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Shedding and interaction of solitons in weakly disordered optical fibers
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The propagation of the soliton pattern through optical fiber with weakly disordered dispersion coefficient is
considered. Solitons perturbed by this disorder radiate and, as a consequence, decay. The average radiation
profile is found. Emergence of a long-range intrachannel interaction between the solitons~mediated by this
radiation! is reported. We show that soliton in a multisoliton pattern experiences a random jitter: intersoliton
separation is zero mean Gaussian random field. Fluctuations of this separation are estimated bydy
;Dz2Am, where D measures the disorder strength,z is the propagation distance, andm stands for the
transmission rate~number of solitons per unit length of the fiber!. Direct numerical simulations are used to
validate theoretical predictions for single soliton decay and two-soliton interaction. Relevance of these results
to fiber optics communication technology is discussed.
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I. INTRODUCTION

Fibers are not ideal, i.e., inability of production to achie
100% guaranteed control of fiber parameters in the proc
of fiber pulling and preform manufacturing results in irreg
larities of the fiber structure. Structural disorder is built in t
fiber. The effect of this disorder on the propagation and
teraction of pulses accumulates with propagation, i.e.,
longer some pulse~pattern of pulses! travels along the fiber
the more strongly disorder affects it. Even weak disor
may cause essential damage to pulse integrity. A strong e
of weak disorder in the fiber dispersion coefficient on t
shedding and interaction of pulses, a problem which is c
cial for progress in modern nonlinear fiber optics and rela
communication technology, is described in this paper.

In fiber optics communication a pulse is used as a bit
information. For an ideal fiber, working in the regime
nonlinear transmission, a pulse of the electric field is
scribed by a stationary solution~soliton! of the self-focusing
nonlinear Shro¨dinger equation~NLSE! with constant coeffi-
cients @1–3#. Stationarity, in particular, means that solito
propagates through the fiber with a constant speed.~For a
detailed derivation of the NLSE from Maxwell’s equations
a very general fiber optics setup see, e.g., Ref.@4#.! The
stationary solution is a result of a fine balance between
fiber dispersion and nonlinearity@2–4#.

A sequence of pulses launched in the fiber forms a p
tern, which codes the transmitted message. Ideally, this
tern is a sequence of solitons, each positioned in the cent
a slot allocated for the respective information bit, where
soliton is a stationary single-pulse solution of NLSE. St
‘‘1 9 is assigned to a slot if the soliton is present there, a
the state of the slot is ‘ ‘09 if the slot contains no soliton. The
disorder, built in this fiber, breaks this ideal picture.~Some
other potentially important corrections to NLSE are d
cussed in Refs.@5,6#.! In the present manuscript we descri
dynamics of single- and multi-soliton patterns in the pr
ence of weak disorder in the dispersion coefficient. So
preliminary results of this study, detailed and corrected h
1063-651X/2003/67~3!/036615~21!/$20.00 67 0366
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were briefly described in Ref.@7#.
A soliton, propagating through a fiber, emits radiation d

to disorder and, consequently, loses its energy. Howeve
the case of weak disorder~weakness of disorder is actuall
required for successful fiber performance! the destruction of
the soliton is slow, thus making an adiabatic description
this problem possible. The adiabaticity implies separation
dynamical degrees of freedom into slow and fast mod
@See Refs.@8–10# for the general description of the adiabat
perturbation approach to partial differential equations a
Refs.@11,12# for applications of the general method to va
ous regular perturbation expansions about the soliton s
tion of the one-dimensional~1D! NLSE.# Slow modes de-
scribe evolution of the soliton itself while the fast mod
correspond to the radiation. The soliton keeps its shape~so
that, at each instant, the soliton is close to a stationary s
tion of the noiseless NLSE! with the soliton parameters~po-
sition, width, phase, and phase velocity! evolving slowly.
Waves shed by a soliton are moving away from it. The a
erage intensity of the radiation~at 1!t,z) is estimated as
Dh4 ln(z/t). Here,h is the soliton amplitude,D measures the
intensity of the disorder~which is assumed to be weak,D
!1), z stands for position along the fiber, andt is the re-
tarded time, i.e., time counted from the moment when
soliton passes through a given positionz. ~All the quantities
are measured in the respective soliton units: the time un
the soliton width, and the length unit corresponds to the d
tance passed by soliton during one turn on 2p of the soliton
phase.! In the domain whereutu@z the radiation decays ex
ponentially with t/z. Thus, one can say, that the radiatio
propagates away from the soliton~in t) with velocity, which
is O(1). Amplitude of the front forerunner~i.e., the domain
of t whereutu@z) decays exponentially witht/z. One finds
that at anyz, however large, the radiation in an immedia
vicinity of the soliton is much less intense than the solit
itself, i.e., the soliton is always distinguishable from the
diation. Since the soliton losses its energy into radiation,
amplitudeh decays withz. The degradation law is determin
istic in spite of the original setting stochasticity. This is d
©2003 The American Physical Society15-1
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to the fact that the variation ofh is determined by an integra
overz, which is a self-averaged quantity at largez. The soli-
ton degradation law~valid at anyz@1) is

h5~1132Dz/15!21/4. ~1.1!

~Quantitative definition of the noise intensityD is given in
the next section.! Notice, that the degradation of the solito
amplitude in the presence of disorder in the dispersion c
ficient was previously considered in Ref.@13#, where estima-
tions consistent with the analytic expression~1.1! were de-
rived. Equation~1.1! shows that the soliton starts to degra
essentially atz;1/D.

Next, we examine interaction of solitons at 1!z!1/D
~when the soliton amplitude decrease is still negligib!
emerging under the influence of the radiation. We show t
the interaction is extremely long range, due to the o
dimensional~1D! nature of the system and also because
the reflectionless feature of the radiation. At anyz all solitons
separated from a given one byutu&z act on this soliton with
a force, which is zero on average. Fluctuations of the fo
result in a Gaussian jitter of the soliton position. We find th
in the two soliton case~i.e., for the pattern consisting of tw
solitons only, so that no other solitons are present anywh
in the utu&z vicinity of the pair! fluctuations in their relative
positiondy are determined by

^~dy!2&50.37@11cos~2a!#D2z3, ~1.2!

wherea is the intersoliton phase mismatch. Angular brack
in Eq. ~1.2! stand for averaging over many realizations
disorder ~i.e., over different fibers!. In the general multi-
soliton case fluctuations in thei th soliton position are esti
mated as

^~dyi !
2&;ND2z3, ~1.3!

where N is the number of solitons in the same chann
~propagating on a given frequency, i.e., with a given gro
velocity! in the utu&z vicinity of the pair. ~To avoid confu-
sion, note, that effects of multichannel interaction are
discussed here.! At z;N21/3D22/3 the effect of interaction
on the soliton displacement becomes dangerous, i.e.,O(1).
This interaction lengthN21/3D22/3 is shorter than the degra
dation lengthD21. Thus our approximation is justified: sol
tons acquire significant shifts in their positions well befo
any essential decrease of the soliton amplitude~or, generally,
essential distortion of its shape! is observed. Notice, that Eq
~1.3! also applies to the case of an infinite pattern, corresp
dent to the continuous flow of information. In this case,N
5mz, wherem is the information rate, i.e., number of sol
tons per unit length of the fiber.

The material in the paper is organized as follows. Gene
fiber optics relations relevant to our analysis are presente
Sec. II. The single soliton results are detailed in Sec.
Section IV is devoted to the two-soliton interaction analys
Generalization of the two-soliton picture for the multisolito
case is discussed in Sec. V. Effect of the recently propo
pinning of disorder in dispersion@14–17# on single pulse
degradation and intersoliton interaction is addressed in S
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VI. Direct numerical simulations for single-soliton and two
soliton cases, confirming the theoretical analysis, are
cussed in Sec. V. Section VIII is reserved for conclusio
Some calculation details are described in appendixes.

II. BASIC RELATIONS

This section is devoted to general introduction into t
problem of optical signal nonlinear propagation through i
perfect fiber. Basic equations governing propagation o
pulse through such a fiber are introduced in Sec. I A. Sec
I B is devoted to discussion of real fibers parameters use
communication technology. Section I C introduces the f
malism of a signal separation into localized modes~solitons!
and delocalized modes~radiation!. General consequences o
the weakness of disorder for the separation formalism
discussed in Sec. I D.

A. NLS with frozen disorder

Optical fibers are waveguides relying on the effect
complete internal reflection. A typical fiber consists of co
with higher refractive index and of a cladding with lowe
refractive index. The diameter of the fiber core correspo
to the first transverse mode at the carrier frequency o
signal. Therefore, light pulses can be described in terms
single mode electromagnetic field, propagating along the
ber. Then, the field can be treated as one dimensional.
perfections of the fiber~disorder, built in the fiber! is mainly
coming from variations in its diameter and chemical co
posite. Since the signal propagating through the fiber dec
amplifiers should be inserted in the fiber line to maintain
signal’s amplitude. Below, we discuss equations avera
over the inter-amplifier distance, thus assuming that atten
tion is compensated by amplification.

The universal description of the signal envelope dynam
in the reference frame moving with the wave packet gro
velocity is given by the NLSE~see, e.g., Ref.@4#!

2 i ]zC5d~z!] t
2C12uCu2C, ~2.1!

explaining dynamics of electromagnetic wave packet w
envelopeC(z,t). This signal propagates inz ~which is posi-
tion along the fiber! being a subject to dispersion in retarde
time t ~i.e., time counted from the moment when solito
passes through a given position,z) and to the Kerr nonlin-
earity. Equation~2.1! assumes that fluctuations in the chr
matic dispersion coefficientd(z) characterizing irregularity
of the fiber, have a greater effect on propagation of pul
than fluctuations of any other coefficients in the equati
say of the Kerr nonlinearity~which is, therefore, constant
rescaled to 2 in this equation!. Equation~2.1! is a result of
averaging of Maxwell’s equations. This averaging accou
for geometrical features of the fiber core and cladding. A
ditional averaging, also accounted for in Eq.~2.1!, is per-
formed over the amplifier spacing. Real-world problems
fiber-optics communication may require an account for c
rections to Eq.~2.1!, e.g., for subleading corrections comin
from averaging over amplifier spacing@18#. We argue in Sec.
I B that such extra terms produce only small, irrelevant c
5-2
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SHEDDING AND INTERACTION OF SOLITONS IN . . . PHYSICAL REVIEW E67, 036615 ~2003!
rections to the soliton interaction discussed in this paper
Only recently has the chromatic dispersion profiled(z)

became experimentally accessible. High-precision meas
ments demonstrated significance of the dispersion rand
ness@19,20#. Chromatic dispersion in optical fibers com
from two sources. The first source is the medium itself. M
terial dispersion in modern fibers is a relatively stable para
eter, uniformly distributed along the fiber. That is why w
assume here, that the dispersion does not fluctuate in t
The second source is due to specific geometry of the wa
guide profile. Existing technology does not provide accur
control of the wave-guide geometry in fibers, so that
actual dependence of the dispersion coefficient on the w
length is complicated. As a result, the typical magnitudedvar
of random variations of fiber chromatic dispersiond(z), can
achieve, or in some cases even become greater than, th
the mean dispersion. The typical scale of the disorder va
tionszvar is much less than all relevant scales in the proble
~See Sec. I B for discussion of real-world numbers and e
mations.!

It is convenient to separate the constant part ofd ~which
we rescale to unity! and its fluctuating partj: d511j,
wherej is a random function ofz, correlated on the scal
zvar. We examine statistical properties of the fibers, wh
represent averaging over many realizations of the diso
j(z) ~over many fibers!. Those objects allow establishme
of both typical fluctuations and probability of large devi
tions from the typical value for different quantities. Bein
interested in phenomena occurring on scalesz, larger than
zvar, one can treat the disorderj as a short- (d-) correlated
one. Then the first two cumulants ofj are

^j&50, ^j~z1!j~z2!&5Dd~z12z2!, ~2.2!

where^•••& marks averaging over many realizations of d
order~i.e., over many different fibers!. The coefficientD ~to
be called noise intensity! is estimated asD;zvardvar

2 . High-
order cumulants ofj are negligible as containing highe
powers ofzvar. In other words, statistics ofj is Gaussian.
The smallness ofzvar ~in comparison with other relevantz
scales! is due to the fact that the disorder is weak,D!1.
This weakness of disorder is, actually, a necessary cond
for successful fiber performance.

