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Dissipation Statistics of a Passive Scalar in a
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We compute analytically the probability distribution function P(=) of the dissi-
pation field ==({%)2 of a passive scalar % advected by a d-dimensional random
flow, in the limit of large Peclet and Prandtl numbers (Batchelor�Kraichnan
regime). The tail of the distribution is a stretched exponential: for = � �,
ln P(=)t&(d 2=)1�3.

KEY WORDS: Dissipation statistics; passive scalar; turbulence; intermit-
tency; functional integral.

1. INTRODUCTION

Intermittency and strong non-gaussianity of developed turbulence are most
clearly reflected in the peculiar structure of the observed probability dis-
tribution functions (p.d.f.) of the gradients of the turbulent field. A typical
logarithmic plot of the gradients p.d.f. is concave rather than convex, show-
ing a strong central peak and slowly decaying tails.(1, 2) Rare strong fluctua-
tions are responsible for the tails, while large quiet regions are related to
the central peak. In particular, such p.d.f. were observed for the square
gradients ==({%)2 (dissipation field) of a scalar field % passively advected
by an incompressible turbulent flow.

From the theoretical standpoint, most rigorous results in the theory
of turbulent mixing have been obtained so far within the framework of
the Kraichnan model, (3, 4) describing the advection of a passive scalar by a
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random velocity field, delta-correlated in time. The exact solvability of the
Kraichnan model suggests that it can play in turbulence a role similar to
that played by the Ising model in the theory of critical phenomena.3

In particular, the p.d.f. of the dissipation field = was recently calculated
analytically in the one-dimensional(5) and two-dimensional(6) cases. In this
paper we extend the result of ref. 6 to arbitrary space dimensions d. Our
techniques are based on a combination of functional integration and
group-theoretical methods, first introduced by one of us(7) in the context of
quantum magnetism. These techniques allowed first to compute exactly the
p.d.f. of the passive scalar in the two-dimensional, non-dissipative case.(8)

The multidimensional case was considered in refs. 10�12. In the dissipative
case, an essential ingredient is the time-separation method introduced in
ref. 5 in a one-dimensional context, and afterwards exploited in ref. 6. The
point is that in developed turbulence there appears a natural small
parameter, 1�Pe, where Pe is the Peclet number, measuring the relative
strength of advection with respect to diffusion. One would like to use this
parameter to develop an asymptotic theory for quantities like the p.d.f.
P(=) of the dissipation field =. However, such quantities are essentially non-
perturbative in 1�Pe. For instance, = is exactly zero without diffusion, but
it has a non-zero limit as 1�Pe{0, Pe � �.4

Following refs. 5 and 6, we show that an appropriate dynamical for-
malism naturally introduces two time-scales, a short one related to stretch-
ing, and a long one related to diffusion. The time scale of the stretching
fluctuations is of the order of the inverse of the maximum Lyapunov expo-
nent, while the whole time of stretching is ln Pe times larger.

The paper is organized as follows. In Section 2 we define the problem,
recall the statistical and kinematical concepts involved, introduce the func-
tional transformation which makes the problem solvable and write down
the corresponding functional Jacobian.

In Section 3 we expose the time-separation method, showing that the
computation of P(=) can be split in two parts, which we will denote as
small- and large-times averaging. Suggestively, this procedure can be thought
of as a two-step application of a renormalization group transformation.
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3 The similarity should be understood in a loose sense. The Kraichnan model can be viewed
in itself as a sort of mean-field approximation to a full theory of developed turbulence.(9)

4 It is worth noting that without dissipation stationary limits for the p.d.f.'s of the passive
scalar field, of its gradients, etc., do not exist. In the case of the direct cascade considered
in this paper an arbitrary small but finite dissipation constant } provides stationary distribu-
tions at large times for all the physical quantities. However, there are cases corresponding
to the dynamical inverse cascade when dissipation does not lead to stationary p.d.f.'s for
some observables.(13)



In Sections 4 and 5 we perform respectively large- and small-times
averaging, reducing the computation of the corresponding functional
integrals to solvable auxiliary quantum-mechanical problems.

