2
. (46)
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The detailed analysis of this case is situated in Appendix B and
(B.9) gives us the following formula

Fan(λ) = Fan0

(
1 +

1
2
λ2

+ · · ·

)
, (47)

where

Fan0 = 4α
v5

g3

1

λ5 , (48)

this is just the Phillips spectrum Eq. (22) at the absence of
Doppler effect for strongly anisotropic distribution.

Let us try to evaluate the range of applicability of the
obtained results. As it was postulated in Eq. (33) we can state

λ =
ω

ωp

v

cp
<

1
4
.

Thus, for example, if we take ε = v/cp = 0.05 (a reasonable
value of wind drift current (Banner, 1990), or if we consider the
influence of high frequency wave on the far tail of spectrum)
one can obtain the following inequality

ω < 5ωp. (49)

If we consider a Doppler shift due to long waves corresponding
to the vicinity of spectral maximum the result will be different.
Following (A.6) v = Apωp.

In this case the physical meaning of our dimensionless
variables is quite straightforward

ζ = µ2 k

kp
, λ = µ

ω

ωp
, (50)

here kp and ωp are wavenumber and circular frequency
corresponding to spectrum peak, and µ = Apkp, characteristic
steepness of spectrum peak. Usually this value is about µ '

0.1. This gives us estimations

ω < 2.5ωp. (51)

Although this more or less corresponds to the frequency
bandwidth of many experiments, we need to find an asymptotic
of Phillips frequency spectrum F(λ) at high frequencies

λ � 1/4.

This condition simplifies situation significantly. In the isotropic
case one can get

Fis(λ) '
4
π

g

v3 B
∫

+∞

λ

Φ(ζ )dζK

√1 −

(
λ

ζ

)2
 . (52)

In the anisotropic case

Fan(λ) '
2
π

g

v3 B
∫

+∞

λ

Φ(ζ )dζ√
1 −

(
λ
ζ

)2
. (53)

Here we left only the term of the order of λ under square
root sign having supposed a fast decay of spectrum Φ(ζ ). An
obvious substitution x = λ/ζ in the case of Phillips spectrum

Fig. 1. Calculated spectrum in isotropic case compensated with corresponding
Phillips spectrum Fis(λ)/Fis0(λ) (solid line) and analytic estimation (43) in the
case of λ < 1/4 (dashed line).

Fig. 2. Calculated spectrum in strongly anisotropic case compensated with
corresponding Phillips spectrum Fan(λ)/Fan0(λ) (solid line) and analytic
estimation (47) in the case of λ < 1/4 (dashed line).

Φ(ζ ) = ζ−4 immediately leads to answers

Fis(λ) '
4
π

αv5

g3

1

λ3

∫ 1

0
x2dx K

(√
1 − x2

)
=
αv5

g3

π

4
1

λ3 , (54)

Fan(λ) '
2
π

αv5

g3

1

λ3

∫ 1

0

x2dx
√

1 − x2
=
αv5

g3

1
2

1

λ3 , (55)

for isotropic and anisotropic spectra respectively.
As we can see slopes of the spectra changed and one

could expect to find in the middle range of frequencies long
enough domain of F(ω) ∼ ω−4

∼ λ−4 spectrum dependence.
To develop this hypothesis we need to perform numerical
calculation of integrals (41), (42), (45) and (46) in the whole
range of parameters.

6. Numerical results

At the first stage let us compare results in the case λ <

1/4 with our estimations. Results of these calculations are
represented in Figs. 1 and 2 for isotropic and anisotropic cases.
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Fig. 3. Calculated spectrum in isotropic case Fis(λ) (solid line), Phillips
spectrum Fis0(λ) (dashed line) and asymptotic (54) corresponding to λ � 1/4
(dotted line).

Fig. 4. The calculated spectrum in the strongly anisotropic case Fan(λ) (solid
line), the Phillips spectrum Fan0(λ) (dashed line) and the asymptotic (55)
corresponding to λ � 1/4 (dotted line).

One can see, that numerical calculation gives us the same
result – there is a very small deviation from Phillips spectra.
Discrepancies of analytic and numerical results at the edge of
the domain (λ ' 1/4) show that we cannot use only several
terms expansions and have to take into account further terms in
square root decompositions used in Appendix B.

To understand results at the whole range of parameters it is
convenient to use double logarithm representation. One can see
in Figs. 3 and 4 that Phillips spectrum remains untouched in
a wide range of parameters and then transforms to asymptotic
(54) and (55) respectively.