Note that in describing propagation of a signal, we ad
mixed optical-quantum mechanical notations and termin
ogy. Indeed, the traditional optical notationt is reserved for
retarded time, since, experimentally, the envelope of
electromagnetic field is measured as a function of time,
also becauset in Eq. ~2.1! is a ‘‘descendant’’ of the real time
in the original Maxwell’s equations, Eq.~2.1! was derived
from. From the other side, the retarded time is proportio
to real time minus position along the fiberz ~divided to the
velocity of light! and, therefore,t is also carrying a certain
spatial sense. In addition to Eq.~2.1! which is called the
nonlinear Schro¨dinger equation in direct analogy with th
famous linear Shro¨dinger equation, is a parabolic equatio
with second order derivative over timet, and not over the
coordinate along the fiberz. The analogy with quantum me
chanics is extremely helpful and is used in later discussi
03661
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and derivations. It explains why we treatt as more of a
spatial variable rather than a temporal one, marking osc
tions in t by ‘‘wave vectors,’’ which would be natural to cal
‘‘frequencies’’ in a pure optical context.~To avoid misunder-
standing, let us stress, that the frequencies have no relatio
the carrier frequency of the original electromagnetic wav!

Another remark is about relevance of the physics
scribed by Eq.~2.1! for the phenomenon of localization o
light in disordered medium@21#. As was mentioned above
the disorder termj originates from fluctuations of the wave
guide dispersion, and it is not related to the material com
nent of the dispersion. Therefore, fluctuations of the mate
disorder were not accounted for in Eq.~2.1!. Nevertheless,
we find it useful to briefly discuss here its effect on prop
gation of light. Material disorder is associated with irreg
larities of the fiber core and cladding~impurities! on very
short, atomic scales. Light scattering on the impurities le
to the well known phenomenon of localization of light, ta
ing place at some larger scale, usually called the localiza
length@21#. The localization length is inversely proportion
to the strength of the material disorder. Material used
manufacturing modern fibers are usually very clean, so
the localization length essentially exceeds the distance
tween filters, which, in the typical fiber lines, are placed
the amplifier stations. Filters cut the back scattering of lig
thus destroying coherence, required for emergence of the
calization phenomenon. As a result, presence of~very low
intensity! material disorder does not play any significant ro
in fiber optics communications. Notice, also, that the scale
the waveguide disorder variationszvar essentially exceeds th
wavelength of light, thus allowing us not to take into accou
the back-scattering of light due to waveguide disorder.@No-
tice, that it is this separation of scales which allows us
reduce the hyperbolic Maxwell equations to the parabo
equation~2.1! in the envelope approximation.# Therefore, no
localization phenomena due to material disorder is possi
For the sake of generality, let us also note, that the role
disorder in the context of the localization-delocalization tra
sition was investigated for the nonlinear Schro¨dinger equa-
tion ~see, e.g., Ref.@22#!. However, in solid state physic
frozen disorder means that noise isz-independent~in our
notations!. The t-dependent noise is very different from th
z-dependent one, studied here, and to the best of our kn
edge, the former case does not correspond to any situatio
interest in fiber optics communications.

B. Real-world transmission parameters

Equation~2.1! is written in dimensionless units, which ar
related to the real-world fiber units through the followin
rules. The envelope of the electric field is in the formE
5Re@AP0Ceiv0t#, whereP0 is the peak pulse power andv0
is the carrier frequency of the signal. The propagation va
able isz5Z(aKP0/2), whereZ is the distance along the fibe
andaK is the Kerr nonlinearity coefficient. The Kerr coeffi
cient can be expressed in terms of other fiber parame
aK52pn2 /(lSeff), wheren2 is the nonlinear component o
the fiber refractive index,l is the operating wavelength, an
Seff is an effective area of the fiber core. The other coordin
5-3
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is t5(T2Z/c)/t0, whereT is time,c is the velocity of light
in the medium~i.e., T2Z/c is just the retarded time!, andt0
is the pulse width. The dispersion coefficient isd
52b2 /(aP0t0

2), where b2 is the second order dispersio
parameter. To give an example, a typical set of parame
for dispersion shifted fiber is as follows:b250.1 ps2/km,
a52 W21 km21, l51550 nm,t057 ps, P052 mW.

The typical scale of the disorder variations,zvar, can be
extracted from experimental measurements@19,20# showing
thatzvar is shorter than;122 km. Notice, that this numbe
actually comes from experimental resolution, while one
pects that the typical scale of the variations is at least on
two orders of magnitude shorter,;102100 m, i.e., the scale
is fixed by the size of the production facility~fiber pulling
device!. In any case,zvar appears to be essentially short
than any other, relevant for long-haul transmission, scale
was also reported in Ref.@19# that fluctuations of the disper
sion coefficient in a sample of ‘‘dispersion shifted’’ fiber a
of the order of its average value, i.e.,db2;0.5 ps2/km.
Therefore, for a pulse width of;7 ps ~which would corre-
spond to a single-channel transmission rate of 28 Gb/s! and
for a nonlinear length of,znl5(aP0)21;250 km, the noise
intensityD5zvardvar

2 is estimated by 102321022. Then, the
soliton interaction is seen atzint51/AD;2500–7500 km.
Notice, also that the decrease of the pulse width by a factq
~correspondent to a factor ofq increase of the transmissio
rate! leads toq2 decrease inzint .

Let us now discuss applicability criteria of the approxim
tions leading to Eq.~2.1! for the real-world situation in fiber-
optics communication technology. An important addition
scale in optical communication systems is imposed by fi
lossesg. Compensation of energy losses require use of
line optical amplifiers separated byzamp;g21. The value of
zamp is usually 40–70 km. Soliton based optical communic
tions is possible if the dispersion lengthzdisp5t0

2/b2, the
length of nonlinearity and amplification spacing are rela
to each other aszdisp;znl@zamp. Averaging over the shortes
scalezamp we arrive at Eq.~2.1!. Subleading corrections, no
accounted for in Eq.~2.1!, are O„(zamp/zdisp)

2
… @18#. This

small parameter (zamp/zdisp)
2, is '1022 in the aforemen-

tioned example of the dispersion-shifted fiber. Therefore,
clusion of the correction term from Eq.~2.1!, as well as the
validity of the averaging procedure overj, both require
some additional justification. The correction term provid
deterministic and stochastic contributions to optical pul
Deterministic contribution does not produce any additio
continuous radiation and it results only in a weak deform
tion of the optical soliton shape. The second, stochastic, c
tribution is (zdisp/zamp)

2 times smaller than the main stocha
tic contribution considered in the paper. Therefore, averag
over the amplifier spacing does not change the value oD,
only affecting the value of the effective noise correlati
length (zvar→zamp). This latter scale is still much smalle
than all other relevant scales. One concludes that Eq.~2.1!
does explain situation of practical interest for fiber opt
communications.

C. Separation into localized-delocalized modes

One assumes that at the fiber entrancez50, the signalC
is close to anN-soliton solution of the no-disorder NLSE
03661
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i.e., of Eq.~2.1! with d51. The disorder termj disturbs the
idealN-soliton pattern. Our task here is to describe evolut
of C under action of this disorder. The weakness of disor
j and localized nature of the initial soliton profileC(0,t)
suggest the following decomposition

C5Csol1Ccon, ~2.3!

whereCsol is the localized~soliton! part of the envelope and
Ccon stands for the radiation~delocalized part!. If there is no
disorder (j50) Csol is a solution of thej50 version of Eq.
~2.1! andCcon50. Therefore,Ccon is O(j).

In the single-soliton case one has

Csol5
h

cosh@h~ t2y!#
exp@ iw1 ib~ t2y!#, ~2.4!

where h, y, w, and b are amplitude, position, phase, an
phase velocity of the soliton. The disorderj is a reason for
complicatedz dependence of the soliton parametersh, w, b,
and y, whereas in the absence of disorder~i.e., when j
50) h and b are z independent, andy and w are linear
functions of z. It is convenient to change from the solito
phasew(z) to the auxiliary (z independent in the absence
disorder! objecta,

w5a1E
0

z

dz8h2~z8!. ~2.5!

It is also convenient to change from the radiation fieldCcon
to a new fieldv, which differs from Ccon by the single-
soliton phase factor

v5exp@2 iw2 ib~ t2y!#Ccon. ~2.6!

By analogy with expansion over plane waves in the h
mogeneous case, one can presentv here in the form of the
following decomposition:

S v
v* D5E

2`

1` dk

2p
@akwk~x!1ak* w̄k~x!#, ~2.7!

wherew, w̄ are eigenfunctions

L̂hwk5~k21h2!wk , L̂hw̄k52~k21h2!w̄k , ~2.8!

of the operator

L̂h[~] t
22h2!ŝ31

2h2

cosh2@h~ t2y!#
~2ŝ31 i ŝ2!, ~2.9!

describing evolution of a linear perturbation about the sin
soliton profile~2.4! of the no-disorder NLSE. The eigenfunc
tions can be presented aswk5 f k/h(x) and w̄k5 f̄ k/h(x),
wherex5h(t2y), and f k , f̄ k are the eigenfunctions ofL̂h
at h51, defined in Appendix A. This complete system of t
eigenfunctions was found by Kaup in Ref.@11#. The coeffi-
cientsak andak* in Eq. ~2.8! are functions ofz. The eigen-

functions wk and w̄k depend onz via h(z) and y(z). The
5-4



d
m

.

n

n

-
t-

s:

r

ch
e

ns,
ce of

y
s of
o-

-

of

oli-
rs

a-
r
po-

e

tion
unt

d

x
spe-

is
ra-

SHEDDING AND INTERACTION OF SOLITONS IN . . . PHYSICAL REVIEW E67, 036615 ~2003!
functions wk , w̄k are orthogonal to the four localize
modes, corresponding to variations of the four soliton para
eters in Eq.~2.4! ~see Appendix A!, and the orthogonality
conditions can be written as

E
2`

1`

dt cosh21~x!~v1v* !50,

E
2`

1`

dt tanh~x!cosh21~x!~v2v* !50,

E
2`

1`

dtx cosh21~x!~v1v* !50,

E
2`

1`

dt@x tanh~x!21#cosh21~x!~v2v* !50. ~2.10!

The relations~2.10! fix uniquely ~even though inexplicitly!
the soliton parameters, introduced by Eq.~2.4!, for a given
function C(z,t) in the decomposition~2.3! where Ccon is
related tov through Eq.~2.6!.

Let us rewrite Eq.~2.1! in terms of the new variables
Substitution of expressions~2.3!–~2.6! into Eq. ~2.1! ~where
d has to be replaced by 11j), and subsequent expansio
over j andv results in

ih]za f 0~x!2]zh f 3~x!1h2~]zy22b! f 1~x!1 ih]zb f 2~x!

