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We describe the method for finding the non-Gaussian tails of the probability distribution function~PDF! for
solutions of a stochastic differential equation, such as the convection equation for a passive scalar, the random
driven Navier-Stokes equation, etc. The existence of such tails is generally regarded as a manifestation of the
intermittency phenomenon. Our formalism is based on the WKB approximation in the functional integral for
the conditional probability of large fluctuation. We argue that the main contribution to the functional integral
is given by a coupled field-force configuration—theinstanton. As an example, we examine the correlation
functions of the passive scalaru advected by a large-scale velocity fieldd correlated in time. We find the
instanton determining the tails of the generating functional, and show that it is different from the instanton that
determines the probability distribution function of high powers ofu. We discuss the simplest instantons for the
Navier-Stokes equation.@S1063-651X~96!05010-6#

PACS number~s!: 47.10.1g, 47.27.2i, 05.40.1j

I. INTRODUCTION

The intermittency phenomenon@reflected in non-
Gaussian, scaling-violating tails of the probability distribu-
tion function~PDF!# is believed to be the hardest part of the
yet-to-be-built theory of turbulence. Neither the physical
mechanism nor the mathematical properties of rare fluctua-
tions responsible for the intermittency are known.

Now, what is the most likely force which can lead to the
given rare fluctuation of the field? The main idea of this
paper is that such a force is not random at all. It satisfies a
well defined equation, which follows from the WKB ap-
proximation in the functional integral. Asymptotically, the
fluctuations of the force around this are most likely negli-
gible. In this respect, the method is similar to the ‘‘optimal
fluctuation’’ method used in treating properties of a solid
with quenched disorder~see e.g., Ref.@1#!. A similar ap-
proach has been used to analyze high-order terms of the per-
turbation series in quantum field theory@2#, and to calculate
phonon attenuation due to multiple quasiparticle production
@3#. The idea that PDF tails in Navier-Stokes turbulence may
be obtained by minimizing the action was discussed earlier
by Giles @4#, who tried to find the minimum perturbatively
with respect to nonlinearity. We shall see below that the
extremal trajectories are nonperturbative objects, as are in-
stantons in quantum mechanics and field theory.

The problem under consideration is quite general, and can
be formulated for any field governed by a nonlinear dynamic
equation and driven by a random ‘‘force.’’ Generally, the
PDF of the field depends both on the statistics of the driven
force and on the form of the dynamical equation. Here we
are interested in the second dependence, so that we assume
the force to be Gaussian. Because of nonlinearity, the PDF of
the field is non-Gaussian even for a Gaussian random force.
Note that a strong intermittency also appears for linear prob-
lems with ‘‘multiplicative noise,’’ for instance, for a passive
scalar advected by a random velocity field.

We start with the dynamical equation

] tu1L~u!5f, ~1.1!

that controls the evolution of a fieldu(t,r ) under the action
of a random ‘‘force’’f(t,r ). HereL(u) is a nonlinear ex-
pression, it can be thought of as being local in space. Gen-
erally, both the fieldu and the forcef have a number of
components. The Gaussian statistics of the forcef is com-
pletely characterized by the pair correlation function

^f~ t1 ,r1!f~ t2 ,r2!&5J~ t12t2 ,r12r2!. ~1.2!

In principle, relations~1.1! and~1.2! contain all the informa-
tion about the statistics ofu.

Equation~1.1! describes e.g., thermal fluctuations in hy-
drodynamics where it is reduced to the well known Langevin
equation@5#. Thenf is short correlated in time and in space
such that it can be treated as a white noise. For some sys-
tems, this thermal noise produces remarkable dynamical ef-
fects. Some examples are collected in Ref.@6#. Here we are
interested in turbulence, wheref is an external ‘‘force’’ cor-
related on large scales in space. Turbulence was first treated
in terms of Eq.~1.1! by Wyld @9#, who formulated the dia-
gram technique as a perturbation series with respect to the
nonlinear term in the Navier-Stokes equation. The diagram
technique cannot be applied to our problem since we are
interested in nonperturbative effects. Nevertheless we can
use the functional that generates the technique since it is a
nonperturbative object. Such a generating functional was in-
troduced in@10,11# for Eq. ~1.1!; it has the form

Z~l![ K expS i E dt dr luD L
5E DuDpexpS iI1 i E dt dr luD , ~1.3!
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wherep is an auxiliary field, and the effective action is

I5E dt dr p@] tu1L~u!#

1
i

2E dt dt8 dr dr 8J~ t2t8,r2r 8!pp8. ~1.4!

The coefficients of the expansion ofZ in l are the correla-
tion functions ofu. The auxiliary fieldp determines the re-
sponse functions of the system, for instance, the linear re-
sponse function~Green function! is G5^up&. Note the
remarkable property@12#

E DuDp exp~ iI!51,

related to the causality. That is the reason why the normal-
ization constant is unity in Eq.~1.3!. This makes it possible
to average any additional random field directly overZ if
necessary.

The asymptotics ofZ(l) at largel is determined by the
saddle-point configuration~usually called the classical trajec-
tory or instanton! which should satisfy the following equa-
tions obtained by varying the argument of the exponent in
Eq. ~1.3! with respect tou andp:

] tu1L~u!52 i E dt8dr 8J~ t2t8,r2r 8!p~ t8,r 8!, ~1.5!

] tp2
dL
du

p5l. ~1.6!

Solutions of Eqs.~1.5! and ~1.6! are generally smooth func-
tions of t andr . Comparing Eqs.~1.1! and~1.5! we conclude
that the right-hand side of Eq.~1.5! just describes a special
force configuration necessary to produce the instanton. If
uinst is a solution of Eq.~1.5! and~1.6!, then asymptotically,
at largel,

d lnZ~l!/dl5 iu inst. ~1.7!

Let us discuss the boundary conditions for the saddle-
point equations. Equation~1.5! implies that we should fix the
valueuin for the fieldu at the initial timet in . Conversely, a
boundary condition for fieldp is implied at the remote future
since, as follows from Eq.~1.6!, it propagates in the negative
direction in time. Minimization of the action generally re-
quiresp→0 at t→`. For the instantons discussed below, the
finiteness of the action will also requireu→0 at t→2`.

