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We developed a linear theory of backward stimulated Brillouin scatter (BSBS) of a spatially and

temporally random laser beam relevant for laser fusion. Our analysis reveals a new collective

regime of BSBS (CBSBS). Its intensity threshold is controlled by diffraction, once cTc exceeds a

laser speckle length, with Tc the laser coherence time. The BSBS spatial gain rate is approximately

the sum of that due to CBSBS, and a part which is independent of diffraction and varies linearly

with Tc. The CBSBS spatial gain rate may be reduced significantly by the temporal bandwidth of

KrF-based laser systems compared to the bandwidth currently available to temporally smoothed

glass-based laser systems. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4906057]

I. INTRODUCTION

Inertial confinement fusion (ICF) experiments require

propagation of intense laser light through underdense

plasma. These laser beams are subject to laser-plasma-inter-

action (LPI) instabilities which can be deleterious to thermo-

nuclear ignition because they lead to loss of target

symmetry, loss of target energy and hot electron production.1

Among LPI, backward stimulated Brillouin scatter (BSBS)

has long been considered a serious danger because the damp-

ing threshold of BSBS of coherent laser beams is typically

several orders of magnitude less then the required laser in-

tensity �1015 W/cm2 for ICF. BSBS may result in laser

energy retracing its path to the laser optical system, possibly

damaging laser components.1,2 Recent experiments, which

for the first time achieved conditions of fusion plasma, dem-

onstrate that large levels of BSBS (up to 10% of reflectivity)

are possible.3

The linear theory of LPI instabilities is well developed

for coherent laser beams.4 However, ICF laser beams are not

coherent because temporal and spatial beam smoothing tech-

niques are used to produce laser beams with short enough

correlation time, Tc, and lengths to suppress self-focus-

ing.1,2,4 Spatial smoothing results in a speckle field of laser

intensity fluctuations with transverse correlation length

lc’Fk0 and longitudinal correlation length (speckle length)

Lspeckle ’ 7F2k0, where F is the optic f-number and k0¼ 2p/

k0 is the laser light wavelength (see, e.g., Refs. 5 and 6).

There is a long history of LPI instability theory in random

laser beams (see, e.g., Refs. 7–9 and references therein). For

small enough laser beam correlation time Tc, the spatial gain

rate, ji, is given by the Random Phase Approximation

(RPA). However, beam smoothing for ICF typically has Tc

well above the regime of RPA applicability. There are few

examples in which the implications of laser beam spatial and

temporal incoherence have been analyzed for such Tc. One

exception is forward stimulated Brillouin scattering (FSBS).

We have obtained in Refs. 10 and 11 the FSBS dispersion

relation for Tc too large for RPA relevance, but still small

enough to suppress single laser speckle instabilities.12 We

verified our theory of this “collective” FSBS instability

regime with 3D simulations. Similar simulation results had

been previously observed.13

This naturally leads one to consider the possibility of a

collective regime for BSBS (CBSBS). We present 2D and

3D simulation results as evidence for such a regime, and find

agreement with a simple theory which finds above the

CBSBS threshold that the spatial gain rate for backscatter ji,

is well approximated by the sum of two contributions. The

first contribution is RPA-like, ji / Tc, with zero intensity

threshold (when light wave damping is neglected). The sec-

ond contribution has a finite laser intensity threshold. That

threshold is within the parameter range of ICF hohlraum

plasmas at the National Ignition Facility (NIF)1 and at the

Omega laser facility (OMEGA).14 This threshold was first

predicted in Ref. 15 in the limit cTc� Lspeckle, where c is the

speed of light.16,26,27 The second contribution is collective-

like because it neglects single speckle contributions and its

spatial gain rate is independent of Tc for cTc � Lspeckle. The

CBSBS threshold is applicable for strong and weak acoustic

damping coefficient �ia. The theory accurately predicts ji for

small �ia� 0.01 which is relevant for gold plasma near

the hohlraum wall in NIF and OMEGA experiments.1,14

The standard RPA regime is recovered well below the

CBSBS threshold for significantly smaller correlation time

cTc< (4/7p)Lspeckle.

The paper is organized as follows. In Sec. II, we intro-

duce the basic equations of BSBS for LPI and the stochastic

boundary conditions which model the laser beam’s random-

ness. In Sec. III, we find the dispersion relations of the line-

arized BSBS equations. In Sec. IV, their convective and

absolute instabilities are analyzed. Section V describes the

details of our stochastic simulations of the linearizeda)Electronic address: plushnik@math.unm.edu
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equations. In Sec. VI, the conditions of applicability of the

dispersion relation are discussed. Section VII considers the

estimates for typical ICF experimental conditions. In Sec.

VIII the main results of the paper are discussed.

II. BASIC EQUATIONS

Assume that laser beam propagates in plasma with fre-

quency x0 along z. The electric field E is given by

E ¼ ð1=2Þe�ix0t½Eeik0z þ Be�ik0z�iDxt� þ c:c:; (1)

where E(r, z, t) is the envelope of laser beam and B(r, z, t) is

the envelope of backscattered wave, r¼ (x, y), and c.c. means

complex conjugated terms. Frequency shift Dx¼�2k0cs is

determined by coupling of E and B through ion-acoustic

wave of phase speed cs and wavevector 2k0 with plasma den-

sity fluctuation dne given by dne

ne
¼ 1

2
re2ik0zþiDxt þ c:c:, where

r(r, z, t) is the slow envelope (slow provided DxTc� 1) and

ne is the average electron density, assumed small compared

to the critical electron density nc. We consider a slab model

of plasma (plasma parameters are uniform). The coupling of

E and B to plasma density fluctuations gives

R�1
EEE � i c�1@t þ @z

� �
þ 1

2k0

r2

� �
E ¼ k0

4

ne

nc
rB; (2)

R�1
BBB � i c�1@t � @z

� �
þ 1

2k0

r2

� �
B ¼ k0

4

ne

nc
r�E; (3)

r¼ (@x, @y), and r is described by the acoustic wave equa-

tion coupled to the ponderomotive force / E2 which results

in the envelope equation

R�1
rr r� � ½iðc�1

s @t þ 2�iak0 þ @zÞ � ð4k0Þ�1r2�r�

¼ �2k0E�B: (4)

Here, we neglected terms / jEj2; jBj2 in the right-hand side

(r.h.s.) which are responsible for self-focusing effects, �L is

the Landau damping of ion-acoustic wave and �ia¼ �L/2k0cs

is the scaled acoustic Landau damping coefficient. E and B
are in thermal units (see, e.g., Ref. 10), e.g., jEj2 � I
¼ ð1=4Þðvosc=veÞ2, with vosc the quiver velocity of the elec-

tron in the laser’s electromagnetic field and ve is the electron

thermal speed.