1]zS v

v* D 2 i L̂ hS v

v* D 1•••

5 i jh3F 1

coshx
2

2

cosh3x
G S 1

21D , ~2.11!

wherex5h(t2y). The ellipses in Eq.~2.11! stand for high-
order terms inv andb. Then, the equations for the solito
parameters and the continuous spectrum amplitudesak can
be found by projecting Eq.~2.11! onto respective eigenfunc
tions of L̂h ~2.9!. Let us present an expansion of the righ
hand side of Eq.~2.11! into a series over the eigenfunction

i F 1

coshx
2

2

cosh3x
G S 1

21D
5h21E dk

2p
~bk/hwk1bk/h* w̄k!2 i f 0~x!,

~2.12!

bq5
p i

2

~q1 i !2

cosh~pq/2!
, ~2.13!

where Eqs.~A11!, ~A12! from Appendix A were used.
In the multisoliton case a localized part ofC, Csol, can

be approximated as anN-soliton solution of the no-disorde
NLSE with 4N parameters, varying inz. If individual soli-
tons in theN-soliton pattern are well-separated from ea
other ~i.e., if the intersoliton separations are all much larg
03661
-
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than a single soliton width!, Csol can be approximated~with
an exponential accuracy over the intersoliton separations! by
a sum of the single-soliton contributions

Csol5(
i 51

N
h i

cosh@h i~ t2yi !#

3expF ia i1 i E
0

z

dz8h i
21 ib i~ t2yi !G , ~2.14!

labeled by indexi , i 51, . . . ,N. Hereh i , yi , a i , andb i
are real parameters, standing for amplitudes, positio
phases and phase velocities of the solitons. In the absen
disorder, the soliton parameters arez independent with the
same exponential accuracy. The disorder drives az depen-
dence of the parameters. The 4N parameters ofCsol are de-
termined for a givenC through 4N conditions generalizing
the relations~2.10!. The conditions manifest orthogonalit
between the continuous spectrum and localized mode
differential operator defined for linear perturbation of the n
disorder version of Eq.~2.1! about itsN-soliton solution.

We assume that a sequence of identical~of the same unit
amplitude and zero initial phase velocity! ideal solitons are
launched into the fiber atz50. Thus the initial conditions
for C are

h i~0!51, b i~0!50, Ccon~0,t !50. ~2.15!

The initial positions of the solitonsyi(0) are parameters cod
ing the transmitted information. Solitons phasesa i(0) are
particular initial data.

D. Weakness of disorder

The separation~2.3! of the entire solution of Eq.~2.1! into
the localized and delocalized parts is natural in the case
weak disorder. The weakness of disorder (D!1) has two
important consequences: first, the radiation emitted by s
ton is also weak, i.e.,Ccon5O(j), and second, paramete
of the soliton vary slowly inz, while dynamics of the radia-
tion field Ccon is relatively fast. The weakness of the radi
tion intensity, uCconu!1, suggests a linear description fo
Ccon. Let us, however, stress, that, generally, the decom
sition ~2.3!, determined by Eqs.~2.4!–~2.9! for a single soli-
ton ~and by analogous relations for the multisoliton cas!,
does not require any smallness ofCcon. The generality of the
approach will help us to construct a consistent perturba
theory~which, as we demonstrate below, requires an acco
for some higher order terms!.

An important part of our further analysis will be focuse
on derivation and solution of a linear~as the radiation is
weak! equation forCcon. The equation gets a rather comple
structure, which, generally, requires an accurate, case
cific, analysis. However, the asymptotic behavior ofCcon,
away from all the solitons, is simple and general, and it
certainly worth discussing it here. Far from solitons the
diation fieldCcon is described by the linear wave equation

2 i ]zCcon5] t
2Ccon. ~2.16!
5-5
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Thus, in the asymptotic domain the fieldCcon can be ex-
panded over the set of plain waves}exp(2ik2z1ikt). In the
reference frame, moving with the speed of light through
fiber, a wave packet with the wave vectork propagates along
the z axis with the group velocity 2k. Therefore, the group
velocity decays as the wavelengthk21 increases. This
means, in particular, that short waves arrive first at so
remote point.

III. SHEDDING OF RADIATION BY A SINGLE SOLITON

The symmetry of the single-soliton allows reduction
the number of essential degrees of freedom. Since both
Eq. ~2.1! and the single-soliton version of the initial cond
tion ~2.15! are invariant under time inversiont→2t neither
soliton positiony nor its phase velocityb are varying withz.
The integral quantityE5*dtuCu2 ~which is also natural to
call energy, since it corresponds to the energy of the orig
electromagnetic field! is conserved. This conservation law
due to the gauge symmetry of Eq.~2.1!. The single-soliton
version of the conservation law is

2h1E dtuvu252. ~3.1!

Equation~3.1! gives an instantaneous relation between s
ton amplitude and the integral overt of the radiation inten-
sity. The soliton phase,a, although evolving under the ac
tion of disorder, does not enter Eq.~3.1!. Notice that the
relation ~3.1! is valid generally, regardless of the relativ
strength of the two terms on the left-hand side of Eq.~3.1!.

The weakness of disorder (D!1) is essential for the nex
two steps.

~1! Linear approximation, reducing calculations direc
to account for the leading order in the radiationj terms in
the basic dynamical equation. We will show below that t
direct perturbation expansion is valid atz!1/D, where de-
viations ofh from unity are small.

~2! Quasilinear approximation, explaining generalizati
of the pure linear approximation to the case of modera
(z;1/D) and long- (z@1/D) haul transmissions. For suchz
a cumulative change of the soliton amplitude,h, becomes
essential, while the radiation shed is still~as in the linear
case! weak at any given position.

Equations forz dependence of the parametersh, b, a, y,
ak , andak* are presented and discussed below separately
the linear (z!1/D) and quasilinear (z*1/D) cases. An es-
sential part of this analysis~especially complex in the quas
nonlinear case! is the proof of the following asymptotic
statement: the higher-order terms@ellipses in~2.11!# do not
contribute to the leading asymptotic description of the rad
tion profile v at any t,z@1. Notice, however, that some o
the higher-order terms have to be taken into account in
asymptotic equations for the soliton parameters.

A. Linear approximation

The linear~first order in j) approximation is examined
here. Recalling that the parametersa, b, andh ~and, also,y,
if the soliton is not moving! are z independent in the no
03661
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disorder (j50) case. One finds thatz derivatives of the slow
variables areO(j) or smaller. The radiationv is alsoO(j),
i.e., it is small due to the smallness ofj. According to the
conservation law~3.1!, h511O(v2), i.e., it can be simply
replaced by unity in the approximation. The observatio
make it simple to linearize Eq.~2.11! with respect toj.

Once the linearized equation is found, one can der
equations for the soliton parameters and the expansion c
ficientsak , introduced by Eq.~2.7! by projecting this equa-
tion on the respective eigenfunctions of the operatorL̂ ~see
Appendix A!. Projection on the eigenfunctions of the discre
spectrum gives the following equations for the soliton p
rameters:

]za52j, ]zh50, ]zb50, ]zy52b, ~3.2!

where we used the expansion~2.12!. In agreement with what
was already discussed, Eq.~3.2! shows that neithery nor b
depend onz. Below we putb50 in accordance with the
initial conditions, and assumey50 ~without any loss of gen-
erality!. Equation~3.2! confirms an already mentioned obse
vation thath does not havez dependence in the first order i
j. The equation for the continuous spectrum coefficients
the radiation expansion, ak , derived from Eqs.
~2.11!,~2.12!,~2.13!, is

]zak2 i ~k211!ak5bkj, ~3.3!

wherebk is defined by Eq.~2.13!. The solution of Eq.~3.3! is
written as

ak~z!5E
0

z

dz8j~z8!bkexp@ i ~k211!~z2z8!#. ~3.4!

Substituting Eq.~3.4! into Eq. ~2.7! and considering the ra
diation far away from the soliton~that impliest@1) one gets

v'2
i

4E0

z

dz8j~z8!exp@2 i ~z2z8!#J~ t,z2z8!, ~3.5!

J~ t,s!5E dq
~q2 i !2

cosh@pq/2#
exp~2 iqt2 iq2s!. ~3.6!

A stationary phase calculation of the integral on the rig
hand side of Eq.~3.6! gives

J~ t,s!'Ap

isS t

2s
1 i D 2

expS i
t2

4sD cosh21S pt

4sD . ~3.7!

The asymptotic expression given by Eq.~3.7! is valid at s
@1.

To describe the space-time dependence of the radia
we examine the radiation intensityuvu2, averaged over real
izations of the disorderj, in the asymptotic domain of large
z and t, z,t@1. Multiplying together two replicas of Eq
~3.5! and averaging the result over disorder, in accorda
with Eq. ~2.2!, one finds
5-6
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^uvu2&5
D

16E0

z

dz8uJ~ t,z2z8!u2. ~3.8!

At t@1 one can replaceJ in Eq. ~3.8! by its asymptotics
~3.7!.

First, let us consider relatively short time,t!z. For z8 in
Eq. ~3.8!, restricted by z2z8@t, one gets uJu2'p/(z
2z8), resulting in the logarithmic divergence of the integr
in Eq. ~3.8! at small values ofz2z8. The divergence is cut a
z2z8;t, leading to the following radiation intensity profile

t!z!1/D, ^uvu2&'
p

16
D ln

z

t
. ~3.9!

Within the domain of the radiation forerunner, defined byt
@z, cosh in Eq.~3.7! can be replaced by its exponenti
asymptotics. Then, the integral in Eq.~3.8! is formed in the
region of the shortestz8 allowed in the domain. Calculating
the integral explicitly, one derives the following asymptoti
for the radiation forerunner profile:

z!1/D, z!t, ^uvu2&'
Dt3

32z3
expF2

pt

2zG . ~3.10!

The two asymptotic expressions~3.9! and ~3.10! match atz
;t.

It is instructive to present a qualitative explanation for t
logarithmic profile~3.9!. At small k the source of the radia
tion ~localized at the soliton! can be treated as a pointlik
one. Therefore waves with the wave vectorsk,1 are excited
by the disorder with approximately equal probability. Nev
theless, they have different group velocities. Among all
waves shed by the soliton~at t;1 and z8,z) only those
special with the wave vector~group velocity! k>t/z contrib-
ute to ^uv(t)u2& at the givenz and t. On the other hand
emission of waves withk.1 is suppressed. Thus, the ma
contribution to ^uv(t)u2& is proportional to * t/z

1 dk/k
5 ln(z/t), where the 1/k factor originates from the group ve
locity.

We conclude this subsection by establishing the region
validity for the linear approximation explained above. T
first, and immediate, consequence of the linear approxi
tion is the smallness of the soliton amplitude degradati
This means that the amount of energy shed by the sol
into radiation is negligible in comparison with the ener
still left in the soliton Esol'2. According to Eqs.
~3.9!,~3.10!, the average energy shed into the radiation
Erad5^*dtuvu2&. One finds, that the radiation energy
mainly stored in the region separating the logarithmic a
the exponential profiles, i.e.,Erad;Dz. Since, according to
Eq. ~3.1!, the overall energy is conserved, one finds that
linear approximation is justified, i.e.,Esol@Erad, if z is es-
sentially shorter than the degradation scalezdegr51/D.

B. Quasilinear approximation

Let us first draw a qualitative picture of what is happeni
at scales larger than the degradation scale. Oncez exceeds
zdegr51/D, the balance of energy between the soliton and
03661
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radiation shifts towards the radiation. However, the differe
tial ~per unitz) release of energy into the radiation remai
small and, actually, continues to decrease withz. The radia-
tion emitted by the soliton moves out of the soliton with
speed, fixed by the instantaneous value of the soliton am
tudeh at the moment of emissionz. Once emitted the radia
tion never returns back to the soliton, i.e. it does not affech
later ~at largerz). Therefore, since the density of radiatio
was small at the relatively shortz, z!1/D ~a fact proved in
the previous subsection! it cannot increase at largerz, quite
the opposite, it may only decrease, i.e.,uvu!1 at anyt andz.
This feature of the linear approximation will be, therefor
carried over largerz. The only new ingredient~not consid-
ered at shorterz) is accounting for slow degradation of th
soliton amplitude withz. Physically, the quasilinear approx
mation works because the waves shed by soliton leave
while the soliton travels a distancedz;1/h2, and the soliton
amplitudeh does not get any essential change duringdz
~sinceD!1).

Our first task here is, assuming some given dependenc
h on z, to study the radiation profilev. One derives from
Eqs.~2.11!–~2.13!

]zak2 i ~k21h2!ak5h2bk/hj. ~3.11!

Some terms, originating from thez dependence ofh were
omitted in Eq.~3.11!. This step will be justified below. The
solution of Eq.~3.11! is

ak~z!5E
0

z

dz8j~z8!h2~z8!bk/h(z8)

3expF ik2~z2z8!1 i E
z8

z

dz9h2~z9!G . ~3.12!

