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The radiation-mediated interaction of solitons in a one-dimensional nonlinear medium (optical fiber) with bire-
fringent disorder is shown to be independent of the separation between solitons. The effect produces a poten-
tially dangerous contribution to the signal lost. © 2001 MAIK “Nauka/Interperiodica”.
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1 The propagation of a pulse through an optical fiber
with randomly varying anisotropy is usually addressed
in the context of the Polarization Mode Dispersion
(PMD). PMD is signal broadening caused by inhomo-
geneity of the medium birefringence. In the linear case,
the study of PMD was pioneered by Poole [1], who
showed that the pulse broadens as the two principal
states of polarization split under the action of the ran-
dom birefringence (see also [2]). Mollenauer et al. have
numerically studied a nonlinear model of birefringent
disorder in [3], where it was shown that a soliton,
launched into the birefringent fiber, does not split, but it
does undergo spreading [3] (see also [4]). In this letter,
we develop an analytical approach and confirm that a
single soliton does degrade due to disorder in the bire-
fringence. The degradation is observable once the soli-
ton traverses the distance zdegr ~ D–1, where D stands for
the strength of the noise in the birefringence, measured
in units of the soliton width and period (D ! 1 is
assumed, the typical case for telecommunication
fibers).

The major finding of this letter is a new phenome-
non which occurs on scales much shorter than zdegr. We
report that the interaction between solitons induced by
their combined radiation (generated by disorder) is an
important factor affecting the soliton dynamics. Ini-
tially stationary solitons experience a relative accelera-
tion, ~D. The intersoliton separation changes on the

order of the soliton width at zint ~ 1/  ! zdegr. We use
and generalize here an approach developed previously
to describe solitons interacting in an isotropic medium
with fluctuating dispersion [5]. The soliton interaction,
in the case of [5], decays algebraically. By contrast, in
the anisotropic case discussed in this letter, the interac-
tion is separation-independent. The reason is that, in

1 This work was submitted by the authors in English.
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this case, a different type of wave scatters from the soli-
tons. In the isotropic case, the scattering of the radiated
waves, emitted by a soliton, by another soliton is not
refracted. In the anisotropic case, radiation from one
soliton pushes (literally) the other soliton, because the
scattering potential is not transparent.

Let us briefly formulate the problem. The electric
field E, corresponding to a wave packet carrying fre-
quency ω, can be decomposed into complex compo-
nents E = 2Re[Eωexp(ik0z – iωt)], where z is the coor-
dinate along the fiber. Concomitant averaging over fast
oscillations and over the structure of fundamental mode
(a monomode regime is assumed) constitutes the
coarse-grained description for the signal envelope
described by the two-component complex field Ψα,

 = Ψ1(z)e1 + Ψ2(z)e2, where e1, 2 are unit vectors
orthogonal to each other and to the waveguide direc-
tion. The averaging results in the envelope equation
[6, 7]

(1)

Here, the wave packet is subjected to dispersion in
retarded time t and to the Kerr nonlinearity, which is
described by the last two terms on the left-hand side of

(1). The matrix  describes the differences in the
wavevectors. The matrix  describes the anisotropy in
the group velocity for the two distinct states of polariza-
tion (of the respective linear problem). The isotropy is
broken in Eq. (1), because the core of any fiber is ellip-
tic rather than circular in cross section. It is assumed in
Eq. (1) that the dispersion term and the nonlinear term
are isotropic, since in real fibers anisotropy of disper-
sion and nonlinearity is usually less important than the
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effects of anisotropy described by the matrices  and
. The coefficients of nonlinearity and dispersion are

rescaled to unity; i.e., t and z are already dimensionless

in Eq. (1). If the matrices  and  are zero, the full
problem is isotropic and Eq. (1) supports the constant
polarization solution, e.g., Ψ2 = 0. Then, the equation
for Ψ1 is the scalar nonlinear Shrödinger (SNLS) equa-

tion. The self-conjugate matrix  is traceless, since the
trace can be excluded by a simple phase transformation.
The (also self-conjugate) matrix  is traceless, as
Eq. (1) is written in the reference frame moving with

the mean group velocity. Both  and  may contain
regular and disordered parts. In a polarization-main-
taining fiber, at least one of the regular parts is nonzero.
If the phase change between the two polarizations

caused by a regular part (say ) becomes ~1 on a
scale zreg, an additional averaging over the distances
larger than zreg reduces Eq. (1) to [6, 7]

(2)

and analogously for Ψ2. The quantities  and  left in
Eq. (2) represent random contributions. Generically,

eigenvectors of  correspond to elliptic polariza-
tions, and the corresponding eigenvalues are complex.
The quantity ε in Eq. (2) measures the degree of ellip-
ticity, 2/3 ≤ ε ≤ 2. In the degenerate limit of linear polar-
ization (the eigenvectors are real), ε = 2/3. Subsequent

analysis is devoted to models (1) and (2) with  = 0 and
random zero mean . The anisotropy matrix  can be
written in terms of Pauli matrices as follows:  =

, where k = 1, 2, 3 and the real field hk is a

function of z only because the disorder is frozen in the
fiber. The correlation scale of the random field hj(z) is
short. (It is typically constrained by the process of fiber
pulling from a silica preform, cabling, and spooling
into a bobbin). Therefore, according to the central limit
theorem, hj(z) on the larger scales can be treated as a
Gaussian random process. The noise intensity is

described by the matrix , Dik = . One

assumes that the isotropy is restored on average, Dik ∝
δik . Then, the statistics of  is characterized by

(3)

Similarly, one assumes that  =  and

〈bi(z1)bk(z2)〉  = Dbδikδ(z1 – z2).
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We start with the single-soliton story. One looks for
a solution to Eq. (1) or (2) in the form

