
  

JETP Letters, Vol. 74, No. 12, 2001, pp. 596–599. From Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 74, No. 12, 2001, pp. 674–677.
Original English Text Copyright © 2001 by Cherepanov, Kolokolov, Podivilov.

                                                               
The Berezinskii–Kosterlitz–Thouless Transition 
and Correlations in the XY Kagomé Antiferromagnet1

V. B. Cherepanov1, I. V. Kolokolov2, and E. V. Podivilov3

1 Hummingberg Ltd., Toronto, Ontario, Canada MZH 2S6
2 Budker Institute of Nuclear Physics, Novosibirsk, 630090 Russia

3 Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk, 630090 Russia
Received November 20, 2001

The problem of the Berezinskii–Kosterlitz–Thouless transition in the highly frustrated XY kagomé antiferro-
magnet is solved. The transition temperature is found. It is shown that the spin correlation function exponen-
tially decays with distance even in the low-temperature phase, in contrast to the order parameter correlation
function, which decays algebraically with distance. © 2001 MAIK “Nauka/Interperiodica”.
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1 Generally, XY spins on two-dimensional lattices
undergo a Berezinskii–Kosterlitz–Thouless (BKT)
transition [1, 2]. If there is no frustration, the physics of
this transition does not depend on the specifics of the
lattice structure. At finite temperatures, the behavior of
a system is governed by spin waves and vortices. They
are well defined in continuum limit of the theory. In the
low-temperature phase, the spin vortices are bound in
pairs with zero topological charge, and spin correlators
decay with distance algebraically. One can also define
the vorticity field demonstrating nontrivial dynamical
correlations [3]. In the BKT transition point, the vor-
tex–antivortex interaction becomes screened, pairs dis-
integrate, and the spin correlation length becomes
finite. By contrast, the XY antiferromagnet on the two-
dimensional kagomé lattice (see figure) has infinitely
many ground states, and its description in terms of con-
tinuous field theory is not justified.

In this paper, we compute the BKT transition tem-
perature in such systems. In [4], it was suggested that
the true order parameter here is η = e3iθ, where θ is the
angle of a spin. It is invariant with respect to any arbi-
trary choice of ground states, which are a subset of local
2π/3 spin rotations. Therefore, this order parameter can
change smoothly in the plane. The phase transition con-
sists in the emergence of a finite correlation length of
the variable η. Indirect evidence of this was obtained by
Monte-Carlo simulations in [5, 6]. As for the correla-
tion length of spins itself, we show here that it is finite
starting at an arbitrary low temperature. This is the
inevitable consequence of finite values of energy barri-
ers separating different vacua.

In order to take into account the special structure of
the kagomé lattice, we start with the approach devel-
oped in [7] (see also [8]). The kagomé lattice consists
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of triangles and hexagons (figure). The Hamiltonian of
the kagomé antiferromagnet can be represented as a
sum of squares of the total spins St in triangles {t} of the
nearest neighbors:

(1)

Each spin participates in two triangles. The ground-
state energy is equal to zero, and there are infinitely
many ground states with St = 0. In any ground state, the
angles between neighboring spins are equal to ±2π/3.

The partition function of the XY kagomé antiferro-
magnet can be represented as an integral of a function
defined on the lattice bonds:

(2)

where r denotes positions on the kagomé lattice, a are
three lattice vectors directed along the antiferromag-
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The kagomé lattice (filled dots) with antiferromagnetic
bonds (continuous lines), and the dual lattice (circles) and
its bonds (dashed lines). 
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netic bonds between nearest neighbors, θr are the spin
angles, and β = κS2/2T is the dimensionless inverse
temperature.