We use a simple model of induced spatial incoherence

beam smoothing17 which defines stochastic boundary condi-

tions at z¼ 0 for the spatial Fourier transform (over r) of E,

ÊðkÞ10

Êðk; z ¼ 0; tÞ ¼ jEkj exp½i/kðtÞ�;
h exp ði½/kðtÞ � /k0 ðt0Þ�Þi ¼ dkk0 expð�jt� t0j=TcÞ; (5)

where

jEkj ¼ const; k < km; Ek ¼ 0; k > km; (6)

is chosen as the idealized “top hat” model of NIF optics.18

Here h…i means the averaging over the ensemble of stochas-

tic realizations of boundary conditions, km ’ k0/(2F) is the

top hat width and the average intensity, hIi � hjEj2i ¼ I
determines the constant.

III. LINEARIZED EQUATIONS AND DISPERSION
RELATIONS

In linear approximation, assuming jBj � jEj so that

only the laser beam is BSBS unstable, we neglect the right

hand side (r.h.s.) of Eq. (2). The resulting linear equation

with boundary condition (5) may be solved exactly in

Fourier space

Eðr; z; tÞ ¼
X

j

Ekj
;

Ekj
¼ jEkj

j exp½ið/kj
ðt� z=cÞ þ kj 	 r� k2

j z=2k0Þ�;
(7)

where we take sum over the transverse Fourier harmonics kj.

Figure 1 shows the spatial gain rate, ji, defined by the

growth of backscattered light intensity hjBj2i / e�2jiz ðhjBj2i
/ e�2jizÞ as a function of the re-scaled correlation time ~Tc

obtained from our numerical solution of the stochastic linear

FIG. 1. Dimensionless spatial gain rate ~j i � ji4F2=k0 of BSBS obtained

from stochastic simulations of (3)–(7) compared with the sum of spatial gain

rates ~jB þ ~jr (obtained by solving (17) and (37)). The scaled damping rate

l¼ 5.12 is used (e.g., it corresponds to �ia¼ 0.01, F¼ 8). (a) 3D simulations

with cs/c¼ 0, ~I ¼ 2 (circles) and ~I ¼ 1 (squares). The scaled dimensionless

laser intensity ~I , l, and the scaled correlation time ~T c are defined in (8).

Solid and dashed lines show ~jB þ ~jr for ~I ¼ 2 and ~I ¼ 1, respectively. If
~jr < 0 then ~jB þ ~jr is replaced by ~jB. (b) 2D simulations with c/cs¼ 500,
~I ¼ 3 (circles) and ~I ¼ 1 (squares). Error bars are also shown. Solid and

dashed lines show ~jB þ ~jr for ~I ¼ 3 and ~I ¼ 1, respectively, for both (a)

and (b). The details of simulation method are provided in Sec. V.
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equations (3)–(7) (details of numerical simulations are pro-

vided in Sec. V). The re-scaled damping rate, l, the re-

scaled laser intensity, ~I , and the re-scaled coherence time, ~Tc

~Tc �
Tc

Ts
; l � 2�iak2

0=k2
m;

~I � 4F2

�ia

ne

nc
I; (8)

prove useful. ~Tc is the correlation time Tc in units of the

acoustic transit time along the speckle length

Ts ¼
4F2

k0cs
: (9)

Note that definition of ~Tc is different by a factor 1/2F from

the definition used for FSBS,10,11 where units of the trans-

verse acoustic transit time through speckle were used. We

use dimensionless units with k0=k2
m ¼ 4F2=k0 as the z-direc-

tion unit of length, 1/km¼ 2F/k0 as the transverse unit of

length and Ts is the time unit. h…i means averaging over the

statistics of laser beam fluctuations (5). l is the damping rate

in units of 1/Ts. (See also Figure 11 below for illustration of

intensity normalization in comparison with physical units.)

We now relate ji to the spatial gain rates for hBi and

hr�i (we designate them jB and jr, respectively). In general,

gain rates of mean amplitudes give a lower bound to ji.

Note, according to Figure 2, r is almost coherent on a time

scale Tc. We also see from Figure 2 that B simply inherits

the coherence time Tc imposed at the boundary for E. A pri-
ori, one expects that density fluctuations r which propagate

as ion acoustic waves, Eq. (4) without the E*B source, do not

respond efficiently to arbitrarily rapid variations in time of

the source because of ion inertia. This expectation is borne

out by results which show a longer correlation time of r (in

comparison with Tc) as seen in Figure 2.

First, we develop a suitable approximation for jr. Solve

Eq. (3) for B, insert that expression for B into (4) and ensem-

ble average to obtain

R�1
rr hr�i ¼ �ðk2

0=2Þðne=ncÞhE�RBBr�Ei: (10)

We recover the Bourret approximation8,9 by approxi-

mating the r.h.s. of Eq. (10) as hE�RBBr�Ei ’ hE�RBBEihr�i.
Then Eq. (10) is reduced to a closed expression for hr�i as

R�1
rr hr�i ¼ �ðk2

0=2Þðne=ncÞhE�RBBEihr�i: (11)

The Fourier transform over r of the response function RBB is

given by the explicit expression

R̂BB k; z; tð Þ ¼ �icd zþ ctð Þexp i
k2

2k0

z

� �
H �zð Þ; (12)

where H(z) is the Heaviside step function. In r, z space we

obtain

R�1
rr hr�ðr; z; tÞi ¼ � ðk2

0=2Þðne=ncÞ
ð ð ð

dr0dz0dt0


 RBBðr� r0; z� z0; t� t0Þ

 C�ðr� r0; z� z0; t� t0Þ

 hr�ðr0; z0; t0Þi; (13)

where the kernel RBBðr; z; tÞ of the response function RBB is

the inverse Fourier transform of (12). Here, the laser beam

correlation function C is defined using Eq. (7) as

C r� r0; z� z0; t� t0ð Þ
� hE r; z; tð ÞE� r0; z0; t0ð Þi

¼
X

j

jEkj
j2 exp

�
ikj 	 r� r0ð Þ � i

k2
j

2k0

z� z0ð Þ

� jt� t0 � z� z0ð Þ=cj=Tc

�
: (14)

The particular form of C for the top hat model is defined by

Eqs. (5) and (6).