In Section 6 we put together all the pieces of the computation and pre-
sent the resulting p.d.f. P(=), whose asymptotic behaviour is discussed as a
function of the space dimension d.

2. STATEMENT OF THE PROBLEM

The advection of a passive scalar field %(t, r) by incompressible
smooth flow v(t, r) in d-dimensional space is governed by the transport
equation

\ �
�t

+v } {&kq+ %=, (1)

where ,(t, r) is an external source, } is the diffusivity and we assume a null
initial condition at t=&�. We assume that both v(t, r) and ,(t, r) are
Gaussian independent random functions, $-correlated in time(15, 4, 16, 8) so
that, firstly:

(,(t1 , r1) ,(t2 , r2)) =$(t1&t2) /(r12) (2)

where r12# |r1&r2 |, the correlation /(r12) decays on the scale L, and the
constant P2#/(0) is the production rate of % 2. We consider large Prandtl
numbers, which correspond to a large viscosity-to-diffusivity ratio, so that
in the viscous interval

(v:(t1 , r1) v; (t2 , r2))

=$(t1&t2) _V0$:;&D(r2$:;&r: r; )&
(d&1) D

2
$:; r2& (3)

Isotropy of the velocity statistics is here assumed. The representation (3) is
valid for scales smaller than the velocity infrared cut-off Lu (which is sup-
posed to be the largest scale of the problem), since (3) represents the two
first terms of the expansion of the velocity correlation function in powers of
r�Lu , and DtV0 �L2

u . We assume also that the inequality Pe2#DL2�2}>>1
holds, guaranteeing the existence of a convective interval of scales
rdiff<<r<<L where the dominant effect to be taken into account is the
stretching of the velocity field. Here rdiff=2 - }�(d&1) D is the mean diffu-
sion length.
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It follows from (3) that the correlation functions of the traceless strain
field, defined as _:;={;v: , are r-independent:

(_:; (t1) _+&(t2))=D[(d+1) $:+$;&&$:&$;+&$:;$+&] $(t1&t2) (4)

This means that the strain field _:; can be treated as a random function of
time t only. To exploit this property it is convenient to pass to a comoving
reference frame, that is, to a coordinate frame whose origin follows the
motion of a Lagrangian particle of the fluid, so that the velocity field can
be approximated by v& _̂(t) r, with (_̂:; (t))=0.(8) With this substitution,
(1) can be solved by Fourier transforming in the space coordinates and
integrating along characteristics:

%k(t)=|
t

&�
dt$ ,(t$, W� T(t, t$) k) exp _&}k } |

t

t$
dt1 W� (t, t1) W� T(t, t1) k&

(5)

where

W� (t, t$)=T exp \|
t

t$
_̂({) d{+ (6)

is the solution of the evolutionary problem

W�4 (t)=_̂(t) W� (t), W� (t$)=1 (7)

and T is the chronological ordering operator. We will study stationary
statistical properties of the passive scalar at the fixed time moment t. It is
convenient to use the symmetries of the measure of averaging over _̂({)
with respect to the transformations _̂({) � _̂(&{) and _̂({) � &_̂({).
Changing now variables in the time integral in (5) we obtain the following
statistical equality

%k(t)=|
�

0
dt$ ,(t&t$, W� &1, T(t$) k)

_exp _&}k } |
t$

0
d{ W� &1({) W� &1, T({) k& (8)

Here W� (t)#W� (t, 0) and invariance of the random force , averaging with
respect to time inversion was used. Let us now consider the statistics of the
dissipation field

==}({%)2
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After averaging over the source ,, the p.d.f. of the = field can be written as

P(=)=
1

2?i |
+i�

&i�
ds es= |

d dm
?d�2 e&m2(e&sQ ) _̂ (9)

with (letting for simplicity L=1):