Substituting Eq.~3.12! into Eq. ~2.7! and considering the
radiation away from the soliton (ht@1) one gets

v'2
i

4E0

z

dz8j~z8!h3~z8!

3expF2 i E
z8

z

dzh2~z!GJ„h~z8!t,h2~z8!~z2z8!…,

~3.13!

where the functionJ is defined by Eq.~3.6!.
Equation~3.13! is fundamental for further calculation o

bothh ’s dependence onz, and the average radiation intensi
profile dependence ont and z. ~The following two subsec-
tions are devoted specifically to the two aforementioned s
jects.! However, it is very important to justify beforehand th
validity of those few but crucial assumptions made in t
course of derivation of Eq.~3.13! from Eq. ~2.11!. The rest
part of the present subsection is devoted to this task.

The key question here is could some small terms in
~2.12!, neglected in the course of derivation of Eq.~3.13!, be
accumulated at largez? The major result here will be a nega
tive answer to the question. To prove this general validity
Eq. ~3.13! one divides the entiret domain into two distinct
5-7
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regions, of at-wide soliton vicinity, t@1/h, and the rest
~remote region oft). The two regions will be considere
separately. First, the validity of Eq.~3.13! should be proved
for t from the box@2t,t#. Then, in the second step, on
should take into account a term, omitted in the derivation
Eq. ~3.13!, originating from az dependence~via h) of the
eigenfunctionswk and w̄k , in Eq. ~2.7!.

The generalized version of Eq.~3.11! accounting for the
dangerous term, is

]zak2 i ~k21h2!ak1Âak5h2bk/hj,

where Â is a linear nonlocal overk nonsingular operator
estimated by,Â;]zh/h. Assuming that theÂ correction is
small, one arrives at the following modification of Eq.~3.13!

v'2
i

4E0

z

dz8j~z8!h3~z8!expF2 i E
z8

z

dz9h2~z9!G
3F11E

z8

z

dz9ÂGJ@h~z8!t,h2~z8!~z2z8!#. ~3.14!

For utu<t integration overz8 from the right-hand side of Eq
~3.13! is formed atz2z8;t/h. Therefore, correction to the
integrand of Eq.~3.13! due to theÂ term in Eq. ~3.14! is
estimated by

~z2z8!Â;
t

h2
]zh;Dth3, ~3.15!

where one substitutes the law~1.1!, announced in the Intro
duction and derived in the next subsection. The correc
~3.15! is small providedt!D21h23. The later inequality is
obviously compatible with the only restriction we have im
posed so far on the size of the boxt@h21.

Next, we discuss the region of remotet, utu.t, where
the soliton part of the solutionC is negligible, whileCcon
satisfies the linear wave equation~2.16!. One can findCcon
outside the box by solving Eq.~2.16! with proper boundary
conditions, whereCcon(6t) was determined in the previou
step, and it is also assumed that the radiation only esc
the t box but never reenters. Fortunately, the result of t
procedure coincides with Eq.~3.13!. Indeed, it is straightfor-
ward to check thatCcon related tov via the phase facto
change~2.6!, satisfies the linear equation~2.16!, if v is given
by Eq. ~3.13!. It is also seen from Eq.~3.7!, that v contains
only waves leaving thet box. All this proves that there ar
no essential corrections to Eq.~3.13! originating from the
domain of the remotet.

C. Degradation law for soliton amplitude

The energy balance between the soliton and the radia
controls the law of the soliton amplitude decay withz. From
the basic equation~2.1! one gets

]zuCu25 id~z!] t~C* ] tC2C] tC* !. ~3.16!
03661
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This equation describes dynamics of the energy den
uCu2, and leads to the conservation law~3.1!. Integrating Eq.
~3.16! over thet-wide box, introduced in the previous sub
section, one obtains a relation between the amount of en
shed by soliton and the flux of energy coming through
boundaries of the box. We chooset to be large enough so
that thet-integral of uCu2 gets the major contribution from
the soliton itself, and is equal to 2h. The integral of the
right-hand side of Eq.~3.16! is reduced to two boundary
terms att56t. At the boundaries one can replaceC by
Ccon and also replacej by zero. The result is

]zh~z!5 i „v* ~z,t!]tv~z,t!2v~z,t!]tv* ~z,t!….

~3.17!
We show below that the dependence ofh on z can be

established from Eq.~3.17! with its right-hand side replaced
by its average value. Performing this averaging~over the
statistics of disorder! one arrives at

]zh5
iD

8 E
0

z

dz8h6~z8!I* ]tI, ~3.18!

whereI(z,t)5J@h(z8)t,h2(z8)(z2z8)#, and the function
J is defined by Eq.~3.6!. In Eq. ~3.18! the function can be
approximated by its asymptotic expression~3.7!, resulting in

]zh52
pD

8 E
0

z

dz8
th4~z8!

~z2z8!2

~z211!2

cosh2~pz/2!
,

wherez5t/@h(z8)(z2z8)#. The integral overz8 in the ex-
pression is formed atz2z8;t/h. The size of the boxt can
be chosen to be much smaller thanhz ~if z@1). Then, for
relevant z8, z2z8!z, and h(z) can be substituted fo
h(z8). Passing fromz8 to the integration variablez and
extending the integration region overz down to 0 ~this is
possible sincet/z!1) one gets

]zh52
pD

8
h5E

0

`

dz
~z211!2

cosh2~pz/2!
52

8D

15
h5.

~3.19!

Integration of the differential equation~3.19! gives the final
result for the degradation law~1.1! announced in the Intro-
duction.

The law of the soliton decay given by Eq.~1.1! is deter-
ministic in spite of the randomness of the initial setup d
scribed by Eq.~2.1!. This remarkable fact is due to the sel
averaged feature ofh. The rest part of this section is devote
to the proof of this statement: we demonstrate below t
deviation ofh ~for a given realization of the disorderj) from
its average value is small.

To establish statistical properties ofh we turn to the aux-
iliary quantity,

V~z![ i „v* ~z,t!]tv~z,t!2v~z,t!]tv* ~z,t!…,
~3.20!

extracted from the right-hand side of Eq.~3.17!. The irreduc-
ible pair correlation function~cumulant! of V,
5-8
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K~z1 ,z2!5^V~z1!V~z2!&2^V~z1!&^V~z2!&, ~3.21!

is presented, according to Eqs.~2.2!,~3.13!, as a double inte-
gral overz1,28 . One examines Eq.~3.21! at large values of
z1.z2 ,ht,z1,2,ht@1, and also assumes that the two i
equalities z12z2@h22t and (z12z2)]zh!1 are valid.
Then, using Eq.~3.7!, one finds

uKu,D2h5
t5

~z12z2!2
, ~3.22!

where the phase factort2/4s in Eq. ~3.7! was dropped.@An
account for the phase would decrease the value of the ri
hand side in Eq.~3.22!, thus turning the inequality~3.22!
into equality.# Integrating Eq.~3.22! over somez0-wide vi-
cinity of z5z1, one derives

E
z2z0

z

dz8uK~z,z8!u,D2h9t, ~3.23!

wherez0@t/h. Evaluating the inequality~3.23! further, one
gets

K F E
z2z0

z

dz8V~z8!G2L K E
z2z0

z

dz8V~z8!L 22

21,
t

hz0
!1.

The integralDh[*z2z0

z dz8V(z8) determines variations o

h(z8) for z8 from the interval bounded byz2z0 andz. We
established that fluctuations ofDh are weak. On the othe
hand, we are free to choose suchz0 that Dh!h. To con-
clude, evolution ofh can be described in terms of the dete
ministic equation~3.19!.

D. Average radiation

This subsection is devoted to derivation of the avera
radiation intensity profile from Eqs.~1.1!,~2.2!,~3.13!. We
examine it in the asymptotic domain of largez and t, z,t
@1. Averaging the radiation intensityuvu2 in accordance
with Eq. ~2.2! one finds

^uvu2&5
D

16E0

z

dz8h6uJ@ht,h2~z2z8!#u2, ~3.24!

whereh5h(z8), andJ is defined by Eq.~3.6!.
The radiation profile atz@1/D gets a more complicate

structure than in the domain of shortz, z!1/D, studied
above in Sec. II A. Using the asymptotic expression~3.7! for
the auxiliary functionJ and substituting Eq.~1.1! into Eq.
~3.24! one derives

^uvu2&5
15p

512E0

z dz8

~z2z8!@z81~15/32!D21#

3F t2

4h2~z2z8!2
11G 2

cosh22F pt

4h~z2z8!
G .

~3.25!
03661
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Analysis of this expression shows that there are three dif
ent asymptotic domains oft for any givenz:

~a! t!@z3/D#1/4 and zD@1,

~b! @z3/D#1/4!t!z and zD@1,

~c! t@z and zD@1.

In domain ~a! two different asymptotic regions ofz8, 1/D
!z8!z, and t/h!z2z8!z, give the major contribution to
the integral on the right-hand side of Eq.~3.25!. Collecting
the major logarithmic terms, one obtains

~a! ^uvu2&5
15p

512z
ln

D3/4z7/4

t
. ~3.26!

In domain~b! the major contribution is coming from the 1
!Dz8!(z/t)4 region of thez8 integration in Eq.~3.25!,
leading to

~b! ^uvu2&5
15p

128z
ln~z/t !. ~3.27!

And finally, at t@z the integral in Eq.~3.25! is formed at
Dz8&z/t, where cosh can be replaced by its exponen
asymptotics. This leads to

~c! ^uvu2&5
15t3

256z4
expS 2

pt

2zD . ~3.28!

Now that all the asymptotics~for relatively shortz in the
previous subsection, and for longz here! have been pre-
sented, let us describe a general picture of the radiation
tribution. The radiation front runs out of the soliton wit
constant speed,t/z;1. A logarithmic profile is formed be-
hind the front, while the radiation forerunner decays exp
nentially with t/z@1. The energy of the radiation is con
tained mainly in the boundary region between t
logarithmic and the exponential profiles. Atz!1/D, the
logarithmic profile ~3.9! is simple, and the preexponentia
factor depends onD, as it seen from Eq.~3.10!. At larger
z, z@1/D, when the soliton has already shed almost all
energy into the radiation, the logarithmic profile splits in
two parts described by Eqs.~3.26! and ~3.27!, respectively,
and the exponential asymptotics is modified to Eq.~3.28!.
Regime~a! is formed by the waves withk,h emitted con-
tinuously at differentz8, whereas regimes~b! and ~c! are
formed by the ‘‘fast’’ waves, emitted atz8 far from the ob-
servation pointz. The boundary between regimes~a! and~b!
is determined by the conditiont;hz ~that is the ‘‘distance’’
passed by waves withk;h). The profile in regime~a!
knows about the current amplitudeh of the soliton, whereas
in regimes~b! and ~c! the radiation is insensitive to the cu
rent value ofh. Note that the universal profile, formed in th
regions~b! and ~c!, does not depend on the intensity of th
disorderD and the only information stored in the asympto
ics is about the initial soliton profile. The universal profi
~b!, ~c! is self-similar:^uv2u&5z21F(t/z). At first sight, this
5-9
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type of self-similarity t;z seems to contradict th
asymptotic equation~2.16!. This confusion has a simpl
resolution. The main dependence ofv on t is associated with
its phase, which, as it is seen from Eq.~3.7!, has a normal
kind of self-similarityz;t2. However, the phase drops from
the absolute valueuvu2, so that the self-similarity of the latte
object is determined by the subleading;1/z terms in the
eikonal approximation. Notice, that the phase~normal! self-
similarity will be seen in the two soliton interaction dis
cussed in the next section.