If one is interested in the simultaneous statistics ofu, then
the functionl can be chosen as

l~ t,r !5yd~ t !l0~r !, ~1.8!

wherey is a number, andl0 is an appropriate function of
r depending on what spatial correlation functions we are go-
ing to study. In this case, we should find the solution forp
satisfying the rulep50 at t.0. The system~1.5! and ~1.6!
is thus to be treated fort,0 only. This corresponds to the
causality principle, since only processes occurring in the past
could influence the value of the simultaneous correlation

functions att50. The formal ground for the rule follows
from the consideration of the problem in the restricted time
interval t,t0, which is possible ifl50 at t.t0. Then the
minimization of I1*dt dr lu over the final valueu(t0)
gives p(t0)50, because of the boundary term originating
from *dt dr p] tu.

One may also be interested in the probability distribution
function P(u) for the field u. It can be expressed via the
generating functionalZ(l) by the functional Fourier trans-
form

P~u!5E Dl Z~l!expS 2 i E dt dr luD . ~1.9!

We expect that the behavior ofP(u) for largeu as well as
the behavior ofZ(l) for large l is associated with some
saddle-point configurations. Generally, the configurations are
not always the same for both Eqs.~1.3! and~1.9!. Indeed, we
see from Eq.~1.9! that the tail ofP(u) at largeu corresponds
to a large value ofd lnZ(l)/dl which is related to largel
only if the tails of both the PDF and the generating func-
tional decay faster than exponent—see the example in Sec.
III. Otherwise, those tails are determined by different con-
figurations as is demonstrated in Sec. II.

The best starting point to develop the instanton formalism
is the problem of white-noise-advected passive scalaru since
it allows for a detailed analytical treatment@14–16#. It will
be shown in Sec. II that bothP(u) andZ(l) have exponen-
tial tails, as was established before by Shraiman and Siggia
@15# ~see also@16#!. By using this example, we shall explic-
itly demonstrate that different instanton configurations are
responsible for the tails of the generating functionalZ(l) at
largel and of PDF at largeu, respectively. It is instructive
to recognize the difference between the instantons: We shall
show that the instanton that is responsible for largeu corre-
sponds to a small strain and suppressed stretching. Con-
versely, the instanton that determines the tails ofZ corre-
sponds to a large value of strain.

Section III presents the first step in studying instantons of
the Navier-Stokes equation. Only instantons for the two-
point generating functional̂exp(il(u12u2)& will be consid-
ered. The family of such instantons corresponds to the veloc-
ity fields with a linear spatial profile atr!L. Consideration
of the instanton perturbations~giving the fluctuation contri-
bution into the action! that correspond to spiral creation in
the straining field of the instanton will be the subject of
further publications.

II. PASSIVE SCALAR ADVECTED BY A LARGE-SCALE
VELOCITY FIELD

Let us show how the general formalism described in Sec.
I works for a particular problem: the advection of a passive
scalar fieldu(t,r ) by an incompressible turbulent flow in
d-dimensional space@13–16#. The advection is governed by
the equation

~] t1va¹a2kn !u5f, ¹ava50 , ~2.1!

wheref(t,r ) is the external source,v is the advecting ve-
locity, andn designates a Laplacian,k being the diffusion
coefficient. Bothv(t,r ) andf(t,r ) are random functions of
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t and r . We regard the statistics of the velocity and the
source to be independent. Therefore, all correlation functions
of u are to be treated as averages over both statistics.

We assume that the sourcef is d correlated in time and
spatially correlated on a scaleL, and that is has Gaussian
statistics completely determined by the pair correlation func-
tion

^f~ t1 ,r1!f~ t2 ,r2!&5d~ t12t2!x~r 12!. ~2.2!

Herex(r 12) as a function of the argumentr 12[ur12r2u de-
cays on the scaleL. We are interested in the behavior of the
correlation functions on scalesr!L. Thus only the constant
P25x(0) will enter all the answers. The constantP2 has the
physical meaning of the production rate ofu2.

Following Kraichnan@13,14#, we consider the case of a
Gaussian velocityv d correlated in time and containing only
large-scale space harmonics. Then the velocity statistics is
also completely determined by the pair correlation functions

^va~ t1 ,r1!vb~ t2 ,r2!&5d~ t12t2!Vab ,

Vab5V0dab2Kab~r12!, Kab~0!50. ~2.3!

Here the so-called eddy diffusivity is as follows:

Kab5D~r 2dab2r ar b!1
D~d21!

2
dabr

2, ~2.4!

whered is the dimensionality of the space and isotropy of
the velocity statistics being assumed. Representations~2.3!
and ~2.4! are valid for scales less than the velocity infrared
cutoff Lu , which is supposed to be the largest scale of the
problem. ThenV0 and Kab in Eq. ~2.3! are the first two
terms of the expansion of the velocity correlation function in
r /Lu , so thatD;V0 /Lu

2 . We also presume the inequality
dDL2@k which guarantees the existence of a convective
interval of scalesr d!r!L where correlation functions of
the passive scalar are formed mainly by stretching in the
inhomogeneous velocity field. Herer d52Ak/@D(d21)# is
the diffusion length. We thus consider the limit of high Pe-
clet numberL/r d@1. Note that, to have finite moments of
the scalar field, the Peclet number should be kept finite, since
the variance of the scalar already turns into infinity in the
limit of infinite Peclet number@13#.

The statistics of the large-scale velocity field has a re-
markable property: It follows from expressions~2.3! and
~2.4! that the correlation function of the strain field
sab5¹bva is r independent,

^sab~ t1!smn~ t2!&

5D@~d11!damdbn2dandbm2dabdmn#d~ t12t2!.
~2.5!

This means that the strain fieldsab can be treated as a ran-
dom function of timet only. That property enables one to
find in detail statistical properties of the fieldu @15,16#. To
exploit this property, it is convenient to pass into the comov-
ing reference frame—that is, to the frame moving with the
velocity of a Lagrangian particle of the fluid. This means that
we pass to the space variabler2%(t), where%(t) is the

Lagrangian trajectory of the particle@7,8#. We will take the
particle positioned at the origin at timet50, then

%~ t !5E
0

t

dt v„t,%~t!…. ~2.6!

After the transformationr→r2%(t), Eq. ~2.1! acquires the
form

$] t1@va~ t,r !2va~ t,0!#¹a2kn%u5f. ~2.7!