If one looks for solutions of Eq. (13) in exponential

form hr�i / eiðjzþk	r�xtÞ, then the exponential time depend-

ence of Eq. (14) allows explicit evaluation of all integrals in

Eqs. (12) and (13) to arrive at the following dispersion rela-

tion in dimensionless units:

�i~xþlþ i~j� i=4ð Þ~k2

¼ 8iF4 ne

nc

XN

j¼1

jEkj j
2

~x
cs

c
þ ~j� ~k

2

j �
~k

2

2
� ~kj 	 ~kþ 2i

cs

c

1

~Tc

; (15)

where ~x � x4F2=ðk0csÞ; ~j � j4F2=k0, the vectors
~kj � kj2F=k0 span the top hat, Eqs. (5) and (6), and

I ¼
P

j jEkj
j2. In dimensional units, Eq. (15) takes the equiv-

alent form

�ixþ 2�iak0cs þ ijcs �
i

4k0

k2cs

¼ ik3
0csne

2nc


XN

j¼1

jEkj
j2

x
k0

c
þ k0j� k2

j �
k2

2
� kj 	 kþ 2i

k0

c

1

Tc

:

(16)

FIG. 2. Normalized autocorrelation functions vs. a dimensionless time shift

D~t for E, B, and r: hEð~r; ~z;~tÞE�ð~r; ~z;~t þ D~tÞi; hBð~r; ~z;~tÞB�ðr; ~z;~t þ D~tÞi,
and hrð~r; ~z;~tÞr�ð~r; ~z;~t þ D~tÞi with ~I ¼ 3; ~T c ¼ 0:1, and l¼ 5.12 from sto-

chastic simulations of (3)–(7). It is seen that B is correlated at the same time
~T c as E while r is correlated at much larger times. These autocorrelation

functions are independent of ~r and ~z as detailed in Sec. V.
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For the top hat model in the continuous limit N ! 1,

the sum in Eq. (15) is replaced by an integral, giving for the

most unstable mode k¼ 0

Dr ~x; ~jð Þ ¼ � i~x þ lþ i~j

þ i
l
4

~Iln

1� ~j � ~x
cs

c
� 2i

cs

c

1

~Tc

�~j � ~x
cs

c
� 2i

cs

c

1

~Tc

¼ 0: (17)

In dimensional units Eq. (17) takes the following form:

�ixþ 2�iak0cs þ ijcs

þ2ik0csF
2 ne

nc
Iln

k0

4F2
� j� x

c
� 2i

1

cTc

�j� x
c
� 2i

1

cTc

¼ 0: (18)

The dispersion relation Eq. (17) has a branch cut in the

complex j-plane connecting two branch points ~j1 ¼ 1

�~x cs

c � 2i cs

c
1
~T c

and ~j2 ¼ �~x cs

c � 2i cs

c
1
~T c

. In the discrete case,

Eq. (15) with N� 1, instead of a branch cut this discrete dis-

persion relation has solutions located near the line connect-

ing ~j1 and ~j2 in the complex ~j-plane. These solutions of the

discrete case are highly localized around some kj so they

cannot be approximated by Eq. (17) but they are stable for

N � 1 and can be ignored as we take the limit N ! 1.

Other solutions of the discrete case in that limit converge

to the solution of Eq. (17). Thus it is sufficient to consider

Eq. (17) only.

We analyze the convective instability in Eq. (17) by

maximizing the convective instability spatial gain rate ~jr �
Imð~jÞ over real values of ~x. Solving real and imaginary part

of Eq. (17) gives ~jð~xÞ: However, Eq. (17) is transcendental,

preventing explicit determination of ~jð~xÞ. Instead, we dif-

ferentiate Eq. (17) over ~x assuming that ~jð~xÞ solves

Eq. (17). It gives

Dr ~x;~j ~xð Þ
� �

d ~x
¼ @Dr ~x;~jð Þ

@ ~x
þ ~j0 ~xð Þ@Dr ~x;~jð Þ

@~j

� �����
j¼j ~xð Þ

¼ 0;

(19)

where ~j0ð~xÞ � ~jð~xÞ
d ~x . The maximum of ~jr ¼ Imð~jÞ over ~x

requires

Im½j0ð~xÞ� ¼ 0; (20)

while Re½j0ð~xÞ� has to be determined. Using the conditions

that the real part of (19) is zero, subject to the constraint of

Eq. (20), one obtains for general Imð~xÞ that either

Re j0 ~xð Þ½ � ¼ � cs

c
; (21)

or

~x ¼ 1� 2Re ~jð Þ
2

cs

c

: (22)

However, when Eq. (21) is plugged into the imaginary part

of Eq. (19), one obtains cs/c¼�1 which is unphysical.

Instead, when Eq. (22) is plugged into the imaginary part

of Eq. (19), one obtains a physical solution. We plug in

Eq. (22) into the dispersion relation, Eq. (17), and then the

logarithm of (17) turns into

i
l
4

~Iln

i

2
þ Im ~jð Þ þ 2

cs

c

1

~Tc

� i

2
þ Im ~jð Þ þ 2

cs

c

1

~Tc

;

which is purely real valued. Then the imaginary part of

Eq. (17) is no longer transcendental. Solving it for Reð~jÞ
with the use of (22), one obtains an exact expression for

the value of x which maximizes ~jr ¼ Imð~jÞ. It is achieved

at

~x ¼ Re ~jð Þ ¼ 1

2 1þ cs

c

� � : (23)

The threshold of the convective instability ~I ¼ ~Iconvthresh

corresponds to ~jr ¼ Imð~jÞ ¼ 0. Evaluating the real part of

Eq. (17) at that threshold together with Eq. (23) implies that

the convective CBSBS threshold is given by

~Iconvthresh ¼
2

arctan
c ~Tc

4cs

 ! : (24)

In non-scaled units equation (24) takes the following

form:

Iconvthresh ¼
�ia

4F2

nc

ne

2

arctan
k0cTc

16F2

� � : (25)

Above threshold, ~I > ~Iconvthresh, the spatial gain rate is

positive, ~jr > 0. Assuming that

c ~Tc

4cs
� 1; (26)

we obtain from (24) that

~Iconvthresh ¼
4

p
1þ 8cs

pc ~Tc

� �
þ O

4cs

c ~Tc

� �2

’ 4

p
: (27)

Condition (26) means that during a laser coherence time, Tc,

light travels far further than a speckle length, Lspeckle� cTc.

We conclude from Eqs. (26) and (27), that the convective

threshold, (24), is an insensitive function of the laser coher-

ence time in that limit.

In non-scaled units Eq. (27) reduces to

Iconvthresh ¼
�ia

4F2

nc

ne

2

arctan
k0cTc

16F2

� � ’ �ia

4F2

nc

ne

4

p
; (28)

where the intensity is in thermal units.

Above the convective threshold, ~I > ~Iconvthresh, there are

two solutions of Eq. (17). One of these solutions does not
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cross the real j axis from below as the complex contour

Im(x) ! 0. Thus the standard analysis of convective vs.

absolute instabilities (see, e.g., Ref. 19) implies that this

solution does not describe instability. Assuming c ~T c

4cs
� 1 and

l� 1 that stable solution is given by

~jr ¼ ð1=2Þ½lþ ðl2 � ~IlÞ1=2�; (29)

coinciding with the stable branch in the coherent case (see,

e.g., Ref. 4). The second solution does cross the real j axis

so it is convectively unstable and we consider only that solu-

tion below.