IV. INTERACTION OF TWO SOLITONS

Propagation of a two-soliton pattern at moderatez, 1
!z!D21, is discussed in this section. As was shown in S
III, dynamics of a single pulse within the range of sca
bounded from above by the degradation scaleD21 is trivial:
y andb do not evolve, while the change of the soliton am
plitude h is O(zD), i.e., negligible. The major observatio
following from our analysis here is that the intersoliton sep
ration y22y1 coupled to the phase velocitiesb1,2 of the two
solitons, gets a nontrivial dynamics at scales much sho
than the single soliton degradation scaleD21. We show that
the intersoliton interaction mediated by disorder is essen
at shorter scales. The soliton parametersb1,2 are O(Ccon

2 ),
while Ccon itself is O(j). Therefore, we divide our analysi
into the following sub-steps. First, the radiationCcon will be
related toj in the linear approximation. Second,b1,2, and
theny1,2, will be presented as a second order form inCcon.
Finally, we calculate statistics of the forces acting on
solitons and, therefore, explain soliton jitter.

A. Radiation generated by two solitons

We consider theN52 case of the general settin
~2.3!,~2.14! when the solitons are well separated, that isy
5y22y1@1 (y2.y1 is assumed!. At z!D21 one can sub-
stituteh15h251, and the localized part ofC ~2.14! is re-
duced to

Csol5
eia11 iz1 ib1(t2y1)

cosh~ t2y1!
1

eia21 iz1 ib2(t2y2)

cosh~ t2y2!
. ~4.1!

The delocalized partCcon of the complete solution~2.3! of
Eq. ~2.1! is built according to the general scheme outlined
Sec. II.

As in Eq.~2.6!, one introduces an auxiliary radiation fie
v, v5Cconexp(2ia12iz), accounting for the phase shift o
the soliton, positioned aty1. The fieldv can be written in the
form of the expansion~2.7! over the continuous spectrum
eigenfunctions of an auxiliary perturbation problem. T
auxiliary problem is fixed by the operatorL̂, which is a
two-soliton generalization of the single-soliton opera
~2.9!. With exponential~with respect to the separationy
5y22y1) accuracy, the differential operatorL̂ is L̂5L̂(t
2y1) at t,(y11y2)/2 and L̂5L̂a(t2y2) at t.(y1

1y2)/2. Herea5a22a1 is the phase mismatch,L̂ and L̂a
are defined in Appendix A by Eqs.~A3!,~A13!. We adopt the
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same general notations,wk , w̄k for the continuous spectrum
eigenfunctions ofL̂, i.e., L̂wk5(k211)wk , L̂w̄k52(k2

11)w̄k . The eigenfunctions are fixed by their asympto
behavior at large negativet:

t→2`wk→S k2 i

k1 i D
2

exp~ ikt2 iky1!S 0

1D . ~4.2!

Then, with exponential accuracy,wk5 f k(t2y1) if t,y2 and

wk~ t !5
~k1 i !2

~k2 i !2
exp~ iky1 ia! f a,k~ t2y2!

if t.y1. Herey5y22y1 and the functionsf k , f a,k are de-
fined by the expressions~A6!,~A7!,~A14!. In the transient
region 1!t2y1 , y22t@1, the two asymptotics ofwk ,
presented above, coincide. One should also addw̄k5ŝ1wk*
to the set of eigenfunctions to make it complete. The
thogonality properties ofwk , w̄k are identical to the ones
given by Eqs.~A11!.

The linear equation forv follows from direct expansion of
the basic equation~2.1!,

]zS v

v* D 2 i L̂S v

v* D 1 . . . 5gj, ~4.3!

g5 i F 2

cosh3~ t2y1!
2

1

cosh~ t2y1!G S 1

21D
1 i F 2

cosh3~ t2y2!
2

1

cosh~ t2y2!G S eia

2e2 iaD . ~4.4!

Here ellipses stand for terms corresponding to the locali
modes, andL̂ was already introduced above. Substituting t
decomposition~2.7! into Eq. ~4.3! and expanding its right-
hand side over the eigen-functions of the operatorL̂, one
gets

]zak2 i ~k211!ak5Bkj, ~4.5!

Bk5bkF11
~k2 i !2

~k1 i !2
e2 iky2 iaG , ~4.6!

wherebk are defined by Eq.~2.13!. @In the derivation we did
not account for az dependence ofwk , since]zwk5O(j).]
The solution of Eq.~4.5! is

ak~z!5E
0

z

dz8j~z8!exp@ i ~k211!~z2z8!#Bk , ~4.7!

analogously to Eq.~3.4!.
In the linear approximation overj, the soliton’s param-

eters can be examined in the framework of the same E
~4.3!,~4.4!. The resulting equations for the soliton paramet
are

]za1,252j, ]zb1,250, ]zy1,252b1,2, ~4.8!
5-10
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similarly to Eq. ~3.2!. Note, that according to Eqs.~4.8!,
]z(a22a1)50, i.e., the phase mismatcha5a22a1 is in-
dependent ofz.

B. Evolution of soliton parameters

As follows from Eqs.~4.8!, the soliton parametersy1,2
andb1,2 do not get anyz dependence in the first order inv.
One expects that in the second order, theb equations acquire
some nonzero contribution, so that]zb1,2;uvu2. Then, ac-
cording to they equations@the last ones in Eq.~4.8!# fluc-
tuations of the separationy5y22y1 are estimated byz2uvu2,
and can be significant in the interesting range of scalez
!D21. The estimations also show that higher orderO(v3)
corrections to the equations forb1,2 are not essential. Furthe
it is easy to check that the equations forb1,2 contain phases
a1,2 only in the combination,a5a22a1. According to the
first equation in Eq.~4.8!, a does not evolve in the first orde
in j, while second order correction to the equation fora is
inessential in the range ofz, z!1/D. To conclude, the only
thing left to be studied is the second order inv contributions
to the equations forb1,2.

To find the contribution, one expands the basic equa
~2.1! up to the second order inv,

]zS C

C* D 5 . . . 1 i j] t
2S Ccon

2Ccon* D
12i S 2uCconu2 Ccon

2

2~Ccon* !2 22uCconu2
D S Csol

Csol* D ,

~4.9!

where ellipses stand for the first-order terms. Extract
terms, proportional to]zb1 , ]zy1 from the left-hand side of
Eq. ~4.9! and making the respective projections one arrive

]zb15F~z!5Fvv~z!1Fjv~z!1Fja~z!, ~4.10!

Fvv5E dx
tanhx

cosh2x
@4uvu21v21~v* !2#, ~4.11!

Fjv5j ReE dx
tanhx

coshx
]x

2v, ~4.12!

Fja52]za1 ReE dx
tanhx

coshx
v, ~4.13!

]zy152b11P1 , ~4.14!

P15 i E dxx

cosh2x
@v22~v* !2#, ~4.15!

where x5t2y1. For completeness, we calculated t
second-order term in the equation fory1, which in Eq.~4.14!
is added to the first-order one. Expressions for the sol
positioned att5y2, can be obtained in a similar way. Usin
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a mechanical analogy, one can callb momentum of the soli-
ton. ThenF is the force acting on the soliton, andP1 is an
additional impulse.

One is interested describing fluctuations~statistics! of y1
as a function ofz, assuming that the intersoliton separati
y5y22y1 is much larger than unity, but much less thanz.
Integrating Eqs.~4.10!,~4.14!, we obtain

dy15E
0

z

dz8~2b11P1!, b15E
0

z

dz8F~z2!. ~4.16!

According to the central limit theorem@23# at largez, b1,2,
and y1,2, as z integrals of random functions, are Gaussi
random processes. This Gaussianity allows us to estim
fluctuations of various quantities~about respective averag
values! for particular realization of the disorder:udy1u fluc-
tuates about ^(dy1)2&1/2 with the same amplitude
^(dy1)2&1/2.

The main contribution tody1 is related to the forceF. As
it is shown in Appendix B, the average value ofF is negli-
gible @more accurately it is exponentially small iny,
;exp(2y) and vanishes algebraically withz→`]. This fact
~lack of a ;D contribution into the average value of th
forceF) is a consequence of the reflectionless feature of
soliton radiation. Thus, fluctuations ofb1 are controlled by
the pair correlation function ofF ~calculated in detail in
Appendix B!. The main contribution to the correlation func
tion is

^F~z!F~z8!&5D2Gd~z2z8!, ~4.17!

whereG is given by the integral~B27!, G'0.14. One there-
fore obtains from Eqs.~4.16!,~4.17!

^b1
2~z!&5D2Gz, ^~dy1!2&5

4

3
GD2z3. ~4.18!

One concludes, that the typical shift of the soliton positi
~counted from its initial value atz50) is estimated asdy1
;Dz3/2. The soliton leaves its slot~in the soliton pattern!,
i.e., dy becomesO(1), at z;D22/3. SinceD!1, this hap-
pens well before the soliton amplitude acquires any sign
cant reduction, therefore justifying our approximation.

Note that the average of the impulse 2*dzF1P1 is equal
to 2D/3 ~see Appendix B!. This implies a systematic drif
2Dz/3 in y1. This drift is negligible in comparison with the
fluctuating part ofy1 , dy1;Dz3/2, at z@1.

It is also of interest to examine the relative motion of t
solitons. One finds that the cross correlation term of
forces is dependent on the solitons phase mismatcha. It
results in the following expression for the fluctuations of t
relative positiony5y22y1 ~see Appendix B for details o
the derivation!:

^~dy!2&5
8@11cos~2a!#

3
D2Gz3. ~4.19!

Substituting the approximate value ofG found in Appendix
A, G'0.14, one arrives at Eq.~1.2!. Equation~4.19! shows
5-11
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that fluctuations of the intersoliton separation are sensitiv
the phase mismatch~e.g., the fluctuations are strongly su
pressed ata5p/2).

V. MULTISOLITON CASE

Let us discuss the effect of soliton interaction in a mu
soliton pattern. The reflectionless feature of the radiat
guarantees lack of radiation screening. In other words,
solitons positioned on distances&z from a given soliton are
affected by the radiation shed by the soliton. Therefore,
radiationv in a vicinity of a soliton is determined by a su
perposition of single-soliton radiative contributions, whi
differ only by shifted phases from the two-soliton case. Ea
of the contributions is weakly dependent on the intersoli
separation, provided the separation between the soliton
less thanz ~then the analysis, similar to one explained
Appendix B, is applicable!. To conclude, the force acting o
a single soliton should grow with the number of solitonsN
affecting the given soliton through emitted radiation.

To obtain quantitative conclusions, one has to extend
analysis of Appendix B to the multisoliton case. Avera
force, applied to a soliton, vanishes.@This is valid at largez
and if the exponential, iny, corrections,;exp(2y), are not
taken into account.# Fluctuations ofyi ,b i are Gaussian agai
~due to the central limit theorem!. One finds that the pai
correlation function of the force acting on a soliton~and also
the pair correlation function of the given soliton positio
shift! is }N. Notice also, that as in the two-soliton cas
forces acting on the solitons, and, consequently, their mu
shifts, are sensitive to the relative phases of all theN soli-
tons. However, unlike in the two-soliton case, it is impo
sible simply adjusting phases to suppress fluctuations o
the intersoliton separations.

One concludes that in the multisoliton case Eqs.~4.18! for
the velocity and the soliton position get an extra factorN on
their right hand sides. If the information rate in a fiber
fixed, N grows linearly with z, i.e., dy is estimated by
;AmDz2, wherem is the number of solitons per unit lengt
of the fiber.

VI. PERIODICALLY PINNED NOISE

A new method of periodical ‘‘pinning’’ of disorder wa
suggested recently@16,17#. This method comes in two modi
fications of ‘‘distributed’’ and ‘‘point’’ pinning. ‘‘Distributed
pinning’’ applies to new fiber lines~not yet installed in the
ground!. The method requires controlling the integral disp
sion ~its fluctuating part! of a fiber piece prior to its connec
tion to the line. A profile of the integral of the fluctuating pa
of the dispersion coefficient should be found, first, and th
the suggestion is to cut this fiber at a zero point for
fluctuating part of the integral dispersion~closest to the end
of the fiber piece!. The other type of pinning, ‘‘point’’ pin-
ning, was suggested for implementation in already insta
fiber optics lines. At the points of access to the fiber opt
line ~at amplifier stations, placed periodically, or quasipe
odically along the fiber! it is suggested to measure the int
gral of the fluctuating part of dispersion, and then to co
03661
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pensate it to zero by inserting a small peace of a fiber wit
very well controlled integral dispersion. If the pinning p
riod, l is short~i.e., if it is the shortest scale in the proble
l !1), the coarse-grained dynamics ofC at the larger scales
z@1 is described by Eq.~2.1! with the noise termj replaced
by j̃ described by

^j̃~z1!j̃~z2!&52
Dl 2

12
d9~z12z2!. ~6.1!