Q=
D

Pe2 |
�

0
dt |

d dk
(2?)d /k(k } W� (t) m)2 exp \&

D

Pe2 k } 4� (t) k+ (10)

and

4� (t)=W� (t) \|
t

0
W� &1({) W� &1, T({) d{+ W� T(t) (11)

Here the integration over the auxiliary vector parameter m takes care
of combinatorics and summation over vector indices. The moments of the
dissipation field = can be recovered as

(=n)=|
d dm
?d�2 e&m2(Qn) _̂ (12)

The average ( } } } ) _̂ over the traceless random strain field _̂ has to be per-
formed with the probability measure D_̂(t) exp(&S_̂) corresponding to (4):

S_̂=
1

2d(d+2) D |
+�

0
[(d+1) Tr(_̂_̂T )+Tr(_̂2)] dt (13)

The matrix 4� (t) is invariant under right local (time dependent) rotations
W� (t) � W� (t) R� (t), and transforms covariantly under left local rotations
W� (t) � R� (t) W� (t). The quantity Q is invariant under left local rotations,
which for any fixed t can be absorbed in the d dk integration. The action S _̂

is invariant under both left and right global rotations and under the trans-
formation _̂ � _̂T. Together with isotropy of the pumping function /,
invariance of S_̂ and 4� under right rotations implies that Q#Q(m) is a
function of the square modulus z=m2, so that we can substitute
m � - z n0 in (10), with

n0=\
1
0
b
0+ (14)
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The m-integration measure in (9) and (12) can then be substituted by

1
1 (d�2)

z(d�2)&1e&z dz (15)

After these substitutions Q maintains invariance under left local rotations
of W� .

Let us perform the Iwasawa decomposition of the evolution matrix W� :

W� (t)=R� D� T� &1 (16)

where, for any fixed t, R� is an SO(d ) rotation matrix, D� a diagonal matrix
with det D� =1, and T� an upper triangular matrix with 1's on the diagonal.

The action S_̂ takes then the form:

S_̂=
1

2d D |
�

0
dt {Tr(D�4 D� &1)2+

1
2

Tr[D� 2(T� &1T�4 ) D� &2(T� &1T�4 )T]

&
d

d+2
Tr[R� &1R�4 &(D� T� &1T�4 D� &1)a]2= (17)

where ( } } } )a denotes the antisymmetric part.
The invariance of Q under local rotations of W� implies that Q does

not depend on R� , so that the R� variables can be integrated out from the
very beginning. The resulting effective action is equal to S_̂ with the last
trace-term dropped. It is then convenient to parametrize

D� =\
e \1,
0,
...,
0,

0,
e \2,
...,
0,

...,

...,

...,

...,

0
0
...

e&( \1+ } } } +\d&1)+ (18)

and

T� =\
1,
0,
...,
0,

'1 ,
1,
...,
0,

'2 ,
X23 ,
...,
0,

...,

...,

...,

...,

'd&1

X2, d

...
1 + (19)

denoting by 'j#X1, j+1 the elements of the first row of T� , which, together
with the \j , will be seen to be the only relevant dynamical variables. In
order to have more compact expressions it will be also convenient in what
follows to denote the sum \1+ } } } +\d&1 by &\d and to set Xj j#1.
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The initial condition W� (0)=1 implies

\j (0)=0, 'j (0)=0, j=1,..., d&1 (20)

Xmn(0)=0, 2�m<n�d (21)

With the substitution _̂ � (R� , D� , T� ) we introduced in the functional
integral a set of new ``collective'' coordinates, by means of a non-linear,
non-local variable transformation. The Jacobian of the transformation is
given by

J=Ju1 } J1= `
�

t=0

exp _2 :
d&1

j=1

(d&j ) \j (t)& } exp _|
�

0
:

d&1

j=1

(d&j ) \* j ({) d{&
(22)