In the limit c ~T c

4cs
� 1 and assuming that ~I is just above the

convective threshold, Eq. (24), we obtain from Eqs. (17),

(23), and (24) that

~jr ¼ l
p
4
� 2

cs

c ~Tc

� � ~I � ~Iconvthresh

l~Iconvthresh � 1
: (30)

This expression is valid for l > ~I
�1

convthresh ’ p
4
, while for

l � ~I
�1

convthresh the convective threshold coincides with the

absolute instability threshold.

In the limit c/cs ! 1 for any fixed ~Tc, the spatial gain

rate ~jr is independent of ~Tc and is given by the correspond-

ing solution of the transcendental equation 2ð~jr � lÞ
þl~Iarctanð1=2~jrÞ ¼ 0. We refer to ~jr as the collective-like

branch of instability because it is independent on ~Tc. For

finite but small cs/c � 1 and ~I > ~Iconvthresh, there is sharp

transition of ~jr as a function of ~Tc, from 0 for ~Tc ¼ 0 to
~Tc-independent value of ~jr as seen in Figure 3.

The spatial gain rate of backscattered light amplitude,

jB, is obtained in a similar way. Statistical averaging of

Eq. (3) for hBi gives

R�1
BBhBi ¼ �ðk2

0=2Þðne=ncÞhERrrE�Bi: (31)

We again recover the Bourret approximation8,9 by approxi-

mating the r.h.s. of Eq. (31) as hERrrE�Bi ’ hERrrE�ihBi.
Then Eq. (31) is reduced to a closed expression for hBi as

follows:

R�1
BBhBi ¼ �ðk2

0=2Þðne=ncÞhERrrE�ihBi: (32)

The Fourier transform over r of the response function Rrr is

given by the explicit expression

R̂rr k; z; tð Þ ¼ �icsd z� cstð Þexp i
k2

4k0

� 2�iak0

� �
z

� �
H zð Þ:

(33)

The inverse Fourier transform of Eq. (33) results in the inte-

gral form of Rrr. Writing that integral in the r.h.s. of Eq.

(32) explicitly we obtain

R�1
BBhBðr;z; tÞi¼ �ðk2

0=2Þðne=ncÞ
ð ð ð

dr0dz0dt0


Rrrðr� r0;z� z0; t� t0ÞC�


ðr� r0;z� z0; t� t0Þ
hBðr0;z0; t0Þi; (34)

where the kernel Rrrðr; z; tÞ of the response function

Rrrðx; z; tÞ is the inverse Fourier transform of Eq. (33) and C
is given by Eq. (14).

We look for solution of Eq. (13) in exponential form

hBi / eiðjzþk	r�xtÞ, and then the exponential time depend-

ence of C allows one to evaluate all integrations in Eqs. (33)

and (34) explicitly to arrive at the following dispersion rela-

tion in dimensionless units:

FIG. 3. BSBS spatial gain rates ~jB þ ~jr; ~jB and ~jr compared with the spa-

tial gain rate ~ji obtained from same stochastic simulations as in Figure 1(b)

(with ~I ¼ 3 and l¼ 5.12). (a) Full range of ~T c is shown. (b) Intermediate

zoom into smaller value of ~T c. It is seen that as ~T c decreases below ’
0:008; ~j i starts to deviate from ~jB þ ~jr. It is seen that ~jr vanishes at the

convective threshold (24), which corresponds to ~T c ¼ 4cs

c tanð2=~IÞ
¼ 0:00629…. (c) Zoom into the smallest values of ~T c. It is seen that for
~T c � 0:003; ~ji converges to the RPA result (39) (given by ~jB in that limit).
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i~x
cs

c
þ i~j � i=2ð Þ~k2 ¼ 8iF4 ne

nc


XN

j¼1

jEkj
j2

�~x þ ~j þ
~k

2

j

4
�

~k
2

4
þ

~kj 	 ~k
2
� il� i 1� cs

c

� �
1

~Tc

:
(35)

In dimensional units, Eq. (35) takes the equivalent form

ix
1

c
þ ij� i

2k0

k2 ¼ ik3
0ne

2nc

XN

j¼1

jEkj
j2

�x
k0

cs
þ k0jþ

k2
j

4
� k2

4
þ kj 	 k

2
� i2�iak3

0cs � i
k0

csTc
1� cs

c

� � :
(36)

For the top hat model in the continuous limit N ! 1,

the sum in Eq. (35) is replaced by an integral. As in Eq. (15),

we consider only the most unstable mode k¼ 0. Also we

note that the diffraction term k2
j =4 < 1=4 in the denominator

of Eq. (35) is small compared with the terms lþ ð1� cs

c Þ
1
~T c
� 1. Neglecting that diffraction contribution and using

the condition cs/c � 1 we obtain from Eq. (35) the disper-

sion relation

DB ~x; ~jð Þ ¼ �~j þ l
4

~I
1

~j � ~x � il� i
1

~Tc

¼ 0: (37)

We analyze the convective instability in Eq. (37) by

maximizing the convective instability spatial gain rate

~jB � Imð~jÞ over real values of ~x. Eq. (37) does not have a

convective threshold (provided we neglect light wave damp-

ing). The maximum of ~jB in Eq. (37) is achieved at

~x ¼ Reð~jÞ ¼ 0 and one then obtains

~jB ¼
1þ l ~Tc

2 ~Tc

�
1þ l ~Tc

� �2 � l~I ~T
2

c

h i1=2

2 ~Tc

: (38)

For ~Tc < l�1 and ~I�1, we obtain from Eq. (38) that ~jB has

near-linear dependence on ~Tc

~jB ’
l~I ~Tc

4
; (39)

which is typical for RPA results. It suggests that we refer ~jB

as the RPA-like branch of instability.

In dimensional units Eqs. (37) and (39) take the follow-

ing form:

jþ k2
0

ne

2nc
I

1

j� x
cs
� 2ik0�ia � i

1

csTc

¼ 0;

jB ’ k2
0cs�ia

ne

nc

I Tc

2
:

(40)

One may solve Eqs. (17) and (37) numerically for ~jr

and ~jB, respectively, for given ~x. We choose ~x ¼ 0:5 in

(17) and (37) to maximize ~jr. Note that choosing instead ~jB

at ~x ¼ 0 (to maximize ~jB) would give only a small shift in

~jB and lead to indistinguishable changes in all the figures.

Figures 1(a) and 1(b) show that the expression ~jB þ ~jr is a

reasonably good approximation to ~ji above the convective

threshold (24) for ~Tc�0:1 which is the main result of this

paper. Below this threshold analytical and numerical results

are only in qualitative agreement. We replace ~jB þ ~jr by ~jB

in that case because for very small ~Tc the value of ~jB con-

verges to ~ji as shown in Figure 3(c).