( j̃ actually corresponds to the ‘‘distributed pinning’’ cas
while in the case of the ‘‘point pinning’’ the replaceme
should bej→2j̃.!

Recalculation of all the major results of the paper for t
pinned noise~6.1! is straightforward. First of all, one gets

]zh5
Dl 2

96 E0

z

dz8h4~z8!

3U E dq
~q/h1 i !2~q21h2!

cosh@pq/~2h!#
eiqt1 iq2(z2z8)U2

~6.2!

instead of Eq.~3.18!. Calculating the integrals overk andq
in Eq. ~3.18! and integrating the resulting equation one a
rives at

h5S 11
210Dl 2z

315 D 21/8

. ~6.3!

This expression, contrasted against Eq.~6.1!, shows an es-
sential suppression in the soliton decay law at largez, z
@1/D. At moderatez, z!1/D, Eq.~6.1! and Eq.~6.3! show
the same~linear with z) law of the soliton amplitude decay
so that the difference is only in the decay rate. One fin
however, that at this smallz the major effect of pinning is in
the soliton jitter due to intersoliton interaction. We deriv
that the pinned case version of Eq.~4.17! is

^F~z!F~z8!&5D2G̃d9~z2z8!, ~6.4!

whereG̃ is defined by the right-hand side of Eq.~B26! with
an additional factor (11k2)2(11q2)2 introduced in the in-
tegral, so that the pinned version of Eq.~B27! @with (1
1k2)4 in the integrand replaced by (11k2)8] gives G̃
'21.03. Thus, an analog of Eq.~4.18! becomes

^b1(z)b1(z8)&5D2G̃d(z2z8) and ^(dy1)2&5D2G̃z. This
shows that the jitter of the soliton position is essentially su
pressed if pinning is applied.

VII. DIRECT NUMERICAL SIMULATION

We discuss here direct numerical simulations of the o
and two-soliton patterns. The major numerical problem h
is due to the long haul~largez) nature of the transmission
The radiation moves away from the soliton pattern and ev
tually hits the boundaries of the computational doma
which, in reality, cannot be infinite. Therefore, it is importa
to design a numerical method which allows the radiation
to retract from the boundaries, but instead to evolve like
5-12
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would not feel the artificial boundaries. The problem of n
merically absorbing boundary conditions design is one of
typical computational problems in wave-type equations, a
numerous efforts have been made to overcome these num
cal artifacts@24–27#. A common approach, widely used t
overcome the numerical problem, is to apply an artific
damping at the vicinity of edges to suppress the radiation
the far region. However, during evolution of the soliton, t
transmission and reflection of waves takes place simu
neously. In other words, damping, inevitably creates a pa
site back refraction of waves.

We solve this problem in another way. Namely, we intr
duce boundary conditions that the reflectionless feature
the artificial boundaries is controlled analytically. The on
but crucial, assumptions of the approach is that the inten
of the signal at the boundaries of the computational dom
is low enough, so that one can linearize the basic Eq.~2.1!
there. Let us consider regionsutu@1 where one should ob
serve the radiation going away from the solitons. In this
gion one can use the equation

~ i ]z1] t
2!C50, ~7.1!

which is just the linear Schro¨dinger equation~without poten-
tial!. The radiative boundary conditions, imposed on a so
tion of Eq. ~7.1! at the boundaries of the computational d
main t56T can be written as

2 i ] tC~z,T!5Ai ]zC~z,T!,

2 i ] tC~z,2T!52Ai ]zC~z,2T!, ~7.2!

whereAi ]z is a nonlocal~integral! operator

Ai ]zC[A i

pE
z dz1

Az2z1

]zC~z1!.

~The conditionT@1 should also be satisfied.! Notice, that a
similar scheme for the transient linear Schro¨dinger equation
with a potential bounded in a finite domain was suggeste
Ref. @27#. Furthermore, for the one-dimensional NLSE, t
transparent boundary conditions have been discussed an
troduced in several articles from various application fie
~see Ref.@28,29#!.

Implementing this transparent boundary condition with
symplectic scheme for NLSE, we examined, first, degra
tion of single soliton, and then, interaction of two solito
caused by fluctuations of the dispersion coefficients. We
a standard random number generator to produce a Gau
zero-mean random process correlated atzvar with amplitude
dvar. Choosing smallzvar (zvar is 0.05 in our numerical ex-
periments! we guarantee that the numerical random proc
approximates the zero meand-correlated uniform noise forj
described bŷ j(z1)j(z2)&5Dd(z12z2), with D5dvar

2 zvar.
The results of this numerical simulation are shown in
figures.

Figure 1 shows dependence of the soliton amplitude oz,
with the strength of disorderD equal to 0.0225. (D is chosen
to be a small number to allow a quantitative comparison w
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the asymptotic theory, valid atD!1.! Solid and dashed
curves represent theory, resulted in Eq.~1.1!, and numerics
for a representative realization of the disorder respectiv
Good quantitative agreement between the theory and num
ics is reported over an extremely long range ofz.

We also perform a numerical study of two-soliton inte
action. Notice that the two-soliton case requires an accu
numerical definition of the soliton position at any givenz.
Since the soliton amplitude only weakly deviates from uni
the position of a soliton was found by minimizin
( i@ uC(t i ,z)u21/cosh(ti2y)#2, wherei numbers the tempora
grid points in a vicinity of a special point, whereuC(t i ,z)u
reaches its maximum. Figure 2 shows dependence of
dispersion in the intersoliton separation fluctuations^(dy)2&
on z at the phase mismatchesa50,p/4,p/2. Our averaging
is done over 15 realizations~for eacha). Numerical curves
are solid, dashed curves correspond to theoretical predict
of Eq. ~1.2!. The strength of the disorder is chosen to
much smaller here than in the single soliton numericsD
50.01252 on purpose. We aimed to separater degr51/D and
the interaction scaler int;D22/3, as much as we can to b
able to study the intersoliton dynamics of the solitons w
bare ~nonperturbed! shape (h51) at z;zint . The initial
separationy(0) was chosen to be large enough@y(0)520
for the data shown in Fig. 2# to avoid interference of the
effects driven by disorder in the dispersion coefficient w
the direct interaction of solitons.~The direct effect gives a
subleading, exponentially small iny, correction@30,31#.! The
figure shows good agreement between our theory and
numerics. To illustrate thedy statistics we show 15 (a50)
realizations ofdy in Fig. 3. For comparison, the root-mean
square displacement is also shown in the figure.

VIII. CONCLUSION AND DISCUSSION

Let us recall the different stages and scales characteri
evolution of soliton patterns in the weak disorder regimeD

FIG. 1. Dependence of the soliton amplitude, measured in u
of its initial value, on the dimensionless coordinate along the fibez,
is shown for disorder strengthD50.0225. Solid and dashed curve
represent theory, resulted in Eq.~1.1!, and numerics for a represen
tative realization of the disorder, respectively.
5-13
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!1. The distance passed by a soliton during one full turno
of its phase is unity in our notations. Soliton starts to d
grade, i.e., its amplitude change becomes of the order o
initial value, atzdegr51/D. An important observation of this
paper is that an interesting physics is also taking place
much shorterz when the intersoliton interaction caused
radiation leads to an essential shift of the solitons az
;zint , zint5N21/3D22/3, whereN is the number of solitons
in the channel.

The major effect reported in the paper is the emergenc
the separation independent, fluctuating inz interaction be-

FIG. 2. Dependence of the mean square value of the interso
separation̂ (dy)2& measured in units of the soliton width square,
the dimensionless position along the fiberz is shown. The disorder
strength isD50.01252. Three different sets of curves for the thre
different values of the intersoliton phase mismatcha50,p/4,p/2
are presented. Dashed curves represent the analytical result
by Eq.~1.2!. Solid curves represent results of numerics.~Each curve
is the result of averaging over 15 different realizations of disord!

FIG. 3. Dependence ofdy ~measured in the units of puls
width! on the dimensionless separationz is shown for 15 different
realizations of disorder, all fora50. The bold curves correspond t
the root-mean-square expectation6A^(dy)2&.
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tween solitons, mediated by their mutual radiation. A froz
(t-independent!, disorder ~which produces a multiplicative
noise in the NLSE! stimulates the shedding of radiation b
solitons, which, in turn, mediates the intersoliton interactio
The interaction causes the soliton to jitter randomly. T
soliton displacementdy is a zero mean Gaussian rando
variable, with the typical value estimated bydy
;Dz3/2N1/2. If N does not grow withz ~e.g., there are only
finite number of solitons propagating in the channel! the z
dependence of the jitter is the same as the one given by
Elgin-Gordon-Haus jitter@32–35# developed under the ac
tion of random additive noise~short-correlated both int and
z noise of amplifiers in the fiber system!. However, if the
flow of information is continuous, i.e., if the front of radia
tion shed by the given soliton sweeps more and more s
tons with increasingz, N}z, the efficiency of the interac-
tion grows with z in a faster, dy}z2, pace, thus
overwhelming the Elgin-Gordon-Haus jitter in long-ha
transmission. Notice, however, that as was shown abov
Sec. V, the destructive effect of the disorder term in the d
persion coefficient can be essentially suppressed by pin
@16,17#, so that the radiation mediated jitter estimated
dy;ANz, becomes less important asymptotically than t
Elgin-Gordon-Hauss jitter.

The intersoliton interaction discussed in this manuscrip
zero on average. This cancellation~in the mean value of the
force! is due to reflectionless feature of radiation scatter
on solitons. However, the scattering becomes reflective
some cases, described by nonintegrable generalization
the NLS equation that are of physical importance, e.g., p
tern dynamics in some fibers with essential birefringen
@36# can be of this kind. The reflectivity leads to essent
changes in the properties of the radiation and the intersol
interaction, e.g., the force exerted on a soliton acquire
nonzero mean.
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APPENDIX A: KAUP PERTURBATION TECHNIQUE

Recall some properties of the perturbations near an id
soliton described by the nonlinear Schro¨dinger equation
@11,12#

2 i ]zC5] t
2C12uCu2C. ~A1!

n

ven

.
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Substituting the expression

C5@cosh21~ t !1v #exp~ iz1 ia!

into Eq. ~A1! and expanding the result overv one finds

i ]zS v

v* D 1L̂S v

v* D 50, ~A2!

where the operatorL̂ is

L̂5~] t
221!ŝ31

2

cosh2@ t#
~2ŝ31 i ŝ2!, ~A3!

and the standard notations for the Pauli matrixesŝ1,2,3 are
used.L̂ satisfies the following set of relations:

ŝ1L̂ŝ152L̂* , L̂15ŝ3L̂ŝ3 . ~A4!

The eigenset of the operatorL̂ is defined by

L̂ f 5l f , ~A5!

wheref is the eigenfunction correspondent to the eigenva
l. The general solution of Eq.~A5! is

f k5exp@ ikt#H 12
2ik exp~2t !

~k1 i !2 cosh~ t !
J S 0

1D
1

exp~ ikt !

~k1 i !2 cosh2~ t !
S 1

1D , lk5k211, ~A6!

wherek runs from2` to 1`. According to Eq.~A4!, f̄ k

[ŝ1f k* are the other eigenfunctions ofL̂,

f̄ k5exp~2 ikt !H 11
2ik exp~2t !

~k2 i !2 cosh@ t#
J S 1

0D
1

exp~2 ikt !

~k2 i !2 cosh2~ t !
S 1

1D , lk52~k211!. ~A7!