The 2π periodicity of the angular variables allows
one to expand the statistical weight in Eq. (2) in Fourier
series with the coefficients In(r, a)(–β):

(3)

Here, In(x) is the modified Bessel function, and integer
numbers n(r, a) are located on bonds connecting near-
est neighbors r and r + a. Then we integrate over the
angles θ(r) and arrive at the following representation
for the partition function:

(4)

where n(r + a, –a) = –n(r, a). Here, {n(r, a)} denotes
the set of all configurations of integers n(r, a). The ∆
function (∆(0) = 1, ∆(n ≠ 0) = 0) expresses the conser-
vation condition at each site of the lattice:

(5)

As in the case of perturbation theory graphs [9], this
means that the summation in Eq. (4) runs effectively
over integer-valued currents J(R) circulated in closed
loops. The latter are numbered by dual lattice sites Rt

and Rh, which are located in centers of triangles and
hexagons, correspondingly (figure). A current n(r, a)
along the a bond is equal to the sum of currents in one
triangle and in one hexagon that share the bond (r, a).
This allows us to represent the partition function as fol-
lows:

(6)

Here, we separate sums over triangle and hexagon cur-
rents, J(Rt) and J(Rh), with centers Rt and Rh = Rt + Ah,
and h numbers of three hexagons surrounding each tri-
angle Rt. Further, we consider e–β as a small parameter
of the theory. We will see that the inequality e–β ! 1
holds even in the BKT transition point, as it does for the
square lattice [1, 2, 7]. However, the Bessel functions in
Eq. (6) cannot be substituted by their asymptotic forms
at β @ 1, because the summation over J(Rt) results in a
relatively small contribution to Z(β). This asymptotic
form corresponds to the saturation of a maximal num-
ber of nearest-neighbor bonds, which is far away from
the true ground state, due to frustrations. Consequently,
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the summation over the triangle currents J(Rt) must be
performed first. To do this, we represent triple products
of the Bessel functions in (6) in the integral form, which
allows us to take the sum over J(Rt) exactly:

(7)

Here, Rh = Rt + Ah for a given t. The last asymptotic
relation in Eq. (7) follows from the fact that the integra-
tion over dφ1dφ2dφ3 at large β is saturated by the vicin-
ity of two saddle points φh = 2πσ(Rt)/3, where σ(Rt) =
±1 (h = 1, 2, 3). Thus, hexagon currents and chiralities
σ = ±1 residing in triangles are retained. These vari-
ables include the multiple ground states. Substituting
the asymptotic formula for the triple products of Bessel
functions (7) into Eq. (6) and using the Poisson summa-
tion formula, we arrive at the following expression for
the partition function:

(8)

(9)

Here, At runs over all six triangles surrounding each
hexagon, with the centers Rh, Rt = Rh + At and Bh being
the six vectors that connect the centers of nearest hexa-
gons. Note that centers of hexagons form a triangular
lattice which is dual to the hexagonal lattice.

Now, one can integrate the partition function (8)
over the currents in hexagons J(Rh). This results in the
expression for the partition function of the 2D Coulomb
gas with charges Q(Rh) positioned at sites of the trian-
gular lattice Rh . Charges are 1/3-multiple; this corre-
sponds to the 2π/3-multiplicity of vortex rotations. At
zero temperature, the integration over J(Rh) in Eq. (8)
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yields conservation conditions ; i.e., in

any ground state, the sum of chiralities of triangles sur-
rounding each hexagon is a multiple of 3. The problem
of counting ground states is mapped onto that of color-
ing the hexagonal lattice [4], which was solved exactly
[10]. The exact number of ground states, ZN, is equal to
1.460099N/3, where N is the number of spins. A naive
approximation assuming that chiralities of triangles
surrounding each hexagon are independent and equally
probable gives a good estimate of ZN ≈ (11/8)N/3 =
1.375N/3 for the number of the ground states. In this esti-
mate, we neglect correlations between chiralities of tri-
angles surrounding neighboring hexagons. Their effect
can be estimated as the inverse number of the nearest
neighbors on the triangular lattice, 1/6. At finite temper-
atures, we divide J(R) into slowly varying and short-
wavelength fields and integrate the first over the latter.
This gives the product of local statistical weights

, which substitutes the product
of δ functions at β  ∞. The BKT transition point is
determined by the excitations with most probable
charges: Qn = 0, ±1/3. States with the sum of chiralities
of triangles surrounding a certain hexagon equal to ±2
and ±4 contribute to the formation of such Q = ±1/3
configurations. For a given Qn = ±1/3, the number of
configurations Z1, N differs from the number of ground
states ZN by some numerical factor w1. We estimate the
factor w1 in the same naive way as we estimated the
number of ground states; i.e., we assume that chiralities
±1 have equal and independent probabilities. This
yields w1 ≈ 21/22. The precision of this estimate is
again of the order of 1/6, and we set in the following
w1 = 1. Denoting the long-wavelength part of J(R) as
3KΨ(R), where K = β/12, we arrive at the long-distance
effective action in the standard form:

(10)

where h = 2  = 2  and a = |a |. At the BKT
transition temperature, this is a small field, which
allows one to use the perturbative renormalization
group approach [7]. The BKT transition occurs at the
temperature where the field h becomes relevant. For the

hexagonal lattice, we get /2Kc = π/2; i.e.,

(11)

We neglected nonlinear terms which can slightly renor-
malize the stiffness constant. This effect on Tc is small
because of the smallness of Tc/κS2 (see also [8]).

The existence of a new set of variables (chiralities)
qualitatively changes the spin correlation function
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compared to that in unfrustrated XY magnets. Returning
to the initial formulation of the problem (2), we con-
sider the correlation functions _j(r0) = 〈exp(i[θ(0) –
θ(r0)] · j)〉 . In terms of the integer-valued variables, n(r,
a), we arrive at an expression that differs from Eq. (4)
only by arguments of the δ functions. Namely, for sites
0 and r0 we get

(12)

instead of the conservation condition (5). This condi-
tion is equivalent to the pattern of currents which is a
superposition of currents J(Rh) flowing in the kagomé
lattice and obeying the condition (5) and a current j,
which takes a whole number value and which is created
at the point 0 and annihilated at the point r0. Thus, the
correlation function _j(r0) has the form

(13)

Here, (R*, A*) are sites and vectors of the dual lattice
such that A* crosses the path (0, r0) on the initial kag-
omé lattice. Integrating over currents in the triangles in
Eq. (13), we get _j(r0) = Zj(β, r0)/Z(β), where Z(β) is
given by Eq. (8) and Zj(β, r0) differs from Z(β) by the
additional contribution from the current j running along
the path (0, r0).

The contribution of Q ≠ 0 configurations (vortex) to
the large-r0 asymptotic form of the spin correlation
function _j(r0) below the BKT transition point is neg-
ligible, because the renormalization-group flow at T <
Tc makes the effective constant h in Eq. (10) equal to
zero. The main difference between our _j(r0) and the
usual (unfrustrated) case is in the factor

(14)

averaged over chiralities. For simplicity, we consider
the case where the shortest walk on lattice sites between
points 0 and r0 goes over a straight line. In this case, r0/a
is the number of bonds along this walk, where a is the
kagomé lattice constant. Neglecting constraints on
chiralities of triangles, as we did before, we immedi-

ately get a factor of (cos2π/3  =  in the
correlation function if j is not a multiple of 3. Integra-
tion over J(Rh) in the r0  ∞ limit can be done in the
spin-wave approximation, yielding the well-known
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result [1]. Thus, in the low-temperature phase T ≤ Tc in
the long-distance limit r0/a @ 1, and the spin correla-
tion function reads

(15)

It decays exponentially with distance. Note that the
statement about exponential decay of the spin–spin cor-
relators does not depend on the approximations made
here. This follows from the finiteness of the correlation
length of the chirality field. The true order parameter of
the BKT transition is the cubed spin [4] η(r) =
exp(3iθ(r)). The correlation function of this order
parameter at T < Tc decays as a power of distance

(16)

The result for Tc is in agreement with Monte-Carlo
simulations of the BKT transition in the kagomé anti-
ferromagnet [6] and with recent independent calcula-
tions [11] (note that the preprint version of this paper
was published before [12]). In [11], it is shown that the
next-to-nearest-neighbor exchange interaction on the
kagomé lattice can remove the ground-state degener-
acy. However, the spin–spin interaction induced by
thermal spin waves cannot play the same role. Indeed,
in the case of the nearest-neighbor interaction consid-
ered here, spots of σ(R) with changed signs have finite
entropy at T  0. Their contribution to the free
energy and correlators dominates, and the effect of
interaction induced by spin waves considered in [11] is
negligible at low temperatures.
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