It can be seen from Eqs.~2.3! and~2.4! that the statistics
of va(t,r )2va(t,0) coincides with the statistics ofsabr b .
That means that the generating functional corresponding to
~2.7! can be written as

Z~l!5E DuDpDs expS 2F~s!1 iI1 i E dtdr lu D ,
~2.8!

wheresab is a function of time satisfyingsaa50, and its
PDF is exp(2F). The effective actionI and the functional
F in Eq. ~2.8! are

iI5 i E dt dr ~p] tu1psabr b¹au1k¹p¹u!

2 1
2 E dt dr1dr2 p1x~r 12!p2 , ~2.9!

F5
1

2d~d12!DE dt@~d11!sabsab1sabsba#.

~2.10!

Note that there is a difference between Eqs.~1.3! and ~2.8!
which is in the presence of an additional random field
sab .

A. Uniaxial instanton

Here we examine the saddle-point contribution to the gen-
erating functionalZ(l). The equations describing the saddle
points are extremum conditions foriI1 i*dt dr lu2F.
Starting from expressions~2.9! and ~2.10!, we find

] tu1sabr b¹au2k¹2u52 i E dr 8x~ ur2r 8u!p~ t,r 8!,

~2.11!

] tp1sabr b¹ap1k¹2p5l, ~2.12!

sab~ t !5 iD E dr @~d11!r b¹au2r a¹bu2dabr g¹gu#p,

~2.13!

wherep5p(t,r ), andu5u(t,r ). If to take into account only
the saddle-point contribution described by Eqs.~2.11!,
~2.12!, and~2.13!, then

Z~l!5 K expS i E dt dr lu D L }exp~2Fextr!, ~2.14!

whereFextr is the saddle-point value ofF2 iI2 i*dt dr lu.
From ~2.9!, ~2.10!, and~2.12!, one obtains
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Fextr5 1
2 E dt dr1dr2 p1x~r 12!p21

1

2d~d12!D

3E dt@~d11!sabsab1sabsba#. ~2.15!

In the following, we will be interested in simultaneous
correlation functions ofu, so that we take the fieldl in the
form ~1.8! and solve the equations for negative timet,0.
Let us stress that for function~1.8! the termlu is not influ-
enced by the transformationr→r2%(t) because of
%(0)50. Note that the system of equations~2.11!, ~2.12!,
and~2.13! with function ~1.8! is invariant under the transfor-
mation

s→Xs, p→Xp, t→X21t, y→Xy,

k→Xk, Fextr→XFextr, ~2.16!

whereX is an arbitrary factor. This leads to the conclusion
that

Fextr5y f~y/k!, ~2.17!

with the functionf to be determined.
We will treat nearly single-point statistics. This means

that the space support of the functionl0 in Eq. ~1.8! is taken
to be much smaller than the pumping lengthL. From the
other hand, we would like to avoid bulky formulas related to
the account of diffusion. Therefore, the size of the support is
believed to be much larger than the diffusion lengthr d . We
thus come to

l~ t,r !5yd~ t !dL~r !, ~2.18!

wheredL(r ) is a function with the characteristic sizeL21

satisfyingL@L21@r d, and normalized*dr dL(r )51. The
effective Peclet numberLL is thus assumed to be large. For
example, we can take

dL~r !5
Ld

pd/2exp~2L2r 2!. ~2.19!

We thus examine the object

ZL5^exp~ iyuL!&, ~2.20!

where

uL5E dr dL~r !u~ t50,r !. ~2.21!

Keeping in mind the inequalityL21@r d , in the following
we omit the diffusive terms in the equations. The extremum
conditions~2.11! and ~2.12! are then as follows:

] tu1sabr b¹au52 i E dr 8xp8, ~2.22!

] tp1sabr b¹ap5yd~ t !dL~r !, ~2.23!

According to Eq.~2.13! the structure of the tensorsab
reflects the spatial symmetry of the fieldsu(r ) andp(r ). The
source term in the right-hand side of Eq.~2.23! has spherical

symmetry. Therefore, Eqs.~2.22! and ~2.23! have a spheri-
cally symmetrical solution. However, incompressibility con-
dition saa50 requires thatsab50 on that solution which
makes the respective action to be infinite due to time inte-
gration. The probability of a spherical solution is thus zero.
Let us show that the mostly symmetric solution with a finite
action has a uniaxial form, which means thatsab is a diag-
onal matrix with the components

diags5„2s,s/~d21!, . . . …. ~2.24!

As was suggested in@16#, it is useful to pass to the fields

ũ~ t,r !5u~ t,eix,e'r'!, p̃~ t,r !5p~ t,eix,e'r'!,
~2.25!

wherex is the coordinate along the marked direction,r' is
the component of the radius vectorr perpendicular to the
direction, and

ei~ t8!5expF E
t8

0

dt s~ t !G , e'
d215ei

21 . ~2.26!

Now Eqs.~2.22! and ~2.23! can be rewritten

] tũ52 i E dr 8x„R~ t !…p̃~ t,r 8!, ~2.27!

] t p̃5yd~ t !dL~r !→ p̃52ydL~r !, t,0, ~2.28!

where we presented an obvious solution forp̃ satisfying
p̃50 at t.0. The quantityR in Eq. ~2.27! is

R25ei
2~x2x8!21e'

2 ~r'2r'8 !2. ~2.29!

Note that

] tR52s~x]x1x8]x8!R1
s

d21
~r'•¹'1r'8 •¹'8 !R.

~2.30!

For the considered uniaxial geometry, relation~2.13! gives

s52 iD E dr p̃@~d21!x]x2r'•¹'#ũ. ~2.31!

Now, using Eqs.~2.27! and ~2.28!, we find

] ts52Dy2E dr dr 8dL~r !dL~r 8!

3@~d21!x]x2r'•¹'#x~R!. ~2.32!

By virtue of Eq. ~2.30! and the symmetry properties of the
integrand in Eq.~2.32!, we obtain

s] ts5
~d21!Dy2

2
] tE dr dr 8dL~r !dL~r 8!x~R!. ~2.33!

The equation has an obvious first integral, which can be es-
tablished if we take into account thats→0 if t→2` @oth-
erwise Eq.~2.15! is infinite#:
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s25~d21!Dy2E dr dr 8dL~r !dL~r 8!x~R!. ~2.34!