The eigenset ofL̂ also contains the following marginall
stable modes:

f 05
1

cosh~ t ! S 1

21D , f 15S 1

1D tanh~ t !

cosh~ t !
, ~A8!

wherel05l150. The existence of double poles atk56 i
means that two more functions must be added to the eige
for completeness

f 25
t

cosh~ t ! S 1

21D , L̂ f 2522 f 1 , ~A9!

f 35
t tanh~ t !21

cosh~ t ! S 1

1D , L̂ f 3522 f 0 . ~A10!
03661
e

set

Next, f k
1ŝ3 and f̄ k

1ŝ3 ~where the upper index1 stands for
transposition and complex conjugation! are the left eigen-
functions ofL̂, which satisfy

E
2`

1`

dt f̄k
1ŝ3 f̄ q52E

2`

1`

dt fk
1ŝ3f q52pd~k2q!,

~A11!

E
2`

1`

dt f2
1ŝ3f 152, E

2`

1`

dt f0
1ŝ3f 3522. ~A12!

Let us now modify the definition ofv:

C5@eia cosh21~ t !1v#exp~ iz!.

Then, the operator describing the linearized dynamics ofv is

L̂a5~] t
221!ŝ31

2

cosh2t
F2ŝ31S 0 e2ia

2e22ia 0 D G .
~A13!

The operatorL̂a satisfies the same identities~A4! asL̂ does.
The eigenfunctions of the operator~A13! can be obtained
from Eqs.~A6!,~A7! by an obvious phase shift. One gets

f a,k~ t !5exp~ ikt !H 12
2ik exp~2t !

~k1 i !2 cosh~ t !
J S 0

e2 iaD
1

exp~ ikt !

~k1 i !2 cosh2~ t !
S eia

e2 iaD ,

f̄ a,k~ t !5exp~2 ikt !H 11
2ikexp~2t !

~k2 i !2 cosh~ t !
J S eia

0 D
1

exp~2 ikt !

~k2 i !2 cosh2~ t !
S eia

e2 iaD . ~A14!

The eigenfunctions~A14! possess the same orthogonal
properties~A11! as f k , f̄ k do.

APPENDIX B: INTERACTION OF TWO SOLITONS

Here we examine statistics of the force from the rig
hand side of Eq.~4.10!. One starts analyzingFvv given by
Eq. ~4.11!. Substitutingwk andw̄k into Eqs.~2.7! one derives
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v21~v* !214uvu25E dqdk

~2p!2

eikx2 iqxakaq*

~k1 i !2~q2 i !2 H 2

cosh2x
@~q2 i tanhx!21~k1 i tanhx!2#14 cosh24x14~q2 i tanhx!2

3~k1 i tanhx!2J 1E dqdk

~2p!2

eikx1 iqxakaq

~k1 i !2~q1 i !2 H 1

cosh4x
1F ~k1 i !222ik

e2x

coshx
1

1

cosh2x
G

3F ~q1 i !222iq
e2x

coshx
1

1

cosh2x
G1

4

cosh2x
F ~q1 i !222iq

e2x

coshx
1

1

cosh2x
G J

1E dqdk

~2p!2

e2 ikx2 iqxak* aq*

~k2 i !2~q2 i !2 H 1

cosh4x
1F ~k2 i !212ik

e2x

coshx
1

1

cosh2x
G

3F ~q2 i !212iq
e2x

coshx
1

1

cosh2x
G1

4

cosh2x
F ~q2 i !212iq

e2x

coshx
1

1

cosh2x
G J . ~B1!

Substituting Eq.~B1! into Eq. ~4.11! and taking integrals overx one finds

Fvv5E dkdq

24p

iakaq* ~k22q2!2~11k21kq1q2!

~k1 i !2~q2 i !2 sinh@p~k2q!/2#
1E dkdq

2p

iakaq~k1q!2~11k21q22kq!~21k21q2!

24~k1 i !2~q1 i !2 sinh@p~k1q!/2#

2E dkdq

2p

iak* aq* ~k1q!2~11k21q22kq!~21k21q2!

24~k2 i !2~q2 i !2 sinh@p~k1q!/2#
. ~B2!
-

From Eq. ~2.13!,~4.6!,~4.7! and Eq. ~B2! one derivesFvv
5F1F1F* where the new quantitiesF andF are defined
as

F5
p i

3•25E dkdq~k22q2!2~11k21q21kq!

cosh@pk/2#cosh@pq/2#sinh@p~k2q!/2#

3E
0

z

dz1dz2j~z1!j~z2!ei (k211)(z2z1)2 i (q211)(z2z2)

3F S k2 i

k1 i D
2S q1 i

q2 i D
2

ei (q2k)y1S k2 i

k1 i D
2

e2 iky2 ia

1S q1 i

q2 i D
2

eiqy1 iaG , ~B3!

F52
p i

3•26E dkdq~k1q!2~11k21q22kq!~21k21q2!

cosh~pk/2!cosh~pq/2!sinh@p~k1q!/2#

3E
0

z

dz1dz2j~z1!j~z2!ei (k211)(z2z1)1 i (q211)(z2z2)

3F S k2 i

k1 i D
2S q2 i

q1 i D
2

e2 i (q1k)y22ia1S k2 i

k1 i D
2

e2 iky2 ia

1S q2 i

q1 i D
2

e2 iqy2 iaG . ~B4!

The second term in the force~4.12! can be analogously pre
sented as
03661
Fjv5
p

60
j~z!E

0

z

dz8j~z8!E dkk~k211!~1619k2!

cosh2~pk/2!

3ReFei (k211)(z2z8)S k2 i

k1 i D
2

e2 ia2 ikyG . ~B5!

The third term, originating from the phasea1 dependence on
z @in the leading first order overj, see Eq.~4.8!# in the force
~4.13! is given by

Fja5
j~z!

2p E dk ReF E dx tanhx

coshx
ak~z!~ f k

(1)1 f k
(2)!G

5
j~z!

2p E dk ReFak~z!E dxeikxtanhx

coshx

3S 12
2ike2x

~k1 i !2 coshx
1

2

~k1 i !2 cosh2x
D G

5
j~z!

6 E dkk

cosh~pk/2!
Re

iak~z!~k2 i !

~k1 i !

52
p

12
j~z!E

0

z

dz8j~z8!E dk,k~k211!

cosh2~pk/2!

3ReFei (k211)(z2z8)S k2 i

k1 i D
2

e2 ia2 ikyG . ~B6!

The expressions~B3!,~B4!,~B5!,~B6! will be used below to
examine statistics of the overall forceFvv1Fjv1Fja acting
on the soliton.
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The overall force can also be presented as

Fvv1Fjv1Fja5]z~ P̃1P1P* !1L, ~B7!

P̃5
p

3•25E dkdq~k22q2!~11k21q21kq!

cosh@pk/2#cosh@pq/2#sinh@p~k2q!/2#

3E
0

z

dz1dz2j~z1!j~z2!ei (k211)(z2z1)2 i (q211)(z2z2)

3F S k2 i

k1 i D
2S q1 i

q2 i D
2

ei (q2k)y1S k2 i

k1 i D
2

e2 iky2 ia

1S q1 i

q2 i D
2

eiqy1 iaG , ~B8!

P52
p

3•26E dkdq~k1q!2~11k21q22kq!

cosh~pk/2!cosh~pq/2!sinh@p~k1q!/2#

3E
0

z

dz1dz2j~z1!j~z2!ei (k211)(z2z1)1 i (q211)(z2z2)

3F S k2 i

k1 i D
2S q2 i

q1 i D
2

e2 i (q1k)y22ia1S k2 i

k1 i D
2

e2 iky2 ia

1S q2 i

q1 i D
2

e2 iqy2 iaG , ~B9!

L5
pj~z!

8
ReE dkk~11k2!2

cosh2~pk/2!
E

0

z

dz8j~z8!ei (k211)(z2z8)

3F S k2 i

k1 i D
2

e2 ia2 ikyG , ~B10!

where exponentially small iny terms are omitted.@The terms
are produced by integrals, say, overk, with oscillating,
;exp(2iky) and z-independent integrands. Then, the in
gration contour can be shifted to surround a pole, neares
the real axis, and a residue at the pole gives the main co
bution, exponentially small overy.#

Straightforward calculations show that for the force act
on the second soliton one can, actually, use E
~B3!,~B4!,~B5!,~B6!,~B10! with the expressions under squa
brackets on the right-hand side of each of those formu
replaced by their complex conjugates.

1. Average impulse

Here we calculate the average over statistics ofj of the
overall forceFvv1Fjv given by ~B7!. Notice that the aver-
age ofL, calculated in accordance with Eqs.~2.2!,~B10!, is
exponentially small (;exp@2const•y#, where y5y22y1)
and thus it will be neglected below.

It follows from Eq. ~B8! that
03661
-
to
ri-

s.

s

^P̃&5
p iD

96 E dkdq$12exp@ i ~k22q2!z#%

3
11k21q21kq

cosh~pk/2!cosh~pq/2!sinh@p~k2q!/2#

3F S k2 i

k1 i D
2S q1 i

q2 i D
2

ei (q2k)y1S k2 i

k1 i D
2

e2 iky2 ia

1S q1 i

q2 i D
2

eiqy1 iaG . ~B11!

Let us change the integration variables fromk,q to k65k
6q. The first contribution to the average impulse origina
from the first term inside the brackets in Eq.~B11!

^P̃&15
p iD

192E dk1dk2

sinh~pk2/2!
$12eik1k2z%e2 ik2y

3
11k21q21kq

cosh~pk/2!cosh~pq/2!

~k2 i !2

~k1 i !2

~q1 i !2

~q2 i !2
.

The integral is formed at the smallestk2 . One gets

^P̃&15
pD

48 E0

`

dk1

113k1
2 /4

cosh2~pk1/4!
5

D

6
, ~B12!

where terms exponentially small iny are omitted. The second
contribution to the average impulse coming from the last t
terms inside the square brackets in Eq.~B11! is formed at
small k6 and can be written as

^P̃&25
iD

96E dk2dk1

k2
$12exp@ ik1k2z#%

3@e2 i (k1y/21k2y/21a)1ei (k1y/22k2y/21a)#

5
pD

12y
sin~a1y2/4z!.

One finds that at largey the contribution given by Eq.~B12!
is dominant.

Let us now consider the average

^P&52
p iD

3•26E dkdq~k1q!2~11k21q22kq!

cosh~pk/2!cosh~pq/2!

3
@12ei (k211)z1 i (q211)z#

~21k21q2!sinh@p~k1q!/2#
F S k2 i

k1 i D
2

e2 iky2 ia

1S q2 i

q1 i D
2

e2 iqy2 ia1S k2 i

k1 i D
2S q2 i

q1 i D
2

e2 i (q1k)y22iaG .
The term in the expression which does not contain az de-
pendence produces an exponentially subleading iny contri-
bution to ^P&. The z-dependent contribution is formed a
q,k;1/Az, and it is, therefore,;y/z2. ~Notice also, that the
term rapidly oscillates withz.! Therefore, the averages^P&
and ^P* & are negligible at largez in comparison with the
5-17
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contribution given by Eq.~B12!. To conclude, at largez the
average force is zero and the main contribution to the
pulse of the forceF is D/6.