The details of the derivation are given in the Appendix. The local part J1

of the Jacobian coincides with the one computed in ref. 10.
With the decomposition (16), and after the integration of the R�

variables, the probability measure takes the form

`
d&1

j=1

D\j D' j `
2�m<n�d

DXmn J( \) exp(&Seff [\, ', X ])

with

Seff=
1

2d D |
�

0
dt _ :

d

j=1

\* 2
j +

1
2

:
1�i< j�d

e2( \i&\j ) !2
ij& (23)

and !� =T� &1T�4 . Let us also rewrite (10) as

Q=
zD

Pe2 |
�

0
dt |

d dk
(2?)d /k k2

1e2\1 exp \&
D

Pe2 k } 4� (t) k+ (24)

whereby fixing the residual left-rotation symmetry.

3. TIME SEPARATION

We shall now expose a method that allows to compute P(=) in the
limit of large Peclet numbers, i.e., in a regime characterized by a large ratio
of advection to diffusion at the pumping scale.

The moments of the dissipation field = have finite, non-zero limits as
diffusivity tends to zero. Thus, P(=) is a non-perturbative quantity in the
small parameter 1�Pe.
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The time separation method, which was introduced in ref. 5 in a one-
dimensional context and generalized to d=2 in ref. 6, is the proper tool for
performing such a non-perturbative calculation. As a matter of fact, the
dynamical formalism itself reveals the presence of two different time scales:
a short one, related to diffusion, and a long one, related to advective
stretching. Taking properly into account the two time scales it is possible
to exploit non-trivially the presence of the large parameter Pe and to
develop an asymptotic theory that captures the dominant term in P(=)
with respect to Pe.

The starting point is that, as is clear from the structure of (24), the
main contribution to the moments Qn is obtained in the limit Pe � � for
\1tln Pe. On the other hand, one has the following result (see ref. 11) for
the hierarchy of the Lyapunov exponents:

( \j (t)) _̂= 1
2 d(d&2 j+1) Dt#*� j t (25)

showing that the relevant values of \1 are realized for times

t&
2

d(d&1) D
ln Pe (26)

For large times the elements of the matrix 4(t) can be estimated roughly
as

4jl (t)t$ jl e2\j (t), t � �

and from (25) it follows that at times of the order (26) the components
4jl (t) with j, l{1 are small compared with Pe2 and can be neglected in the
diffusive exponent (24). Thus, only 411 effectively survives.

Let us then introduce a separation time t0 such that 1<<d 2D t0<<
ln Pe. In the limit Pe � � this separation time will disappear from the final
answer. The contribution to Q from the interval 0<t<t0 is parametrically
small, so that we can substitute 0 � t0 as a lower integration limit in (24).

Observe now that for the trajectories contributing to (Qn) the ! ij

fields, being multiplied in the action (23) by a factor exp(2\i&2\j )>>1,
will be exponentially depressed for t>>1. The components of T� will there-
fore be frozen to constant values for those times. This is in particular true
for the components 'j of the first row.

Taking into account the freezing of T� and writing explicitly 4� in the
parametrization (18)�(19) it is seen that the integral in (11) saturates for
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t& t0 , so that the upper integration limit in (11) can be substituted with t0 .
As a final result, in the limit Pe � �, (24) asymptotically reduces to

Q=
zD

Pe2 |
�

t0

dt |
d dk

(2?)d /kk2
1e2\1(t)

_exp _&
D

Pe2 k2
1e2\1(t)n0 } |

t0

0
d{ T� &1(t0) W� &1({) W� &1, T({) T� T(t0) n0&

(27)

Observe that all the dependence of Q on the stochastic variables labelled
by small times t<t0 is now concentrated in the square-bracketed exponent
of (27). The action (23) can also be written as a sum S<

eff+S>
eff of a small-

and a large-times part. This makes clear the statement that integration over
small-times variables, which describe a mainly dissipative process, can be
separated from integration over large-times (t>t0) variables, which describe
multiplicative stretching. Time separation appears therefore as a natural
consequence of the dynamic formalism.