Now we can consider the interesting problem of Doppler
distortion due to the influence of spectrum peak. In this special
case we are interested in the region of parameters 1 < λ < 10
corresponding to the switch of the spectrum slope. Following
our results in such a situation, one could expect formation of
ω−4

∼ λ−4 spectrum due to transfer from Phillips λ−5 to λ−3

Fig. 5. Calculated spectrum in isotropic case Fis(λ) (solid line) and frequently
observed spectrum λ−4 (dashed line). The spectrum slope is close to ω−4 for
2 < λ < 3.

Fig. 6. Calculated spectrum in strongly anisotropic case Fan(λ) (solid line) and
frequently observed spectrum λ−4 (dashed line). The spectrum slope is close
to ω−4 for 1.5 < λ < 2.

tail. Let us consider our results in detail. It is clear from Figs. 5
and 6 that there is no such a region. Universal spectra ω−4 only
touch our curve. It means that Doppler distortion due to spectral
peak waves influence cannot be considered as a mechanism
of transformation of the analytic Phillips spectra ω−5 to the
frequently observed ω−4.

From the Figs. 3 and 4 one can notice that we have ω−5 tail
at least up to λ = 0.5. Following physical meaning of λ (33) we
have that ω−5 tail stays the same at least for

ω ≤ 5ωp,

in the case when spectrum peak steepness is about µ ' 0.1.
In fact we observe tail close to ω−4 only in the vicinity of the
points λ ' 2, which corresponds at such value of steepness
to ω = 20ωp – beyond the frequency bandwidth of even the
current state of the art water tank experiments [25].
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We would like to stress, that change of spectrum peak
steepness does not affect general results of the paper, but shifts
the frequency region where we observe turn from ω−5 to ω−3

tail.
In spite of the simplicity of formulae under consideration,

they are not suitable for reliable numerical calculations
(especially in the case λ � 1/4) using common numerical
packages, because of points on both sides of integration interval
and inside of it which give singularities of expression under
integral sign, causing very slow convergence of algorithm.
Nevertheless all these obstacles can be avoided or eliminated
using standard numerical analysis techniques. As an examples
we represented direct formula for integration in the λ > 1/4
case of strongly anisotropic spectrum in Appendix C

7. Conclusion

In this paper we considered the influence of the Doppler
distortion on the surface waves spectral tails. The general
formula (30) for an arbitrary spatial spectra and arbitrary
dispersion relation was derived. The case of dispersion relation
corresponding to surface gravity waves was considered in
detail. The formulae for isotropic (41) and (42) and the strongly
anisotropic (45) and (46) spectra were obtained. For the special
case of Phillips spectra ∼ k−4 we got two asymptotics: ω−5 in
the frequency region close (ω < 2.5ωp in the case of spetrum
peak influence) to the spectral maximum (43) and (47), and ω−3

for high frequencies (52) and (53).
We numerically calculated the spectra in the wide range of

parameters and gave an explanation of the results considering
the range of applicability of the assumptions used.
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Appendix A. Calculation of the spectra relations and
Doppler velocity due to spectral peak’s influence

Following [11] or [14] we reformulate our problem using the
Hamiltonian formalism.

Let us consider the potential flow of an ideal incompressible
fluid of infinite depth and with a free surface. We use standard
notations for velocity potential φ(Er , z, t), Er = (x, y); v = ∇φ

and surface elevation ξ(Er , t). Fluid flow is irrotational ∆φ =

0. The total energy of the system can be represented in the
following form

H = T + U,

T =
1
2

∫
d2r

∫ ξ

−∞

(∇φ)2dz, (A.1)

U =
1
2

g
∫
ξ2d2r, (A.2)

where g — is the gravity acceleration. It was shown [26] that
under these assumptions the fluid is a Hamiltonian system

∂ξ

∂t
=
δH

δψ
,

∂ψ

∂t
= −

δH

δξ
, (A.3)

where ψ = φ(Er , ξ(Er , t), t) is a velocity potential on the surface
of the fluid. In order to calculate the value ofψ we have to solve
the Laplas equation in the domain with varying surface η. This
is a difficult problem. One can simplify the situation, using the
expansion of the Hamiltonian in powers of ”steepness”. If we
limit ourselves only to the linear part

H =
1
2

∫ (
gξ2

+ ψ k̂ψ
)

d2r. (A.4)

Here k̂ f (Er) = F̂−1
[|k|F̂[ f (Er)]] — is the linear operator

corresponding to multiplying of Fourier harmonics by absolute
value of the wavenumber Ek. In this case linear dynamical Eq.
(A.3) acquire the following form

ξ̇ = k̂ψ, ψ̇ = −gξ. (A.5)

Let us consider velocity field in (x, y) plane which results
from the presence of spectral peak wave. The monochromatic
spectral peak wave can be represented as follows

ξp(Er , t) = Ap cos((EkpEr)− ωpt).