Figure 3 compares the spatial gain rate ~jB þ ~jr; ~jB and

~jr with the spatial gain rate ~ji obtained from same stochas-

tic simulations as in Figure 1(b) (with ~I ¼ 3). It is seen that

~jB þ ~jr is in very good agreement with ~ji for ~Tc � 0:1
while maxð~jB; ~jrÞ is not. We conclude that the simple

choice of the most unstable branch between ~jB and ~jr,9 i.e.,

choosing maxð~jB; ~jrÞ, does not provide agreement with sim-

ulations. We also recall that ~jB and ~jr are calculated based

on the average of amplitudes hBi and hr�i, while we deter-

mine ~ji from hjBj2i: It implies that ~ji � maxð~jB; ~jrÞ in

agreement with Figure 3. In Sec. VI, we discuss the applic-

ability of the dispersion relations (17) and (37) and recover

the limit of small ~Tc in which maxð~jB; ~jrÞ converges to ~ji.

FIG. 4. Dashed lines show a power spectrum jrðk; z; tÞj2 as a function of x
obtained from simulations with amplification length (we measure the spec-

trum at this distance Lamplification from the left boundary of the system in

order to avoid influence of transition layers discussed in Section V)

Lamplification¼ 50, ~I ¼ 3, l¼ 5.12, and ~T c ¼ 0:1. Different dashed curves

correspond to different Fourier modes in k located near the center of top-hat,

�0:2 � ~k � 0:2. The highest peak corresponds to k¼ 0. Solid line

shows exp ð2Lamplif ication ½~jBðxÞ þ ~jrðxÞ�Þ. All curves are normalized by

exp ð2Lamplif ication ½~jBðx ¼ 0Þ þ ~jrðx ¼ 0Þ�Þ. Roughness of curves is due to

the finite simulation time, ~ttot ¼ 35. Fourier modes are peaked around

x¼ 0.5.
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Figure 4 shows that the Fourier modes of r(k, z, t) in

simulations are indeed peaked around x¼ 0.5. It confirms

that our choice x¼ 0.5 for the analytical theory is optimal.

The qualitative explanation why jBþ jr is a good

approximation to ji is based on the following argument. First

imagine that B propagates linearly and not coupled to the

fluctuations of r*, so its source is r�E! hr�iE in r.h.s. of

Eq. (3). If hr�i / ejrz grows slowly with z (i.e., if hr�i
changes a little over the speckle length Lspeckle and time Tc),

then so will hjBj2i at the rate 2jr. But if the total linear

response Rtot
BB (Rtot

BB is the renormalization of bare response

RBB due to the coupling in r.h.s. of Eq. (3)) is unstable then

its gain rate gets added to jr in the determination of hjBj2i
since in all theories which allow factorization of 4-point cor-

relation function into product of 2-point correlation functions,

hBð1ÞB�ð2Þi ¼ Rtot
BBð1; 10ÞSð10; 20ÞRtot �

BB ð20; 2Þ. Here, Sð1; 2Þ
� hr�ð1Þrð2ÞihEð1ÞE�ð2Þi ’ hr�ð1Þihrð2ÞihEð1ÞE�ð2Þi and

“1,” “2,” etc., mean a set of all spatial and temporal

arguments.

IV. CONVECTIVE INSTABILITY VERSUS ABSOLUTE
INSTABILITY

In this section, we show that the dispersion relations,

Eqs. (17) and (37), predict absolute instability for large

intensities. We first consider the dispersion relation, Eq.

(17), which has branch cut in the complex ~j-plane connect-

ing two branch points ~j1 ¼ 1� ~x cs

c � 2i cs

c
1
~T c

and

~j2 ¼ �~x cs

c � 2i cs

c
1
~T c

.

Absolute instability occurs if the contour Imð~xÞ ¼
const in the complex x-plane cannot be moved down to the

real ~x axis because of pinching of two solutions of Eq. (17)

in the complex ~j-plane.19,20 To describe instability one of

these solutions must cross the real axis in ~j-plane as the

contour Imð~xÞ ¼ const is moving down. The pinch occurs

provided

@Dr ~x; ~jð Þ
@~j

¼ 0: (41)

The pinch condition (41) together with the requirement

of crossing the real axis in ~j-plane result in

~j ¼ 1

2
þ 1

2
i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l~I � 1

q
� cs

c
~x � cs

c

2i
~Tc

: (42)

Taking Eq. (42) together with Drð~x; ~jÞ ¼ 0 from Eq. (17) at

the absolute instability threshold Imð~xÞ ¼ 0, gives the tran-

scendental expression

l� 1

2
l~Iabsthresh � 1
� �1=2 þ cs

c

2

~Tc

� 1

2
l~Iabsthresharctan l~Iabsthresh � 1

� ��1=2
h i

¼ 0 (43)

for the absolute instability threshold intensity ~Iabsthresh.

Assuming l~Iabsthresh � 1 we obtain from Eq. (43) an explicit

expression for the CBSBS absolute instability threshold

~Iabsthresh ¼ lþ 3l�1 þ Oðl�3Þ þ Oð ~T�1

c cs=cÞ: (44)

The absolute instability threshold for the second RPA-

like branch, Eq. (37), is obtained similarly with the pinch

condition
@DBð~x;~jÞ

@~j ¼ 0: It gives the absolute instability

threshold for the RPA-like branch of instability

~Iabsthresh;B ¼ l 1þ 1

l ~Tc

� �2

: (45)

For ~Tc�1, the threshold given by Eq. (44) is lower than that

given by Eq. (45) and thus Eq. (45) can be ignored.

For l � 1 the absolute threshold given by Eq. (44)

reduces to the coherent absolute BSBS instability

threshold

~Iabsthreshcoherent ¼ l: (46)

For typical experimental condition l � 5 as discussed

in Sec. VI. Then the absolute instability threshold found in

Eq. (44) is significantly above the convective instability

threshold given by (24). Thus in simulations described below

we emphasize the convective regime and assume ~I to be

below the absolute threshold.

V. NUMERICAL SIMULATIONS

We performed two types of simulations. The first type is

3 þ 1D simulations (three spatial coordinates r, z, and t) of

Eqs. (3), (4), and (7) with boundary and initial conditions

given by Eqs. (5) and (6) in the limit c/cs ! 1 (i.e., setting

c�1¼ 0 in Eqs. (3) and (4)). It implies that the phases /kj
ðt�

z=cÞ in Eq. (7) become only t-dependent, /kj
ðtÞ. That formal

limit c ! 1, is consistent provided cTc � Lspeckle. Then in

the linear instability regime, the laser field, E, at any time

may be obtained by propagation from z¼ 0 while the scat-

tered light field, B is obtained by backward propagation from

z¼Lz. Time scales are now set by the minimum of Tc and

the acoustic time scale for the density r*. We performed

numerical simulation of B and r* via a split-step (operator

splitting) method. E advances only due to diffraction and is

determined exactly by (7). For given r*, B is first advanced

due to diffraction in transverse Fourier space, and then the

source term (r.h.s. of (3) which is / r*E) is added for all

r¼ (x, y). The density r* is evolved in the strong damping

approximation in which the d/dz term is omitted from

Eq. (4). In the regimes of interest, in particular, near the col-

lective threshold, Eq. (24), regime, even for �ia’s physically

smallest value of 0.01, the scaled damping l is approxi-

mately 5 while d=d~z is either ’ ~ji or 1/10 (an inverse

speckle length in scaled units). We again use tilde where

necessary to stress that we performed simulations in dimen-

sionless units. So given E and B, r* may be advanced in time

at each z, for each transverse Fourier mode, or since the

transverse Laplacian term is estimated as unity in magnitude

(based on the speckle width estimate of Fk0), r* may be

approximately advanced at each spatial lattice point.