(4)

For v 1, 2 = 0, Eq. (4) represents a single-soliton solution
of the ideal,  = 0, problem. If the disorder is weak,
one can substitute Eq. (4) into Eq. (1) or (2) and linear-
ize with respect to v 1, 2 to get

(5)

where R1 = h3, R2 = h1 + ih2, Q1 = ib3, Q2 = ib1 – b2, and

 are differential (second order in t) operators of the
linear Schrödinger type with soliton-shaped (∝ 1/ )
potentials. It is convenient to expand v 1, 2 in series in

eigenfunctions of the operators . Spectra of the
operators are separated into continuous and discrete

parts, v 1, 2 =  + . The four zero modes of 
are related to variations of the soliton amplitude, posi-
tion, phase, and phase velocity. There is also a localized

eigenmode of  identified with variations of the soli-
ton polarization. In the case of model (1), the polariza-

tion eigenmode becomes a zero mode of  corre-
sponding to the free rotation of polarization axes and an
additional zero mode appears that is related to elliptic-
ity. Some localized modes are subjected to the linear,
first-order, in disorder response. Thus, the position of
the soliton y varies randomly in z: 〈y2〉  = Dz. Second-
order effects in radiation lead to variations of the soli-
ton amplitude η. From the conservation law, which
accounts for the balance of “energy” among the soliton
and the continuous radiation (v 1, 2 = 0 at z = 0 is

assumed), one derives  = 1 – η, where the

left- and right-hand sides represent, respectively, the
radiative and the soliton contributions to the energy bal-

ance, and  ~ D. The solution to the integral equation,
valid at any z, is

(6)

[Note that the single-soliton radiation in the degenerate
case of Eq. (2) with ε = 1 was studied in [8], where ana-
logues of the aforementioned integral equation were
derived. The equation was analyzed in [8] under the
assumption that zdη/dz ! 1, which led to the answer
that the soliton amplitude degradation valid at zD ! 1
only, where it coincides with Eq. (6)].

We now turn to the multisoliton case. Only scales
shorter than zdegr = 1/D are discussed, so the random
walk of y and the degradation of the soliton amplitude
can be neglected. The same argument applies to the
polarization angle φ in the case of model (2). In the iso-
tropic model case (1), the jitter of φ becomes important
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at zφ ~ 1/D1/3. The effect, however, is collective: polar-
izations of different solitons rotate through the same
angle, so that the relative polarization angle is
unchanged at z ! zdegr . We consider the N-soliton solu-
tion,

of Eqs. (1) and (2). One derives (and solves) the gener-
alization of Eq. (5) and equations for the slow variables
yi, αi, and βi, keeping in the latter the terms up to the
second order in v. Direct averaging of the slow modes
over the h-statistics is the next step. At z ! zdegr, the rel-
ative phases αi – αj do not change, while the soliton
positions yj and phase velocities βi evolve according to

(7)

where U(t) is a quadratic form of , U(t) = 4  +

 +  + 2ε  for model 2. The force Fj acting
on the soliton is self-averaged at z @ 1. Therefore, we
come to a set of deterministic (like in classical mechan-
ics) equations for the soliton positions and the phase
velocities (the latter play the role of classical
momenta). The general setting is familiar from [5].
However, the dependence of the intersoliton forces on
the separation between the solitons in the polarization
problems is different: the force does not depend on the
separation. The key feature of the polarization prob-

lems is the refractive nature of , which is closely
related to the nonintegrability of the no-disorder (  =
0) problem in both of our settings (1), (2). This is in
contrast to the integrability of SNLS, which is the no-
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Fig. 1. Two solitons. Intersoliton force vs. degree of ellip-
ticity.
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disorder limit of the scalar problem. Due to nonzero
refraction, standing waves are formed in between the
solitons in such a way that the wave amplitude does not
depend on the intersoliton separation.

We present here quantitative results for model (2),
obtained by numerical evaluation of the integral in
Eq. (7) [with U1, 2 found via analytical integration of the
generalized version of Eq. (5) and averaged over
Eq. (3)]. A description of the calculation details will be
published elsewhere. The y-independent O(D) contri-
bution to the intersoliton force for the two-soliton pat-
tern is shown in Fig. 1. The force is independent of the
phase mismatch, α1 – α2. It is always negative (the soli-
tons repel). The minimum value of the force is achieved
at the boundary value, ε = 2/3. The separation-indepen-
dent contribution is zero at ε = 1. This corresponds to
transparent scattering, for the no-disorder limit is inte-
grable in this case [9]. The independence of the force of
the overall size of the soliton pattern persists in the mul-
tisoliton case, although a new feature—sensitivity to
the phase mismatches—emerges. The dependence of
the forces in the three-soliton pattern on the phase mis-
match, in the special case α2 = 0, α3 = –α1 = α, and e =
2/3, for various values of the relative separation, y =
(y3 – y2)/(y2 – y1), is shown in Fig. 2. In the “symmetric”
case, y = 1, F2 = 0, while F3 = –F1, and the value is twice
as large as the force acting on the second particle in the
two-soliton case. In all other y ≠ 1 situations, the forces
do depend on α. The values of the forces oscillate about
the symmetric (y = 1) values.

To conclude, we have shown that the major destruc-
tive factor for a set of well-separated pulses in random
birefrengent fibers is due to soliton–soliton interaction
mediated by radiation. Note that the analytical method
described in this paper can easily be generalized to a
variety of more complicated sources of anisotropy in
optical fibers.

Fig. 2. Three solitons. Forces vs. intersoliton phase mis-
match.
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