One can demonstrate that the main contribution toZL is
determined by the saddle point withs.0. Our instanton thus
describes a stretching in thex direction and a contraction in
other directions while time moves backwards:ei increases
with increasingutu in accordance with~2.26!. This means
that the characteristic value ofR in Eq. ~2.34! can be esti-
mated asR;L21ei . At small utu, whereei is not very large,
x(R) in Eq. ~2.34! can be substituted for byP25x(0), and
we find thats.s1, where

s15yA~d21!P2D. ~2.35!

That leads toei'exp(s1utu), which is correct ifR,L, which
meansutu&s1

21ln(LL). In the opposite limitutu@s1
21ln(LL),

the value ofs tends to zero.
The above analysis shows that the main contribution to

Fextr @Eq. ~2.15!# is associated with the region of integration
utu&s1

21ln(LL), when stretching from the distanceL21 to
distanceL takes place. The first term in Eq.~2.15! can be
written as 1

2y
2P2s1

21ln(LL). Substituting Eqs.~2.24! and
~2.35! into the second term of Eq.~2.15!, we find

Fextr5S P2y
2

~d21!D D 1/2ln~LL!. ~2.36!

Note that the expression is in agreement with Eq.~2.17!,
since we considered the caser dL!1, where the answer
should be k independent. It is also possible to restore
ZL(y) in the limit L→`; that is, for the single-point object.
For this we should recognize that generallyFextr is a function
of the dimensionless parameterLr d , and use property Eq.
~2.17!. Then in the limitr dL@1, where theL dependence
should disappear, we obtain

Fextr5S P2y
2

~d21!D D 1/2H ln~L/r d!1
1

4
lnS P2

D
y2~d21! D J .

~2.37!

Note the nontrivial dependence of this single-point object on
y. This is a consequence of the time dependence of the ef-
fective diffusion cutoff, which can be seen at the direct so-
lution with an explicit account of the diffusion.

Above, we considered the simplest case of the uniaxial
strain matrixsab . It is not very difficult to generalize the
scheme to the case where principal axes ofsab are fixed
~that is, they do not depend on time!. The answer shows that
it is the uniaxial solution that gives the minimum value of
Fextr, and therefore only this contribution should be taken
into account. The fact that the symmetry of the solution is
lower than the symmetry of the source means spontaneous
symmetry breaking. Note that symmetry breaking in the ran-
domN3N matrix process with SU(N)-symmetric statistics
was noticed previously by Dorokhov@17#, who showed that
the mean Lyapunov exponents are nonzero and that a largest
exponent exists. In our case, this means the existence of a
mean stretching and spectral cascade of the passive scalar. It
is interesting to note that the irreversibility of scalar turbu-
lence and related symmetry breaking naturally appears in our

field-theoretical formalism, precisely in the way it appeared
in the classical cases of ferromagnetism, superconductivity,
etc. The probability of a less symmetric state is larger than
that of a symmetric one.

As long as we are interested in the tail of the generating
functionZL(y) at largey, the instanton contributions~2.36!
or ~2.37! give the correct answer. However, it is not enough
to consider that contribution to obtain the tails of the PDF,
because the respective tail ofZ(y) is exponential. Indeed,
we shall see below that the tails ofP(u) are determined by
the contributions at moderatey. We thus face the problem of
findingZ(y) at arbitraryy. Fortunately, the tails ofP(u) are
also determined by the instanton contribution; however, this
instanton is different from the above uniaxial solution, which
represents the situation where stretching occurs along one
marked direction. It is obvious that, if the direction slowly
varies in time, the value of the effective action will not be
essentially influenced. The role of such soft fluctuations is
expected to be negligible if the characteristic time
s1

21ln(LL) of the stretching is small enough. We thus con-
clude, taking into account Eq.~2.35!, that expression~2.36!
is correct at largey. At moderatey, the fluctuations of the
stretching direction should be taken into account; it is the
topic of Sec. II B. There we shall explicitly integrate over the
soft mode, and obtain different equations for the instanton.

B. Isotropic instanton

Here we take into account the fluctuations of the stretch-
ing direction which were neglected in Sec. III A. For that
purpose, it is useful to introduce the variable measuring the
stretching rate along the current stretching direction~the di-
rection of the maximal Lyapunov exponent! determined by
the strain fieldsab5¹bva . For this aim, it is useful to per-
form the transformation of the fieldsu and p, generalizing
Eq. ~2.25! for an arbitrarysab @16#. That is, let us pass to the
fields

ũ~ t,r !5u~ t,Mabr b!, p̃~ t,r !5p~ t,Mabr b!,
~2.38!

with thed3d matrixMab controlled by the equation

] tM̂5ŝM̂ , M̂ ~ t50!51̂, ~2.39!

with a formal solution

M̂5T expS E
0

t

dt8ŝ~ t8! D . ~2.40!

The symbolT designates the antichronological ordering for
negativet. Note that detM̂51 due to the incompressibility
condition trŝ5¹ava50. Performing the substitution in Eq.
~2.9! and passing to the space variableM̂ r ~the Jacobian of
the transformation is equal to unity due to detM̂51), one
obtains

iI5 i E dt dr p̃] tũ2
1

2E dt dr1dr2p̃1x~R! p̃2 ,

~2.41!

where
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Ra5Mab~r 1b2r 2b!. ~2.42!

We see that onlyR is s dependent in Eq.~2.41! and,
moreover, only its absolute valueR enters the effective ac-
tion. Just that value is a measure of the stretching irrespec-
tive of the directions of the current main axes of the matrix
ŝ. The statistics ofR can be established starting from the
PDF exp(2F); see, e.g.,@18#. The answer is that, for nega-
tive times,R can be written as

R~ t !5expS E
t

0

dt8z~ t8! D ur12r2u, ~2.43!

with the random variablez having PDF exp(2Fz) with

Fz5E dt
1

2D~d21! S z2
d~d21!

2
D D 2. ~2.44!

The generating functional~2.20! is thus rewritten as

ZL5E DũDp̃Dz exp~ iyuL1 iI2Fz!, ~2.45!

whereuL is defined by Eq.~2.21!.
We have performed the exact transformation of the statis-

tical weight introducing the variablez which measures the
stretching rate. Gaussian integration overp̃ and ũ, and sub-
sequent minimization of the action with respect toz, is
equivalent to the following system:

] t p̃5yd~ t !dl~r !, ~2.46!