The second type is 2 þ 1D simulations (two spatial

coordinates x, z, and t) of Eqs. (3), (4), and (7) with finite

value cs/c¼ 1/500 (a typical value for actual LPI experi-

ments) and modified top-hat boundary condition
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jEkj ¼ k1=2 const; k < km; Ek ¼ 0; k > km; (47)

chosen to mimic the extra factor k in the integral over trans-

verse direction of the full 3 þ 1D problem. That modified

top hat choice ensures that the linearized equations of that

2þ 1D problem gives exactly the same analytical solutions,

Eqs. (17) and (37), as for the full 3 þ 1D problem. We used

again the split-step method by integrating along the charac-

teristics of r and B and solving for the diffraction by Fourier

transform in the transverse coordinate x.

We run simulations in the box 0 < ~z < ~Lz. For both

types of simulations, the boundary conditions for B were set

at ~z ¼ ~Lz. The boundary condition for the Fourier modes

B̂ðk; z ¼ Lz; tÞ is random time-independent phases, chosen

statically independent for each k. The boundary condition

for r is zero value. As time progresses, both jrj and jBj2
grow until reaching a statistical steady state if the value of ~I
is below the threshold of absolute instability, Eq. (44).

Figure 6 shows a typical time dependence of hjBj2ix, where

h…ix means averaging over the transverse coordinate x.

Because Eqs. (3) and (4) are linear, the maximum value of

hjBj2ix grows with increase ~Lz and the boundary condition

B̂ðk; z ¼ Lz; tÞ is defined up to multiplication by an arbitrary

constant. The z-dependence of hjBj2ix in the statistical steady

state appears very close to exponential, hjBj2ix / e�2~j i~z well

inside the interval 0 < ~z < ~Lz. Near the boundaries ~z ¼ 0

and ~z ¼ ~Lz there are short transition layers. The particular

form of the boundary conditions for B and r affect only these

transition layers while ji is insensitive to them.

To recover ~ji with high precision, we performed simula-

tions for a long time interval after reaching statistical steady

state and averaged hjBj2ix over that time at each ~z (i.e., we

assumed ergodicity). We checked from simulations that

equivalently one can instead use hjrj2ix to recover ~ji

which gave the same value of ~ji as expected. For example,
~Tc ¼ 0:1 (the time the laser light travels ’ 5 laser speckles)

we use 256 transverse Fourier modes (convergence of results

with the number of transverse modes and the simulation box

size in x were also checked) and discrete steps D~z ¼ 0:15 in

dimensionless units with the typical length of the system
~Lz ¼ 50 (’5 speckle lengths) and a time step D~t ¼ D~zcs=c.

For this particular set of parameters it implies

D~t ¼ 1:5
 10�4. For smaller ~Tc and, respectively, smaller

~ji, we increased ~Lz to maintain high precision in recovering

~ji. Simulations typically required �105–106 time steps to

achieve a robust statistical steady state and then time aver-

ages were evaluated over another �105–106 time steps (to-

gether with averaging over the transverse coordinate) to find

~ji with high precision. After that the logarithmic derivative

of jBj2 (which was averaged over the transverse coordinate

in addition to averaging over time) was calculated. This

resulting logarithmic derivative as a function of ~z was

smoothed using the moving-average (also known as sliding-

window or window-average) algorithm. In order to avoid

influence of transition layers on both ends of ~Lz we discarded

intervals at boundaries. For example, in the case of ~Lz ¼ 50

we used the interval from ~z ¼ 10 to ~z ¼ 40 in order to deter-

mine ~ji. Values of the smoothed logarithmic derivative in

this interval are analyzed as follows: we take largest and

lowest values and their arithmetic mean in our estimated

value of the spatial gain rate while we use the absolute value

of half the difference of the largest and lowest values as a

conservative error estimate. Such an approach is similar to

using the L1 norm which yields the most conservative of

error estimation. We illustrate this technique in Figure 5.

As mentioned before, we wait till the statistically steady

state is approaching and after that the time averaging of

hjBj2ix commenced. Typical jBj2 dynamics is illustrated in

Figure 6. The error in evaluation of ~ji decreases with

increase of the averaging time ~tav as seen in Figure 7. Noted

that strong fluctuation can affect the process of calculation of

logarithmic derivative significantly, increasing the averaging

time required to achieve reasonable accuracy.

For practical purposes, it is interesting to estimate the

time tini at which the initial thermal fluctuations of jBj2 are

amplified by �e20 to reach the comparable intensity with the

laser pump. We obtained from simulations that ~tini � 0:7 for
~Lz ’ two laser speckles (relevant for gold plasma in ICF

experiments and corresponds to ~Lz ’ 22 in dimensionless

units), ~I ¼ 3 and ~Tc ¼ 0:1. In dimensional units for NIF con-

ditions tini � 20 ps which is well below hydrodynamic time

(several hundreds of ps).

FIG. 5. Illustration of technique of spatial gain rate, ji, evaluation from sim-

ulations. (a) The averaged intensity hjBj2ix with superimposed exponential

function corresponding to the spatial gain rate. (b) The logarithmic deriva-

tive with window of used values of ~z (show by vertical lines) and largest and

lowest values of spatial gain rate (horizontal lines).
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Figure 2 shows normalized autocorrelation functions

hEð~r; ~z;~tÞE�ð~r; ~z;~t þ D~tÞi; hBð~r; z; tÞB�ð~r; ~z;~t þ D~tÞi, and

hrð~r; ~z;~tÞr�ð~r; ~z;~t þ D~tÞi for ~Tc ¼ 0:1 determined from sim-

ulations (we averaged here over time for each fixed values of
~r; ~z, and ~Lz). It is seen that the correlation times for E and B
are similar while the correlation time for r is much larger,

the more so the smaller ~Tc. This justifies the analytical

approximations used in Sec. III. We also varied ~r; ~z, and ~Lz

and obtained the same results for the correlation times within

statistical error.

Figures 1, 3, and 8–10 show the spatial gain rates

extracted from multiple simulations. Figures 8–10 are similar

to Figure 3 but show values of ~jB þ ~jr; ~jB; and ~jr compared

with the spatial gain rate ~ji for ~I ¼ 2; 3 and l¼ 5.12, 51.2.