Taking into account one of Hamiltonian Eq. (A.5), velocity field
in Er = (x, y) plane is given by the formula

Evp(Er , t) = ∇ψ(Er , t) = −g
∫ t

0
∇ξp(Er , t).

Finally, Doppler velocity in the direction of Ekp is the following

vp(t) =
gkp Ap

ωp
cos((EkpEr)− ωpt)

= Apωpcos((EkpEr)− ωpt). (A.6)

Fourier harmonics of the real functions ψ and ξ have Hermitian
symmetry, so it is convenient to introduce the canonical
variables aEk as shown below

aEk =

√
ωk

2k
ηEk + i

√
k

2ωk
ψEk, (A.7)

where

ωk =
√

gk. (A.8)

This is the dispersion relation for the case of gravity waves on
the surface of the fluid of infinite depth. Similar formulas can
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be derived in the case of finite depth [27]. We should stress, that
expression (A.7) is valid for arbitrary dispersion relation.

With these variables the Eq. (A.3) take the following form

ȧEk = −i
δH

δa∗

Ek

. (A.9)

The most important feature of these variables is the absence
of Hermitian symmetry; it means that if there is only a
monochromatic wave with wave vector Ek, then only aEk
harmonics will have nonzero value.

One can introduce spectra

〈aEka∗

Ek′
〉 = NEkδ(

Ek − Ek′),

〈aEk,ωa∗

Ek′,ω′
〉 = NEk,ωδ(

Ek − Ek′)δ(ω − ω′). (A.10)

For the spectrum related with NEk Hasselmann Eq. (3) is written.
Using representation of ξEk in terms of aEk

ξk =

√
k

2ωk

(
aEk + a∗

−Ek

)
,

and the definition of the spatial spectrum of the waves, one can
get

Φ(Ek)δ(Ek − Ek′) = 〈ξEkξ
∗

Ek
〉 =

k

2ω

(
NEk + N

−Ek

)
δ(Ek − Ek′), (A.11)

Φ(Ek) =
k

2ω

(
NEk + N

−Ek

)
. (A.12)

In the same way for spatial-temporal spectrum (7)

X (Ek, ω) =
k

2ω

(
NEk,ω + N

−Ek,−ω

)
. (A.13)

In the linear approximation

NEk,ω = NEkδ(ω − ωk), (A.14)

and relation (A.13) can be written as

X (Ek, ω) =
k

2ω

(
NEkδ(ω − ωk)+ N

−Ekδ(ω + ωk)
)
. (A.15)

Let’s consider two limiting cases of the wave field:

• Spectrum is symmetric on Ek;
• Spectrum is unidirectional on Ek.

For isotropic spectrum

NEk = N
−Ek, Φ(k) =

k

ωk
Nk,

X is(k, ω) =
k

2ω
Nk(δ(ω − ωk)+ δ(ω + ωk));

X is(k, ω) =
1
2
Φk(δ(ω − ωk)+ δ(ω + ωk)). (A.16)

For unidirectional spectrum (with direction corresponding to
angle θ0)

NEk = Nkδ(θ − θ0), N
−Ek = Nkδ(θ − π − θ0),

Xan(Ek, ω) =
k

2ω
Nk(δ(θ − θ0)δ(ω − ωk)

+ δ(θ − π − θ0)δ(ω + ωk)).

We consider positive-frequency part:

Φ(Ek) =
k

2ωk
NEk, Xan(Ek, ω) =

k

2ω
NEkδ(ω − ωk);

Xan(Ek, ω) = Φ(Ek)δ(ω − ωk). (A.17)

Appendix B. Calculations of the spectra decompositions.
λ < 1/4

As a first step, we consider a slightly more complex case of
isotropic spectrum. Let us perform the following substitution

x =
λ−

√
ζ

ζ
. (B.1)

In this case in our domain of integration (−1 < x < +1) we
can obtain the inverse representation

ζ =
1

2x2

[
1 −

√
1 + 4xλ+ 2xλ

]
, (B.2)

and further

ζ(x) ≈
1

2x2

[
2λ2x2

− 4λ3x3
+ 10λ4x4

]
= λ2

− 2λ3x + 5λ4x2. (B.3)