] tũ~ t,r1!52 i E dr2x@R~ t !# p̃~ t,r2!, ~2.47!

z~ t8!5
d~d21!

2
D2

d21

2
DE

2`

t8
dt dr1dr2 p̃1p̃2

]x

]R
R.

~2.48!

Equation~2.46! has the same form as Eq.~2.28!, and conse-
quently has the same solutionp̃52ydL(r ). It follows from
Eqs. ~2.45! and ~2.46! that, in the saddle-point approxima-
tion, ZL}exp(2Fextr), where

Fextr5
1

2E dt dr1dr2 p̃1 p̃2x~R!1
1

2D~d21!

3E dtS z2
~d21!d

2
D D 2. ~2.49!

It follows from Eq.~2.43! that] tR52zR. Using that, we
can find the first integral of Eq.~2.48!,

z25
d2~d21!2

4
D21~d21!Dy2

3E dr1dr2dL~r1!dL~r2!x~R!. ~2.50!

The constant here is established using the property
z→(d21)dD/2 at t→2` following from u→0 at
t→2` @Eq. ~2.49! is infinite otherwise#. The only dynami-

cal variable of the instanton is thus the stretching rate given
by a scalarz, the direction of the stretching does not enter
the expressions. That is why we call this instanton isotropic
~not to be confused with a symmetric one, where stretching
is absent!. The characteristic value ofR on the right-hand
side of Eq.~2.50! can be estimated as

R~ t8!;L21expS E
t8

0

dt z~ t ! D . ~2.51!

If R!L, then the integral on the right-hand side of Eq.~2.50!
is approximately equal toP2; if R@L, then the integral is
negligible. This means that there are two different time in-
tervals. At largeutu, it is z.(d21)dD/2, and at smallutu it is
z.z1, where

z1
25

~d21!2d2

4
D21~d21!Dy2P2 . ~2.52!

The boundary between the regions is atutu;z1
21ln(LL). The

main contribution toFextr, ~2.49!, is associated with the re-
gion utu,t15z1

21ln(LL). Again, this has a simple physical
meaning: the action~i.e., probability! is determined by
the time interval when the given piece of the scalar is
stretched until the pumping correlation scaleL. The first
term in Eq. ~2.49! can be substituted for byy2P2t1/2,
and the second one can be substituted for by
„2D(d21)…21

„z12(d21)dD/2…2t1. Using Eq. ~2.52!, we
find

Fextr5F S d24 1
P2y

2

~d21!D D 1/22 d

2G ln~LL!. ~2.53!

Comparing expressions~2.53! and ~2.36!, we conclude that
fluctuations of the stretching direction can be neglected if
y2@Dd3P2

21. Let us stress that aty2;Dd3P2
21, the value of

Eq. ~2.53! is much larger than unity. That means that viola-
tion of Eq.~2.36! is not associated with a destructing saddle-
point regime; it is rather related to an incorrect calculation of
soft fluctuations in the saddle-point regime. Note also that
the role of fluctuations increases with increasing space di-
mensionalityd.

C. Probability distribution functions

The scheme proposed in the preceding subsections can
also be applied to calculating PDFPL(q) of the quantity
uL @Eq. ~2.21!#. Let us start from the average

^uL
2n&5E DuDpDs exp~ iI2Fs12n lnuL!. ~2.54!

The saddle-point contribution tôuL
2n& is determined by the

extrema of iI2Fs12n lnuL which coincide with Eqs.
~2.11!, ~2.12!, and~2.13! if we substitute

y→2
2ni

uL
. ~2.55!

Then an attempt to find the analog of the uniaxial instanton
fails. The formal reason for this is in additionali in Eq.
~2.55!. The physical reason is that the uniaxial instanton is an
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adequate object for the statistics of fast processes, whereas
^uL

2n& is determined by slow processes with suppressed
stretching.

To find a solution, we should pass to the isotropic instan-
ton. That means that we should perform the same transfor-
mation of the fields as in Sec. II B, which leads to the saddle-
point equations~2.46!, ~2.47!, and ~2.48!, with Eq. ~2.55!.
The equations have a solution of the same type as considered
above, with

z1
25

d2~d21!2

4
D22~d21!DP2

4n2

uL
2 . ~2.56!

The value ofuL in Eq. ~2.56! is the parameter which can be
found from the equation analogous to Eq.~2.47!, which now
reads

] tũ5
2n

uL
E dr2x~R!dL~r2!. ~2.57!

As previously, the integral on the right-hand side of Eq.
~2.57! for r150 is equal toP2 if utu& ln(LL)/z1, and is neg-
ligible otherwise. We thus come to the conclusion that

uL
2 .u2~ t50,r50!.2nP2

ln~LL!

z1
. ~2.58!

Substituting the relation into Eq.~2.56!, we find the equation
on z1 leading to

z15~d21!DH 2
n

ln~LL!
1S n2

ln2~LL!
1
d2

4 D 1/2J . ~2.59!

We see thatz1 decreases with increasingn, and conse-
quently the characteristic time ln(LL)/z1 increases with in-
creasingn. Now substituting Eq.~2.59! into Eq. ~2.58!, one
obtains

uLn
2 5

8nP2ln~LL!

d2D~d21! H n

ln~LL!
1S n2

ln2~LL!
1
d2

4 D 1/2J .
~2.60!

It is not very difficult to recognize that the main contribu-
tion to the saddle-point value ofiI2Fz12n lnuL is deter-
mined by the last term. This means that

^uL
2n&}exp~2Fextr!}uLn

2n , ~2.61!

with uLn from Eq. ~2.60!.
The same result can be deduced by the alternative

method. That is, starting from Eq.~2.53!, we can calculate
the tail of the PDFPL(q) for the quantityuL, Eq. ~2.21!.
The functionPL(q) is the Fourier transform ofZL(y):

PL~q!5E dyexp~2 iyq!ZL~y!

}E dyexp~2 iyq2Fextr!. ~2.62!