VI. APPLICABILITY OF THE DISPERSION RELATION

To find applicability conditions of the Bourret approxi-

mation used in derivation of Eqs. (17) and (37), we deter-

mine the effective bandwidths DxB and Dxr for B and r,

respectively. Following Ref. 9, we estimate these bandwidths

through the frequency mismatches in three-wave interactions

for equations (2), (3), and (4).

There are two sources of mismatches in these equations:

the temporal incoherence (5) of the pump wave E with tem-

poral bandwidth Dx0� 1/Tc and the spatial incoherence of E
in the top hat model (6).

The temporal bandwidth Dx0 results in the spectral

width Dk0�Dx0/c. Counter-propagation of E and B results

in the effective contribution 2cDk0¼ 2/Tc to the temporal

bandwidth of B. Co-propagation of E and r with the relative

FIG. 7. Dependence of the spatial gain rate on averaging time ~tav. Upper

panel: the spatial gain rate with error bars. Lower panel: relative error for

the spatial gain rate.

FIG. 8. BSBS spatial gain rates vs. ~T c as in Figure 3 but with ~I ¼ 2 and

l¼ 5.12.

FIG. 9. BSBS spatial gain rates vs. ~T c as in Figure 3 but with ~I ¼ 2 and

l¼ 51.2.

FIG. 6. The time dependence of hjBj2ix for 2þ 1D simulation with
~Lz ¼ 50; l ¼ 5:12; ~T c ¼ 0:1, and ~I ¼ 3:0. hjBj2ix is shown at ~z ¼ 25. It is

seen that after the initial growth, hjBj2ix settles into an apparent statistical

steady state with the large fluctuations around it. The boundary condition at

~z ¼ ~Lz is hjBj2ix � 1.

012107-9 Korotkevich, Lushnikov, and Rose Phys. Plasmas 22, 012107 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

174.50.69.40 On: Tue, 20 Jan 2015 16:41:54



velocity c – cs results in the effective contribution (c – cs)Dk0

’ cDk0¼ 1/Tc to the temporal bandwidth of r.

The top-hat distribution in Fourier space has the transverse

width km¼ k0/2F. That transverse width results in the effective

contribution ck2
m=ð2k0Þ ¼ k0c=ð8F2Þ to the temporal band-

width of B. Its contribution to the temporal bandwidth of

r� csk
2
m=ð2k0Þ is neglected below because cs/c� 1.

We use again tilde to express all quantities in the dimen-

sionless units (as described after Eq. (8)) thus obtaining

D~xB ¼
2

~Tc

þ 1

2

c

cs
;

D~xr ¼
1

~Tc

;
(48)

where in the first equation we added contributions from both

temporal and spatial incoherence.

To find the range of applicability of the Bourret approxi-

mation, we have to compare (48) with the typical values

of propagators (inverse of the bare response functions)

cR�1
BB and csR

�1
rr acting on the perturbations hBi; hr�i

/ eiðjzþk	r�xtÞ. We estimate these values as follows:

jDBj �
k0cs

4F2
j ~DBj �

cR�1
BBhBi
hBi

����
����

’ xþ jc� k2
m

2k0

c

����
���� ’ k0cs

4F2

c

cs
j~j � 1=2j (49)

and

jDrj �
k0cs

4F2
j ~Drj �

cR�1
rr hri
hri

����
����

’ jx� jcs þ 2i�iak0csj ¼
k0cs

4F2
j~x � ~j þ ilj: (50)

The applicability of the Bourret approximation for hBi
and hri requires that9

D~xB > j ~DBj;
D~xr > j ~Drj;

(51)

as well as

D~xBD~xr > ~c2
0; (52)

where ~c0 is the temporal growth rate of the spatially homoge-

neous solution given by ~c2
0 ¼ ð1=4Þðc=csÞl~I .

Combining Eqs. (48)–(51), we obtain (assuming
1

4 ~T c

c
cs
� 1) the conditions

j~j � 1=2j < 1=2 (53)

and

~Tc < 1=j~x � ~j þ ilj: (54)

Condition Eq. (53) shows that as ~ji increases up to values

�1 with the increase of ~Tc, the validity of Eqs. (17) and (37)

breaks down. It suggests an explanation why for ~ji � 1 we

see deviation of ~jB þ ~jr from ~ji as in Figure 1(b) for ~I ¼ 3.

Condition Eq. (52) results in ~Tc < 2=ðl~IÞ. At the convective

threshold Eq. (27), it reduces to ~Tc < p=ð2lÞ. This inequal-

ity is however a little less restrictive than condition Eq. (54).

Condition Eq. (54) simplifies for j~j � ~xj�1 to

~Tc < 1=l; (55)

because typically l� 1 as discussed below in this section.

Approximating ~ji as ~jB þ ~jr also requires that both ~jB

and ~jr are unstable which implies that ~I > ~Iconvthresh.

Otherwise, if ~I < ~Iconvthresh then ~jr � l as given by the sta-

ble branch solution Eq. (29) which contradicts Eq. (53) for

typical l� 1.

We then distinguish the following cases:

(a) If ~I < 4=p then ~I < ~Iconvthresh for any ~Tc as follows

from Eqs. (24) and (27). In that case there is no range

of applicability of ~jB þ ~jr as the approximation of ~ji.

This is consistent with ~ji from simulations for ~I ¼ 1

shown by squares in Figure 1. These squares do not

agree with dashed lines which shows ~jB þ ~jr (in this

case ~jB þ ~jr is replaced by ~jB because ~jr is stable

according to ~I < ~Iconvthresh).

(b) If ~I > 4=p then ~I > ~Iconvthresh for

~Tc >
4cs

c
tan 2=~I
� �

; (56)

as follows from Eq. (24). In that case ~jB þ ~jr can approxi-

mate ~ji provided (57) is also satisfied. This is consistent

with cases for ~I ¼ 2; 3 shown in Figures 1, 3, and 8–10.

We note that Eq. (54) together with Eq. (56) results in a

double inequality

tanð2=~IÞ < ~Tc < 1=l; (57)

which can be well satisfied for l ’ 5, i.e., �ia ’ 0.01 as in

gold ICF plasma (for typically values cs/c ’ 1/500 and

F¼ 8). But for ICF plasma with a low ionization number Z
which typically has �ia ’ 0.1, we obtain that l ’ 50 making

(57) valid only in a narrow range of values of ~Tc. This

is consistent with Figures 9 and 10 where ~jB þ ~jr agrees

with ~ji in much narrower range of ~Tc values than in Figures

3 and 8.