The small-times and large-times variables are coupled only by the con-
dition of continuity at t=t0 :

\>
j (t0)=\<

j (t0), '>
j (t0)='<

j (t0), X>
mn(t0)=X <

mn(t0) (28)

In order to fully implement time separation we perform the reparametriza-
tion

W� (t) � W� (t) T� &1(t0)

which implies the substitution T� (t0) � 1 in (27) and modifies the boundary
conditions (20)�(21) and (28) as follows:

\<
j (0)=0, '<

j (t0)=X <
mn(t0)=0, (29)

for the small-times fields, and

\>
j (t0)=\<

j (t0), '>
j (t0)=X >

mn(t0)=0 (30)

for the large times.
Thus, all the dissipative effects are encoded in the p.d.f. of the only

variable

+=n0 } |
t0

0
d{ W� &1({) W� &1, T({) n0 (31)
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which appears as a parameter in the large-times averaging. In order to
compute the total generating function

Ps, z=(e&sQ) (32)

we shall integrate first on the large-times variables (essentially, only \1),
find a p.d.f. P>

s, z which depends on + as a parameter, and then complete the
computation by integrating over the small-times p.d.f. P<(+). This proce-
dure can be suggestively thought as a renormalization group transforma-
tion consisting of only two steps.

Let us now outline the first step. First of all, the variables '>
j , X >

mn can
be integrated out completely, since they do not appear in (27). Of the \>

j

variables, the only \>
1 appears in (27). Integration over \>

1 can be
separated from the trivial integration over \>

2 ,..., \>
d&1 by the simple shift

\>
1 (t)=\~ 1(t)+\1(t0), \>

j (t)=\~ j (t0)&
\~ 1(t)
d&1

+\j (t0), j=2,..., d&1

(33)

which also substitutes the initial condition \>
j (t0)=\<

j (t0) with the simpler

\~ j (t0)=0, j=1,..., d&1 (34)

Finally, we are left with an integration over the effective measure already
obtained in ref. 10:

D\1 exp _&
1

2(d&1) D |
�

t0

dt \\~* 1&
d(d&1) D

2 +
2

& (35)

and with the factor

J0(\)=exp _ :
d&1

j=1

(d& j) \ j (t0)& (36)

which will be part of the small-times averaging measure.

4. LARGE-TIMES AVERAGING

Let us now apply the previous considerations to the actual evaluation
of P>

s, z , defined as the average of e&sQ with respect to the measure (35)
with the constraint \~ 1(t0)=0. The evaluation of the corresponding path
integral can be reduced via the Feynman�Kac formula to the solution of
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the following auxiliary quantum mechanical problem in the space of the
variable \#\~ 1 :

P>
s, z= lim

T � �
e&[(d 2(d&1) D)�8](T&t0) ($(\)| exp[&(T&t0) H� >] |e(d�2) \)

= lim
T � �

e&[(d2(d&1) D)�8](T&t0)9(T&t0 ; \=0) (37)

with

H� >=&
(d&1) D

2
�2

�\2+V>(\) (38)

V>(\)=sz;
D

Pe2 } e2\ } 5 \� D

Pe2 ;+ e \+ , ;=e2\(t0) (39)

5( y)=|
d dk

(2?)d /kk2
1e&k2

1 y2
(40)

In (37), the ``wave function'' 9 is the solution of the initial value problem

H� >9=&�t 9 (41)

9(t=t0 ; \)=e(d�2) \ (42)

For t � � the behaviour of 9(t, \) is dominated by the lowest eigenvalue
of the corresponding stationary problem, which can be easily determined
since the potential V>(\) vanishes at \ � �, leaving us with a free
Hamiltonian:

H� >e(d�2) \&&
(d&1) D

2
d 2

4
e(d�2) \, \ � �

So, for t � �:

9(t; \)&e[(d2(d&1) D)�8] t e(d�2) \8>( y) (43)

with 8>( y) the solution of the following boundary problem in the variable
y=- D;+�Pe2 e \:

_&
1

yd+1

�
�y

yd+1 �
�y

+
2sz

(d&1) D+
5( y)& 8>( y)=0 (44)

8>( y) � 1, y � �; y8>( y) � 0, y � 0 (45)
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Note that 8>( y) can depend on the parameters s, z, D and + only through
their combination

*=
2sz

(d&1) D+
(46)

and does not depend on Pe.
Finally, from (37), (43) it follows

P>
s, z=8> \� D

Pe2 ;++ (47)

Here P>
s, z depends on Pe only through the argument of 8>. In the limit

Pe � � one simply finds

P>
s, z=8>(0) (48)

For a generic given /k , one can solve (44) iteratively in terms of the small
potential s5( y), s � 0, finding explicit expressions for all the ``large-times''
moments of Q:

P>
s, z=1+ :

�

k=1

(2k&1)!! } \ 2s;
(d&1) D++

k

_|
y2k<y2k+1

y2k<y2k&1

dy1 } } } dy2k `
k

l=1
\ y2l

y2l&1+
d+1

5( y2l ) (49)

The moments are here expressed directly in terms of the integral transform
(40) of the pumping function /k .

5. SMALL-TIMES AVERAGING

In this section we shall compute

P<
s =(e&s+ ) (50)

The explicit expression of + is

+=|
t0

0
V< dt

with

V#V<=e&2\1+'2
1e&2\2+'2

2e&2\3+ } } } +'2
d&1e&2\d (51)
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In what follows we will omit the ( } } } )< index on the \j and 'j variables.
Along the lines previously exposed in the case of large-times averaging, the
computation of P<

s is again reduced to the solution of an auxiliary quan-
tum mechanical problem:

P<
s =exp \&

d 2(d 2&1) D

24
t0+

_� `
d&1

j=1

e(d& j) \j $(' j ) `
2�m<n�d

$(Xmn) } exp(&t0H� <) } `
d&1

j=1

$( \j )�
(52)

Here

H� <=H� 0+sV

and H� 0 is the quantum Hamiltonian corresponding to the classical action
(23):

H� 0=&
(d&1) D

2
:

d&1

j=1

�2

�\2
j

+D :
0<i< j<d

�2

�\i �\j

&dD :
1� j<i�d

e2\i&2\j \ :
k� j ; k<i

Xkj
�

�Xki +
2

(53)

Due to the triangular structure of the Xmn and 'j variables there arise no
ordering problems.

The seemingly intractable quantum mechanical problem in 1
2d(d+1)&1

dimensions can in fact be reduced to a solvable, one-dimensional problem
thanks to the presence of 1

2d(d+1)&2 symmetries. First of all, the initial
wave function in (52) does not depend on the Xjl variables. The evolution
operator exp(&t0H� <) introduces a dependence on the ' j variables, but
not on the remaining Xij (i>1), as is clear from the explicit expressions
(51) and (53). We are thus led to consider the reduction H� ( \, ') of H� < on
the space of functions depending only on \j and 'j :

H� ( \, ')=&
(d&1) D

2
:

d&1

j=1

�2

�\2
j

+D :
0<i< j<d

�2

�\i �\j

&dD :
d

j=2 \e&2( \1&\j )+ :
j&1

k=2

e&2( \k&\j ) '2
k&1+ �2

�'2
j&1

+sV (54)
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We can then forget altogether about the Xjl variables and just compute

(e� d&1
j=1 (d& j ) \j $('1) } } } $('d&1)| exp(&t0H� ( \, ') |$(\1) } } } $(\d&1)) (55)