Here, substituting Eq.~2.49! and calculating the integral over
y by the saddle-point method@18#, we find

PL~q!}expH d2 ln~LL!F12S 11
d21

P2
D

q2

ln2~LL! D
1/2G J ,

~2.63!

which is in agreement with@15,18,16#. Formally, expression
~2.63! is valid atq→`, but it really covers the whole region
of q because the PDF is Gaussian at smallq @16#. The
distant tails of the PDF are exponential, as was established
by Shraiman and Siggia@15#. Note that the value of the
Lyapunov exponentz1 corresponding to the saddle point in
Eq. ~2.62! is

zextr5
d

2
~d21!DS 11

d21

P2
D

q2

ln2~LL! D
21/2

. ~2.64!

We see that the value decreases with increasingq whereas
the valuez1, Eq. ~2.52!, increases with increasingy. The
physical meaning is quite transparent here: to observe a large
fluctuation of the scalar one needs suppressed stretching.
Note also that the value ofy corresponding to the extremum
point is

yextr
2 52

~d21!d2D

4P2

q2

q21P2 /„~d21!D…
. ~2.65!

This means thatuyextr
2 u,d3D/P2, and consequently the extre-

mum point lies beyond the applicability region of the ap-
proximation ~2.36!. This is the reason why Eq.~2.36! does
not restorePL(q).

Now we can calculatêuL
2n& starting from the definition

^uL
2n&5E dq q2nPL~q!. ~2.66!

This integral can be calculated, again using the saddle-point
method. The result coincides, of course, with Eq.~2.61!. We
thus conclude that Eq.~2.49! or ~2.63! cover both cases of
slow and fast processes. This means that an account of fluc-
tuations of the direction of stretching~performed in Sec.
II B ! gives us a tool for finding the tails of both the PDF and
the generating functional.

In much the same way we can find the PDF for the dif-
ferencesDu5u(r )2u(2r ). Instead of Eq.~2.18!, we use

l~r1!5y@dL~r12r !2dL~r11r !#. ~2.67!

We consider the isotropic instanton and use Eqs.~2.49! and
~2.50! with p̃(t,r1)52y@dL(r12r )2dL(r11r )#. Then, we
find for the integral in Eq.~2.49!,

E dr1dr2 p̃1p̃2x~R!

3H 524M2x9~0!r 2, 2t1,t,0, M,L/r ,

52P2 , 2~ t11t2!,t,2t1 , L/r,M,LL,

→0, t,2~ t11t2!, M.LL,
~2.68!

whereM5R/ur12r2u; that is,] tM52zM . It follows from
Eq. ~2.50! that for 2t1,t,0, z'(d21)dD/2; for
2(t11t2),t,2t1, z'z2, where
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z2
25

~d21!2d2

4
D212~d21!Dy2P2 ; ~2.69!

and for t,2(t11t2), againz'(d21)dD/2.
The main contribution to the extremum value~2.49! is

determined by the region2(t11t2),t,2t1, it is

Fextr5F S d24 1
2P2y

2

~d21!D D 1/22 d

2G ln~rL!, ~2.70!

instead of Eq.~2.53!. Then we can find the PDF for the
difference taking the integral of Eq.~2.62! type. Instead of
Eq. ~2.63!, one obtains

PL~Dq!}expH d2 ln~rL!F12S 11
d21

2P2
D

~Dq!2

ln2~rL! D
1/2G J .
~2.71!

The tails of the PDF are exponential while the core is Gauss-
ian @for (Dq)2!P2ln(rL)/d(d21)D#:

PL~Dq!}expH 2
d~d21!D

8P2

~Dq!2

ln~rL! J . ~2.72!

That PDF can be used for calculating moments^(Dq)2n&
with n! ln(rL); in particular, Eq.~2.72! gives

^~Dq!2&'
4P2ln~rL!

d~d21!D
, ^~Dq!4&'

48P2
2ln2~rL!

d2~d21!2D2 ,

~2.73!

which exactly corresponds to the answers obtained atd52
in @16,19#.

D. Discussion

We consider the statistics of the passive scalar advected
by the random velocity field in the framework of the instan-
ton formalism. The consideration is very instructive, since it
reveals some nontrivial peculiarities of the formalism. First,
we see that a direct solution of the saddle-point equations
gives us an answer which satisfactorily describes the tail of
the generating functionalZ(l), but cannot serve to restore
the tail of PDFP(q). The physical reason for this lies in the
difference between the processes forming the tails: The tail
nearZ is related to the fast stretching process, with a char-
acteristic time decreasing asl increases, while the tail near
P is related to slow stretching, with a characteristic time
increasing asq increases. This conclusion can be directly
extracted from Eqs.~2.35! and ~2.64!. For slow processes,
those fluctuations of the stretching direction which are rel-
evant do not destroy the saddle-point~instanton! regime but
renormalize the naive answer. For that particular problem,
the fluctuations can be explicitly taken into account after the
special transformations of the fields. Although the trick can-
not be widely generalized, it shows the direction of improv-
ing naive answers. In a general case, we expect that a direct
solution of the saddle-point equations will produce nonsym-
metric instantons with a degeneracy parameter~like the di-
rection of the marked axis in the case considered!. Then
there exists the ‘‘Goldstone’’ mode related to slightly non-
homogeneous variations of the parameter. Such a mode is

soft since those variations weakly influence the action.
Therefore, the fluctuations related to the soft mode are rel-
evant, and should be taken explicitly into account: If the
extremum is not steep at some directions in the functional
space, then integration over the respective degrees of free-
dom should be performed explicitly. The contribution of that
integration depends on the lifetime of the instanton, as was
discussed above. The well-known analogy from the theory of
phase transitions is that Goldstone modes appearing due to
spontaneous symmetry breaking in the low-temperature
phase may destroy the long-range order~i.e., restore the sym-
metry!.

III. SIMPLEST INSTANTON OF AN INCOMPRESSIBLE
VELOCITY FIELD

Here we describe the first step in considering a much
more complicated problem of finding the tails of the PDF for
a velocity field in three-dimensional incompressible turbu-
lence. We consider two-point statistics, and show that an
instanton with a linear spatial profile naturally appears as a
basic flow.

The effective action~1.4! for the Navier-Stokes equation
can be written as follows:

I5E dt dr ~pa] tva1pavb¹bva2npa¹2va

1pa¹aP1Q¹ava!

1
i

2E dt dt8 dr dr 8J~ t2t8,r2r 8!papa8 . ~3.1!