FIG. 10. BSBS spatial gain rates vs. ~T c as in Figure 3 but with ~I ¼ 3 and

l¼ 51.2.
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We now consider the applicability of RPA for intensity

hjBj2i (or equivalently for hjrj2i). In addition to conditions

(51) and (52), RPA requires also the inequality complimen-

tary to (51) as follows:9

D~xB > j ~Drj;
D~xr > j ~DBj:

(58)

Combining Eqs. (48)–(50), we obtain that the first condition

in Eq. (58) is trivially satisfied while the second one results

in a very strict condition

~Tc <
cs

c

1

j~j � 1=2j : (59)

For very small ~Tc satisfying condition Eq. (59), the RPA spa-

tial gain rate for the intensity hjBj2i coincides with Eq. (39)

and thus Eq. (59) reduces to

~Tc <
2cs

c
’ 1

250
: (60)

In non-scaled units the condition (60) is given by

cTc < ð4=7pÞLspeckle: (61)

Figure 3(c) shows that indeed under condition Eq. (60),

the RPA spatial gain rate Eq. (39) is in excellent agreement

with simulations. However, the range of Tc satisfying condi-

tion Eq. (60) is not practical for ICF applications. The very

stringent condition Eq. (60) explains why we have to approx-

imate ji by the sum of the spatial gain rates jB þ jr for

amplitudes but not to use the RPA spatial gain rate for

intensity.

We now discuss a broader picture. Depending on laser

incoherence we have a hierarchy of thresholds

(a) Spatially incoherent laser beam with large ~Tc � 1 has

threshold,

~I thresholdspeckle ¼ 4=7p; (62)

beyond which reflectivity is dominated by intense

speckles (independent hot spot model) as found in

Refs. 5, 12, 21, and 22.

(b) The convective instability spatial gain rate for spatially

and temporary incoherent beam with Tc satisfying Eq.

(57) is given by jB þ jr. The convective threshold Eq.

(27) for jr is a factor 7 times higher compared with the

speckle threshold Eq. (62). It indicates a practical limit

of how the BSBS instability threshold can be increased

by decreasing Tc until it falls into the range given by

Eq. (57). For example, as seen in Figure 1(b), if we

take the typical value ~Tc ¼ 1 inside that range, and

decrease the laser intensity 3 fold from ~I ¼ 3 to ~I ¼ 1

to fall below CBSBS threshold, then the spatial gain

rate decreases by a factor 5. Further decrease of ~I
below 1 would result in slower (near-linear) decrease

of the spatial gain rate. Similarly, if we decrease ~Tc

below ~Tc ¼ 1 for fixed ~I then the decrease of the spa-

tial gain rate will be quick for ~I ¼ 3 (above CBSBS

threshold) and slow for ~I ¼ 1 (below CBSBS

threshold).

(c) For much smaller Tc satisfying the condition (61), the

classical RPA regime is recovered which has ignorable

diffraction (Refs. 7, 9, and 23) and the spatial gain rate

~ji ’ l~I= ~Tc as in Eq. (39). This limit (e.g., for

k0¼ 351 nm and F¼ 8 it requires Tc< 0.1 ps) which is

not relevant for ICF as Tc is too small.

VII. ESTIMATES FOR EXPERIMENT

For nominal NIF parameters,1,11 F ¼ 8; ne=nc ¼ 0:1;
k0 ¼ 351 nm; cs ¼ 6
 107 cm s�1, and electron plasma tem-

perature Te ’ 2.6 keV (Te was recently updated from the old

standard value Te ’ 5 keV (Ref. 24)), we obtain from Eq.

(27) that Iconvthresh ’ 1.1
 1014 W/cm2 for gold plasma with

�ia ’ 0.01 which is in the range of NIF single polarization

intensities. Fig. 11 shows ji in the limit cs=c ¼ 0; ~Tc ! 0

from simulations, analytical result ~jr (jB¼ 0 in that limit)

and the instability spatial gain rate of the coherent laser

beam jcoherent ¼ l=2� ðl2 � l~IÞ1=2=2 (see, e.g., Ref. 4). It

is seen that the coherent ji significantly overestimates simu-

lation based ji especially around Iconvthresh Eq. (27). The con-

vective gain rate ji has a significant dependence on ~Tc if we

include the effect of finite c/cs¼ 500 and finite ~Tc as in Fig.

1(b). Current NIF 3 Å beam smoothing design has Tc ’ 4 ps

implying ~Tc ’ 0:15. In that case Fig. 1(b) shows that there is

a significant (about 5 fold) change in ji between ~I ¼ 1 and
~I ¼ 3. Similar estimate for KrF lasers (k0¼ 248 nm, F¼ 8,

Tc¼ 0.7 ps) gives ~Tc ¼ 0:04 which results in a significant

(40%) reduction of ji for ~I ¼ 3 compared with above NIF

FIG. 11. ~j i vs. ~I for l¼ 5.12 obtained from 3þ 1D simulations (squares

connected by dashed line, cs/c¼ 0, and limit ~T c ! 0 taken by extrapolation

from ~T c � 1), analytical result ~jr (solid curve) and coherent laser beam

spatial gain rate jcoherent (dotted curve). The scaled dimensionless laser in-

tensity ~I and damping rate l in units of acoustic propagation time along a

speckle are defined in (8). Upper grid corresponds to laser intensity in

dimensional units Iphysical / Te=k
2
0 for NIF parameters and gold plasma Te ’

5 keV, F¼ 8, ne/nc¼ 0.1, �ia¼ 0.01, k0¼ 351 nm.
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estimate. This reduction is at fixed ~I , and does not include

the further reduction at fixed physical laser intensity, Iphysical,

due to the well known dependence on laser wavelength,
~I / Iphysicalk

2
0.

The BSBS spatial gain rate ji may be further reduced by

self-induced temporal incoherence (see, e.g., Ref. 25).

Another possibility for self-induced temporal incoherence is

through collective forward stimulated Brillouin scatter

(CFSBS) instability which in its linear regime includes col-

lective FSBS (CFSBS).10,11 For low Z plasma, the CBSBS

and CFSBS thresholds are close while the latter may be low-

ered by adding higher Z dopant.

VIII. CONCLUSION

In conclusion, we identified the collective threshold Eq.

(24) of stimulated Brillouin backscatter instability of par-

tially incoherent laser beam for ICF relevant plasma. Above

that threshold the stimulated Brillouin backscatter spatial

gain rate ji is well approximated by the sum of the

collective-like spatial gain rate jr and Random Phase

Approximation-like spatial gain rate jB. That result is in

agreement with the direct stochastic simulations of stimu-

lated Brillouin backscatter equations. Values of jr and jB

are comparable above threshold while in a small neighbor-

hood of threshold the value of ji changes quickly due to ei-

ther correlation time or laser intensity variation which results

in passage through the collective threshold. With further

increase of laser intensity, absolute instability eventually

develops above the threshold, Eq. (44). Well below the

threshold, the standard Random Phase Approximation result

with linear dependence of ji on Tc is recovered.
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