The reduced Hamiltonian H� (\, ') depends on 2d&2 variables. Let us use
now the fact that the action S<=S<

eff+s+ is invariant under the global left
transformations

T� (t) � 3� T� (t) (56)

where we take 3� =1+$3� , with $3� having non-zero values only in the first
column and on the diagonal, and satisfying Tr($3� )=0 and ($3� )00=0.
This way we generate 2d&3 symmetries of S<, which are readily identified
with rotations in the space of the variables 'j&1e2\j and shifts of the \ j

accompanied by corresponding rescalings of the 'j . The corresponding
variations of D� and T� can be read out from

(D� T� &1$3� T� D� &1)s=($D� D� &1&D� T� &1$T� D� &1)s (57)

where ( } } } )s denotes the symmetric part. The corresponding integrals of
the motion are also easily found. They locally generate 2d&3 ``angular''
directions, transverse to the ``radial'' direction labelled by V. We will not
need their explicit expression: it will be enough to determine the ``radial''
part of H� (\, ') by the transformation �x=�V��x } �V+(radial part), with x
substituted by \j , 'j . In the t0>>1 limit (55) can be computed explicitly as

P<
s =|

�

&�
d'1 } } } |

�

&�
d'd&1 8<(\j=0, 'j ) (58)

with 8< the solution of the stationary problem

H� (\, ') 8<(\, ')=0 (59)

8<(\, ')&$('1) } } } $('d&1) exp _ :
d&1

j=1

(d& j ) \j& , \1 � � (60)

8<(\, ')&0, \1 � &� (61)

Let us consider a maximally symmetric solution 8 having the form

8<(\, ')=exp _ :
d&1

j=1

(d& j ) \j& F(V ) (62)
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with F(V ) satisfying the ``radial'' equation

2(d&1) V 2F"+(d&1)(d+2) VF$&
sV
D

F=0 (63)

A solution of (63) is:

F(V )=V &d�4Kd�2 \� 2sV
(d&1) D+ (64)

where Kd�2 is the Macdonald function of order d�2. The properties of the
Macdonald functions(17) allow to verify directly that (62) satisfies the
boundary conditions (60)�(61). This also shows a posteriori that the bound-
ary conditions (60)�(61) are asymptotically invariant under the symmetries
of the problem.

The integration (58) can be explicitely performed, giving

P<
s =const } exp \&� 2s

(d&1) D+ (65)

whose Laplace transform gives the p.d.f. of +:

P<(+)=
1

- 2?(d&1) D +3�2
exp \&

1
2(d&1) D++ (66)

One can check the soundness of the whole computation by verifying on the
first moment of = that the constraint of energy conservation

(=) =
1
2 |

d dk
(2?)d /k

is satisfied.

6. RESULTING DISTRIBUTION FUNCTION

In order to restore the total p.d.f. P(=) we should take the function
P>

s, z expressed in (48) through the solution of (44), then average over +
with the weight (66) and over z with the measure (15), and finally perform
an inverse Laplace transform. As already noticed, 8> ( y=0) depends on
the parameters s, z, D and + only through their combination * (see (46)):

8>(0)= f (*) (67)
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The resulting P(=) can be expressed via f (*) as:

P(=)=
- D

2?1 (d�2) - = |
+�

&�
dx |

+�

0
dz

_f (ix)(&ix) (d�2)&1 zd&2 exp \ixz2&
- =D

z + (68)

The function f (*) has poles on the real negative semiaxis; the asymptotics
of P(=) is defined by the pole closest to the origin, which we denote as &**
(**>0):

P(=)texp[&3
2 (2**D=)1�3], = � � (69)

The point is that when * approaches the value &** the Hamiltonian H� >

develops a ground state energy

E0<&
d 2(d&1) D

8

and f (*)=P>
s, z given by (37) becomes infinite. We therefore estimate

**=
d 2

4!
*

with !
*

the maximum of the function y25( y) (cfr. (38)�(39)). This finally
gives

P(=)texp[&const(d 2D=)1�3], =>>1 (70)