The additional independent fieldsP andQ play the role of
Lagrange multipliers enforcing the incompressibility condi-
tions¹ava50 and the analogous condition¹apa50 for the
response fieldpa . The fieldP has the meaning of pressure
~divided by the mass densityr). The origin of the terms with
the fieldsP andQ in the effective action is related to the
continuity equation] tr1¹a(rva)50, which should be in-
corporated into the effective action;Q is just the auxiliary
~response! field corresponding to the equation. At the condi-
tion that all velocities are much smaller than the sound ve-
locity, it is possible to neglect the time derivative in
] tr1¹a(rva)50 and variations of the mass density, which
leads to the termQ¹ava in Eq. ~3.1!. While variations of the
mass density can be neglected, variations in the pressure are
relevant. Therefore, it is natural to pass from the integration
over the mass density to the integration over the pressure as
it is implied in Eq.~3.1!.

We are going to examine the generating functional for the
velocity,

Z~l![ K expS i E dt dr l•vD L
5E DpDvDPDQ expS iI1 i E dt dr•lvD .

~3.2!

The extremum conditions for the argument of the exponent
in Eq. ~3.2! determining the Navier-Stokes instanton read

54 4903INSTANTONS AND INTERMITTENCY



] tva~r !1vb~ t,r !¹bva~ t,r !2n¹2va~ t,r !1¹aP~ t,r !

52 i E dt8E ddk

~2p!d
exp~ ik–r !J~ t2t8,k!pa~ t8,k!,

~3.3!

] tpa~ t,r !2pb~ t,r !¹avb~ t,r !1vb~ t,r !¹bpa~ t,r !

1n¹2pa~ t,r !1¹aQ~ t,r !5la~ t,r !, ~3.4!

whereJ(k) andpa(k) are Fourier transforms ofJ(r ) and
pa(r ), respectively. In Eqs.~3.3! and ~3.4! the conditions
¹ava50 and¹apa50, which originate from varying over
the fieldsP andQ, are also implied. Then the values of the
fields P andQ can also be found from the conditions. This
gives the relations

¹2P52¹a~vb¹bva!, ~3.5!

¹2Q5¹a~pb¹avb2vb¹bpa!. ~3.6!

In the following we consider the simultaneous correlation
functions of the velocity differences ^@v(0,r/2)
2v(0,2r/2)#2n&, where r is the separation between the
points. The functional generating such functions is extracted
from Z(l) if one obtains

la5ynad~ t !@d~r2r/2!2d~r1r/2!#, ~3.7!

wheren is a unit vector. As was explained in Sec. I, the
presence of such a term on the right-hand side of Eq.~3.4!
means that we should solve the problem at negative timest
with the final condition

pa~0,r !52y~dab2¹a¹b¹22!nb@d~r2r/2!2d~r1r/2!#.
~3.8!

We assume that the pumping correlation functionJ is d
correlated in time:J(t,r )5d(t)x(r ). Then the system of
equations~3.3!–~3.6! is invariant under the transformation
analogous to Eq.~2.17!:

t→X21t, v→Xv, P→X2P, Q→X3Q,

n→Xn, l→Xl, p→X3p, ~3.9!

whereX is an arbitrary factor. For the function~3.8! the
transformation~3.9! meansy→X2y. The extremum value
Fextr of the argument of the exponent in Eq.~3.2! transforms
asFextr→X3Fextr at Eq. ~3.9!. This leads to the conclusion
that

Z~y!}exp~2Fextr!, Fextr5y3/2f ~y/n2!, ~3.10!

with the functionf to be determined. We expect that in the
limit y→` a n dependence in the function disappears. Then
we concludeFextr}y3/2.

The characteristic wave vectork0 in the correlation func-
tion x(k) of the pumping force is of the order of the inverse
pumping lengthL. Then examining the regionr!L one can
expand the exponent exp(ik–r ) in Eq. ~3.3! into the series
over k–r . The first term of the expansion produces the zero
contribution to the right-hand side of Eq.~3.3! because of the

structure of the fieldp determined by condition~3.8!: The
condition means that att50 p(r )52p(2r ), the property is
reproduced by the equations, so thatp(k)52p(2k) at any
time t. Thus the leading term of the expansion of the right-
hand side is linear inr . This means that Eq.~3.3! admits a
linear profile as a solution in the regionur u!L,

va5sab~ t !r b , saa50. ~3.11!

Let us emphasize that Eq.~3.3! may well have other instan-
ton solutions with more complicated profiles; their analysis
is left for future studies. For Eq.~3.11!, we obtain, from Eq.
~3.3!,

] tsag1sabsbg2
1

d
dag~smnsnm!5E ddk

~2p!d
kgpa~k!x~k!.

~3.12!

Here we substituted the expression for the pressure,

P52
1

d
~smnsnm!r 2, ~3.13!

which provides for the condition¹ava50. Note thatP is
defined up to a harmonic function; expression~3.13! is cho-
sen because of its isotropy.

For the linear velocity profile, Eq.~3.4! can be rewritten
in Fourier representation as

] tpa2sbapb2sbgkb

]

]kg
pa2nk2pa1 ikaQ50,

~3.14!

which should be solved with the condition following from
Eq. ~3.8!:

pa~ t50,k!52iy S dab2
kakb

k2 Dnbsin~k•r/2!. ~3.15!

The characteristic wave vectork in Eq. ~3.12! is of the order
of L21. Thus we can expand sin(k•r/2) in k•r and keep
only the first nonvanishing term of the expansion}k•r. As
was discussed in Sec. I, the response fieldp(r ,t) propagates
backwards in time, starting with the initial value~3.15! at
t50. We shall see that for a long time~determined by a
small viscosity! the field p(t,k) at k;L21 has the same
structure}k•r.

There is a general family of the flows with linear
profiles—see Sec. IIIC below. We start by considering the
simplest case. We assume below that the point separationr
is directed along the same vectorna as the measured velocity
components:ra5nar. Then the problem possesses the axial
symmetry, which allows us to look for the following uniaxial
strain matrix:

sab5s~dab2dnanb!. ~3.16!