For substitution dζ = ζ ′(x)dx we have to calculate the first
derivative

ζ ′(x) = −
1

x3 −
λ

x2
√

1 + 4λx
+

√
1 + 4λx

x3 −
λ

x2

≈ −
1

x3 −
λ

x2

[
1 − 2λx + 6λ2x2

− 20λ3x3
+ 70λ4x4

]
+

1

x3

[
1 + 2λx − 2λ2x2

+ 4λ3x3
− 10λ4x4

+ 28λ5x5
]

−
λ

x2 = −2λ3
(

1 − 5λx + 21λ2x2
)
. (B.4)

Φ(ζ(x)) = Φ(λ2(1 − 2λx + 5λ2x2)) ≈ Φ(λ2)

−
Φ′(λ2)

1!
2λ3x +

Φ′(λ2)

1!
5λ4x2

+
Φ′′(λ2)

2!
4λ6x2. (B.5)

Now we can calculate the integral (41) with Phillips spectrum
(Φ(ζ ) = 1/ζ 4)

Fis(λ) =
4
π

g

v3 B
∫

+1

−1
Φ(ζ(x))ζ ′(x)K (

√
1 − x2)dx, (B.6)

Taking into account several well known results [24]∫
+1

−1
K
(√

1 − x2
)

dx =
π2

2
,∫

+1

−1
x K

(√
1 − x2

)
dx ≡ 0,∫

+1

−1
x2 K

(√
1 − x2

)
dx =

∫
+1

0
E
(√

1 − x2
)

dx =
π2

8
,

where E is the complete elliptic integral of the second kind, one
can obtain the final result
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Fis(λ) = 4πα
v5

g3

1

λ5

(
1 +

1
4
λ2

+ · · ·

)
. (B.7)

Calculations of the spectrum decomposition for strongly
anisotropic case up to expression Eq. (B.6) are just the same.
Integral (45) takes the form

Fan(λ) =
2
π

g

v3 B
∫

+1

−1

Φ(ζ(x))ζ ′(x)
√

1 − x2
dx, (B.8)

The final result is

Fan(λ) = 2α
v5

g3

1

λ5

(
1 +

1
2
λ2

+ · · ·

)
. (B.9)

Appendix C. Numerical calculation of the strongly aniso-
tropic spectra at λ > 1/4

Here we consider Phillips spatial spectrum ζ−4 but all results
are independent with respect to the power of spatial spectrum.
We start from (46). Here and further we omit all constants
before integral sign

F(λ) =

∫
+∞(√

1
4 +λ− 1

2

)2
ζ−4dζ√

1 −

(
λ−

√
ζ

ζ

)2
. (C.1)

After substitution µ = 1/
√
ζ one gets

F(λ) = 2
∫ (√

1
4 +λ− 1

2

)−1

0

µ5dµ√
1 −

(
λµ2 − µ

)2 . (C.2)

The upper limit of integration gives us a singularity. Usual
technique for calculation of this integral consists in excluding
of this special point in some way (see for example [28]). In our
case one can do this in a very simple and effective way. Our
integral can be represented as follows:

F(λ) = 2
∫ µ2

0

µ5dµ√
λ (µ1 − µ) (µ− µ2)

(
1 + λµ2 − µ

) , (C.3)

where we introduced two roots of polynomial under square root
sign

µ1 =
1
λ

(
1
2

−

√
1
4

+ λ

)
,

µ2 =
1
λ

(
1
2

+

√
1
4

+ λ

)
.

Using substitution ν =
√
µ2 − µ one can get

F(λ) =
4

√
λ

∫ √
µ2

0

×
(µ2 − ν2)5dν√(

µ1 − µ2 + ν2
) (

1 + λ(µ2 − ν2)2 − µ2 + ν2
) .

(C.4)

This integral can be calculated by any standard tool of
numerical mathematics, for example Simpson rule [28,29]. In
this case even 32 points in domain give us relative error less
than 10−6 with respect to 16 points. If we would try to calculate
our spectrum from the very first formula, to achieve such an
accuracy we have to use more than 106 points in integration
domain (because even Simpson rule, usually the method of the
third order of accuracy, has only the first order in the vicinity
of singular point). With modern computers and such a simple
functions as a square root under integration sign it is not very
fast but bearable calculation. But if we have to calculate integral
of special function (for instance, the complete elliptic integral
of the first kind) it will take an enormous amount of time.
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