7. DISCUSSION

An important point to be noticed in the previous computation, espe-
cially with regard to the asymptotic expression (70), is that we consider in
this paper Pe as the largest number in the theory. For any large, but finite
Pe this means that the asymptotics (70) is valid for =�=0>>1 (where
=0=(=) ) but smaller than ln Pe. There is here a crucial difference with the
computation of the p.d.f. P(%) of the passive scalar % itself, which was dis-
cussed in refs. 8, 10, 12, and 14. If %<<ln Pe the p.d.f. P(%) has a Gaussian
form and can be obtained by taking into account only the variable \1

corresponding to the highest Lyapunov exponent. However, if %-ln Pe,
this approach does not give the correct exponent for d>2, as it was observed
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in ref. 12. The correct asymptotic of P(%) for %>>ln Pe was computed in
ref. 12; the complete p.d.f. was then restored in ref. 14, up to logarithmic
corrections.

Let us estimate the domain of validity of our expressions (68), (70),
which were obtained in the limit Pe � �. In the computation, when
\1tln Pe we neglected the dependence of Q on \2 ,..., \d&1 . However, due
to the peculiar dependence of the potential on \1 , there exist trajectories
for which \1 remains confined in a finite domain around ln Pe, while the
variables \j , j=2,..., d&1 freely evolve, eventually reaching values of the
order ln Pe. This happens for times of the order t*tln Pe. The corre-
sponding value of = is =limt=0 t*t=0 ln Pe. For =-=lim the behaviour of
P(=) is probably modified.

The exponent of the p.d.f.'s tail (70) up to d-dependent numerical coef-
ficient coincides with the one-dimensional results.(5) This means that the
configurations of the passive scalar field contributing into (70) are effec-
tively one-dimensional, as it was noted in ref. 18.

APPENDIX. COMPUTATION OF THE JACOBIAN

In this appendix we derive the form of the Jacobian term (22). Let us
introduce a basis êij of the matrix algebra gl(d ) defined by

(êij )kl=$ik$ jl

make use of the notation

t̂ij=êij , j>i, d� k=êkk , k=1,..., d, r̂ij=êij&êji , j>i

and parametrize

R� =T exp \|
t

0
, ij r̂ij d{+ , D� =exp(\k d� k), T� &1=exp(X ij t̂ ij )

where summation on repeated indices is assumed and \d=&(\1+ } } } +
\d&1).

Under a variation ($,ij , $\k , $Xij ) the matrix _̂=W� W� &1 varies as

$_̂=A�4 +[A� , _̂]=_ (r)
ij r̂ ij+_ (d)

k d� k+_ (t)
ij t̂ ij , with A=$W� } W� &1

The measure D_̂ is invariant under the global symmetries W� � R� 0 W� and
W� � W� T� &1

0 , so that the Jacobian

J= }det \ $_̂
$(,, \, X )+ }
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does not depend on the R� and T� variables. Setting then R� =1, T� =1 after
having computed the variation $_̂ we find

_ (d)
k =$\* k

_ (r)
ij =$,ij+(�&1$,ij )(\* i&\* j )

_ (t)
ij =&e \i&\j $X4 ij&2(�&1$,ij )(\* i&\* j )

The Jacobian matrix has thus triangular form and can be computed with
the help of the regularization

%(0) �
1
2

, $(0)=
1
h

, $$(0)=
1
h2 , h � 0 (71)

The result (22) is finally obtained making use of the simple identity

:
1�i< j�d

(\ i&\j )= :
d

j=1

(d&2 j+1) \j=2 :
d&1

j=1

(d& j ) \j

Note that the consistency of the regularization prescription (71) can be
checked by computing ([W� (t) n0]2) first directly and that using (22).

ACKNOWLEDGMENTS

We are grateful to E. Balkovsky, M. Chertkov, G. Falkovich,
V. Lebedev, M. Stepanov, and M. Vergassola for numerous discussions.
I.K. thanks U. Frisch for the hospitality in Nice, at the Observatoire de la
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