2. Fluctuations of the force

One considers here the irreducible part of the pair co
lation of Fvv , which can be written as
r

at

03661
-

-

^^Fvv~z1!Fvv~z2!&&5^F1F2&2^F1&^F2&5^^F1F2&&

1^^F1F2* &&1^^F1* F2&&, ~B13!

where^Fvv& is neglected and only nonoscillating terms a
kept. The first contribution to Eq.~B13! is
to

n
o

e

^F1F2&2^F1&^F2&5
p2D2

93210E dk1dk2dq1dq2~k1
22q1

2!2~k2
22q2

2!2

cosh@pk1/2#cosh@pq1/2#cosh@pk2/2#cosh@pq2/2#

3
~11k1

21q1
21k1q1!~11k2

21q2
21k2q2!

sinh@p~k12q1!/2#sinh@p~k22q2!/2#
ei (k1

2
2q1

2)zF S k12 i

k11 i D
2

e2 iq1y2 ia

1S q11 i

q12 i D
2

eik1y1 ia1S k12 i

k11 i D
2S q11 i

q12 i D
2GF S k22 i

k21 i D
2S q21 i

q22 i D
2

1S k22 i

k21 i D
2

e2 iq2y2 ia

1S q21 i

q22 i D
2

eik2y1 iaG 1

k1k2q1q2
@eik1k2z21#@eiq1q2z21#e2 ik2y2 iq2y, ~B14!

wherek65k16q2 , q65k26q1, andz5min$z1 ,z2%, z5uz12z2u. The simultaneous correlation function, corresponding
z50, is the first object to study here. One finds that the dominant contribution, proportional to the logarithms ofy and z,
originates from thea-independent terms in the integrand of~B14!. ~Thea-dependent contribution is;1/y.! There are actually
two kinds of such contributions. The first one comes from the product of two differenta-independent terms, each from a
expression bounded by the square brackets in the integrand of Eq.~B14!. Terms of the second kind come from products of tw
terms cancelling theira dependence in the result. In the contribution of the first kind, the integrals overk2 andq2 are formed
at bothk2 ,q2;1/y. Thus, replacingk2 ,q2 in all nonoscillatory terms by zero, one derives

^^F2&&15
p4D2

93218Ey/z

` dk1dq1~k1
2 2q1

2 !4

cosh2@pk1/4#cosh2@pq1/4#

~11k1
2 /41q1

2 /41k1q1/4!2

k1q1sinh2@p~k12q1!/4#
. ~B15!

In the remaining two~identical! contributions of the second type, thek2 andq2 integration are not equivalent. One of th
wave vectors, sayk2 is still O(1/y). Integrating overk2 one gets

^^F2&&25
p4D2

93221Ey/z

` dq1

q1cosh2~pq1/4!
E dk1dk2

2p ik1k2
@exp~ ik1k2z!21#

@~k11k2!22q1
2 #2@~k12k2!22q1

2 #2

cosh@p~k11k2!/4#cosh@p~k12k2!/4#

3
@41~k11k2!21q1

2 1q1~k11k2!#@k2→2k2#

sinh@p~k11k22q1!/4#sinh@p~k12k22q1!/4#
. ~B16!
us

-
a-
The major contribution in the integral originates fromq1

;1@k6 . Replacing the integrand in Eq.~B16! by its
asymptotic value atk6→0, one finds that integration ove
k6 is ; ln@z#. Finally, collecting the two major contribution
into the simultaneous correlation function one finds

^^F2&&5
p4D2

9•215
@ ln~z/y!1 ln z#E

0

` dqq7~11q2/4!2

sinh2~pq/2!

50.0068D2 ln@z2/y#. ~B17!

The result~B17! is asymptotic in the sense that it is valid
z@y only. Let us now account forz5” 0 in Eq.~B14!, i.e., for
z15” z2. It is obvious from the analysis of the simultaneo
correlation function that Eq.~B17! is formed at values of the
four wave vectorsk6 , q6 , that only one of the wave vec
tors isO(1), while the other three are much smaller. Equ
tion ~B17! takes the following form:

^^F~z1!F~z2!&&5
p4D2

93215
ln~z2/y!

3E
0

` dqq7~11q2/4!2

sinh2~pq/2!
cos@q2z#,

~B18!
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i.e., atz@1, the correlations decay algebraically inz, ^^F(z1)F(z2)&&;D2 ln@z2/y#/z3. It also follows from Eq.~B18! that
*dz^^F(z1z)F(z)&&50.

Let us calculate theF andF* in Eq. ~B13!. One finds

^F~z1z/2!F* ~z2z/2!&52
p2D2

93211E dk1dq1~k11q1!2~11k1
21q1

22k1q1!~21k1
21q1

2!

cosh~pk1/2!cosh~pq1/2!sinh@p~k11q1!/2#

3E dk2dq2~k21q2!2~11k2
21q2

22k2q2!~21k2
21q2

2!

cosh~pk2/2!cosh~pq2/2!sinh@p~k21q2!/2#

ei (k1
2/21k2

2/211)z

k1
22k2

2 @ei (k1
2
2k2

2)uzu/2

2ei (k1
2
2k2

2)z#
ei (q1

2/21q2
2/211)z

q1
22q2

2 @ei (q1
2
2q2

2)uzu/22ei (q1
2
2q2

2)z#F S k12 i

k11 i D
2S q12 i

q11 i D
2

e2 i (q11k1)y22ia

1S k12 i

k11 i D
2

e2 ik1y2 ia1S q12 i

q11 i D
2

e2 iq1y2 iaGF S k21 i

k22 i D
2S q21 i

q22 i D
2

ei (q21k2)y12ia

1S k21 i

k22 i D
2

eik2y1 ia1S q21 i

q22 i D
2

eiq2y1 iaG . ~B19!

The first logarithmic contribution to the average~B19! originates from terms, containing 2a. The integrals are formed at sma
values ofk12k2 andq12q2. The result of integration is

^F~z1z/2!F* ~z2z/2!&15
p4D2

93215Ey/z

` dk1dq1

k1q1

~11k1
2 /41q1

2 /42k1q1/4!2~21k1
2 /41q1

2 /4!2

cosh2~pk1/4!cosh2~pq1/4!sinh2@p~k11q1!/4#

3~k11q1!4 exp@ i ~k1
2 /41q1

2 /412!z#, ~B20!
r

.

-

in

rst
whereq15q11q2 and k15k11k2. If z50 then the inte-
gral ~B20! is reduced to

^F~z!F* ~z!&1

5
p4D2

9•212
ln~z/y!E

0

`

dk1

k1
3 ~11k1

2 /4!2~21k1
2 /4!2

sinh2@pk1/2#

'0.017D2 ln~z/y!. ~B21!

The integral of the expression~B20! over z is clearly zero.
We now turn to calculation of the second logarithmic co

rection originating from the terms which containa. The con-
tribution is

^F~z1z/2!F* ~z2z/2!&2

5
p4D2

93212E dq1q1
3 ~11q1/4!2~21q1

2 /4!2

sinh2@pq1/2#

3ei (q1
2 /412)zE dk1dk2

2p ik1k2
@eik1k2z21#,

~B22!

wherek6!q1 , as in Eq.~B16!. The integral overk1 and
k2 in Eq. ~B22! produces lnz. Therefore, the term
^F(z)F* (z)&2 is given by an expression similar to Eq
~B21!, with the replacement of ln(z/y) by lnz. Finally,
03661
-

^F~z!F* ~z!&'0.017D2 ln~z2/y!, ~B23!

E dẑ F~z1z/2!F* ~z2z/2!&50. ~B24!

The pair correlation function corresponding to theL con-
tribution ~B10! is

^L~z!L~z8!&5D2Gd~z2z8!, ~B25!

G5
p2

27E dkdq
ei (k22q2)z21

i ~k22q2!

kq~11k2!2~11q2!2

cosh2~pk/2!cosh2~pq/2!

3S k2 i

k1 i D
2S q1 i

q2 i D
2

ei (q2k)y. ~B26!

The majory- andz-independent contribution inG is coming
from small values ofk2q. Taking the integral over this vari
able, one derives

G5
p3

27E0

` dkk~11k2!4

cosh4~pk/2!
'0.14. ~B27!

The correlation function correspondent to the change
the relative position of the two solitons is defined byL̃
5L12L2, where the indexes (1) and (2) stand for the fi
and second solitons, i.e.,L1 is given by Eq.~B10!, while L2
5-19
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is given by Eq.~B10! with the expression on the right-han
side of it replaced by its complex conjugate. One gets

^L̃~z!L̃~z8!&52@11cos~2a!#D2Gd~z2z8!. ~B28!

3. Fluctuations of the impulse

As in the calculations of the previous subsection one
analyze fluctuations of the impulseP5 P̃1P1P* . We ob-
tain instead of Eq.~B17!

^^P̃2&&5
p4D2

93211
@ ln~z/y!1 ln z#E

0

` dqq3~11q2/4!2

sinh2~pq/2!

'0.0036D2 ln~z2/y!. ~B29!

An analog of Eq.~B21! is

^P~z!P* ~z!&5
p4D2

93212
@ ln~z/y!

1 ln z#E
0

`

dk1

k1
3 ~11k1

2 /4!2

sinh2@pk1/2#

'0.0018D2 ln~z2/y!. ~B30!

Finally, one gets the following answer for the pair simult
neous correlation function of the impulse:

^P 2~z!&'0.0073D2 ln~z2/y!. ~B31!

The major contribution to the overall impulse of the force
coming from theL term

K F E
0

z

dz8L~z8!G2L '0.265D2z. ~B32!

The cross correlations are given by
03661
n

-

^P~z1z!L~z!&

5
p2D2

9327ReE dkdqdpei (k
22q2)z

3
k~k2q!~11k21q21kq!

cosh@pk/2#cosh@pq/2#sinh@p~k2q!/2#

3S q1 i

q2 i D
2p~11p2!~513p2!

cosh2~pp/2!
S p2 i

p1 i D
2

3
ei (p22q2)z21

i ~p22q2!
ei (q2p)y, ~B33!

which is nonzero atz.0 only. The integral~B33! is formed
at small values ofp2q, thus one finds

^P~z1z!L~z!&

52
p3D2

9327
ReE dkE

0

`

dqei (k22q2)z

3
k~k2q!~11k21q21kq!~11q2!~513q2!

cosh@pk/2#cosh3@pq/2#sinh@p~k2q!/2#
,

~B34!

which becomes the following expression atz→0:

^P~z10!L~z!&

52
p3D2

935327E0

`

dq
q~11q2!2~513q2!~713q2!

cosh4@pq/2#

'20.068D2. ~B35!

We also find from Eq.~B34!
KP~z!E
0

z

dz8L~z8!L 52
p3D2

9327
ReE dkkE

0

`

dq
ei (k22q2)z21

i ~k22q2!

~k2q!~11k21q21kq!~11q2!~513q2!

cosh@pk/2#cosh3@pq/2#sinh@p~k2q!/2#

52
p3D2

9327 H E0

`

dq
~113q2!~11q2!~513q2!

cosh4~pq/2!
2pE

0

`

dq
q~11q2!2~513q2!

cosh4~pq/2!sinh~pq!
J

'20.053D2. ~B36!

Therefore, this cross correlation is negligible.
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4. Additional impulse

An additional impulseP1, the last one left to be calcu
lated, is due to the direct noise contributionP1 in Eq. ~4.14!.
Expressingv, v* in Eq. ~4.15! via j and performing aver-
aging over the statistics ofj in accordance with Eq.~2.2! one
finds

^P1~z!&52
D

4
ImE dxx

cosh4x

dkdqeikx2 iqx

cosh~pk/2!cosh~pq/2!

3
exp@ i ~k22q2!z#21

i ~k22q2!
H ~q2 i !21

2iqe2x

coshx

1
1

cosh2x
J F11S k2 i

k1 i D
2

e2 iky2 iaG
3F11S q1 i

q2 i D
2

eiqy1 iaG .
Integrating the resulting expression overx, one derives
.
d

g

a

,
ic

A

ci

r-

03661
^P1~z!&5
pD

192E dkdq~k2q!2~k1q!

cosh~pk/2!cosh~pq/2!

1

i ~k22q2!

3F11S k2 i

k1 i D
2

e2 iky2 iaG
3F11S q1 i

q2 i D
2

eiqy1 iaGexp@ i ~k22q2!z#21

sinh2@p~k2q!/2#

3H 24~k2q!sinhFp~k2q!

2 G1p~41k222kq

1q2!coshFp~k2q!

2 G J . ~B37!

The main contribution to the integral comes fromk close to
q. Simplifying the expression and keeping only the ma
terms ink2q, one can then take the integrals overk andq,
thus deriving ^P1(z)&5D/3. This contribution should be
taken into account on an equal footing with Eq.~B12!. That
gives a systematic drift 2Dz/3 for y1.
pt.
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