The same symmetry admits the anzatz

pa~ t,k!5S dab2
kakb

k2 D iynbf~ t,z!k–nr, ~3.17!
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correct in the limit of smallk. In Eq. ~3.17!, z5k–n/k, and
the functionf(t,z) to be found has the initial~final! value
f(t50,z)51. Substituting Eq.~3.15! and ~3.17! into Eq.
~3.14! we findQ50 and

s21~] t2nk2!f1dz~12z2!]zf12@~d21!2dz2#f50.
~3.18!

Substituting expression~3.17! into the right-hand side of
Eq. ~3.12!, we find

E ddk

~2p!d
kgpa~k!x~k!5G~dnang2dag!, ~3.19!

where

G5 iyrCE
21

1

dz z2~12z2!~d21!/2f~ t,z! ~3.20!

and

C5
Sd21

~2p!d~d21!
E
0

`

dk kd11x~k!. ~3.21!

HereSd is the area of the unit sphere ind-dimensional space
Sd52pd/2/G(d/2). The constantC can be estimated as
C;E/L2, whereE5^va] tva& is the energy dissipation rate.
Now, substituting Eqs.~3.16! and ~3.19! into Eq. ~3.12!, we
find

] ts5~d22!s22G. ~3.22!

Our next problem is to findG as a functional ofs, to close
this set of equations. We have to solve Eq.~3.18! for f. Here
viscous and inviscid cases are slightly different. We start by
considering an inviscid Euler equation, we then account for
the viscosity.

A. Instanton of the Euler equation

Neglecting viscosity in Eq.~3.18!, we obtain a general
solution

f5h2z22FS z2h22d

12z2 D , h~ t !5expS E
0

t

s~ t8!dt8D .
~3.23!

The initial conditionf(0,z)51 fixes the functionF:

f~z!5
h222d

12z21z2h22d . ~3.24!

We obtain the system of equations

ṡ5~d22!s22G~h!, ḣ5sh. ~3.25!

This system for the variableq5h22d becomes the usual po-
tential problemq̈52U8(q) with the potential

U~q!52~d22!E dq qG~q1/~22d!!.

For d53,

G~h!5
iyrCh2

h2d21 F 2

12h22d 2
1

3
2
ln~2h2d21!

h2d21 G .
The relevant solution, which vanishes att52`, corre-

sponds to the zero energy in this potential@s(t)}21/t as
t→2`#. Therefore,q̇252U(0)22U(q) and

q̇t505A2@U~0!2U~1!#5C1AEyr/L. ~3.26!

Then the strain at the momentt50 becomes sab
5q̇(dab2dnanb)/q(22d). In accordance with Eq.~1.7!,
the logarithmic derivative of theZ functional is related to the
average initial value of the velocity difference
Z8(y)/Z(y)5na^va(r,0)2va(2r,0)&. In the leading
WKB approximation at largey, this average can be replaced
by the contribution from the instanton solution:

~ lnZ!8~y!52rnanbsab5
2q̇~d21!

q~d22!
5C2AEyr3L22.

~3.27!

Finally, we obtain the surprisingly simple result

Z~y!}exp@C3AE~yr!3L22#. ~3.28!

with the dimensionless constantsC1, C2, andC3 to be cal-
culated. This result is in agreement with the general form Eq.
~3.10!, it also containsr dependence.

B. Account of viscosity

When the viscous terms are kept, the solution is modified
as follows. With the same assumptionk0r.r/L!1, we can
still look for the uniform strain solution. The viscosity will
drop from the velocity equation, but not from the response
field equation~3.14!. The extra termnk2p can be compen-
sated for by the extra time dependent exponential

pa~ t,k!5S dab2
kakb

k2 D iynbf~ t,z!k–nr exp@nR~ t,z!k2#.

~3.29!

The balance ofk0 andk1 terms in the equation is the same as
before. The balance ofk2 terms gives the equation

Ṙ511sL̂R512ds z~12z2!
]R

]z
12s~12dz2!R,

~3.30!

with the boundary conditionR(0)50. The substitution
R(z,t)5A(t)1B(t)z2 reduces the partial differential equa-
tion to two ordinary differential equations,

Ȧ5112As,

Ḃ52s~B2Bd2Ad!.

The solution is expressed vias(t); at t→2`, it grows lin-
early:R't. The influence of the viscosity on our solution is
weak, it smears the peaks atp and manifests itself when
nR.L2, i.e., at t.L2/n. That time should be much larger
than the time of instanton formationAL2/Eyr. Our asymp-
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totic expression ~3.28! is insensitive to viscosity if
n!LAEyr; i.e., the Reynolds number on the instanton is
large.

C. Instanton family

Considering a more general strain does not change basic
conclusions of this section. Let us describe, for instance, a
general three-dimensional symmetric flow of the type con-
sidered in@21#. In the cylindrical coordinates with thez axis
alongr, the velocity vector field atr!L is given by

u5~ur ,uu ,uz!5~2sr /2,vr /2,sz!. ~3.31!

Here the vorticity has only az componentv(t) which is a
function of time as well as strains(t). The pressure is now
of the form

P52gr22e@r 2sinu cosu1rz~sinu1cosu!#.

Particular details of the solution depend on the relation be-
tweeng ande. The diagonal elements~proportional tog) are
determined locally from the Poisson equation
DP52div(u•¹u). Note that the off-diagonal pressure ele-
ments are generally determined by the global structure of the
flow. In our case, the value ofe is determined by the distant
asymptoticsu→0,P→const atr→`, and matching condi-
tions at r.L which depend on the particular choice of the
pumpingx. The global description of the flows for the whole
instanton family is still ahead of us. As far as the functional
dependence of the respectiveZ(y,r) is concerned, it is the
same for the whole family and does not depend on the large-
scale behavior of the pumping. Considering, for instance, the
caseg50 @opposite to the diagonal case~3.13! considered
above#, we obtainv5A3s, and a system of equations simi-
lar to Eq.~3.25!,

ṡ5s22G8~h!, ḣ5sh, ~3.32!

with another yet qualitatively similar functionG8. For the
variableq(t), related tos(t) by q̇52sq, the Newton equa-
tion appears with a potential energyU that allow for a single
solution ~zero energy separatrix! vanishing ass(t)}1/t at

t→2`. The basic result lnZ(y,r)}(yr)3/2AE/L is valid for
the whole family in agreement with Eq.~3.10!.

D. Discussion

The particular instanton found has the scaling

du~r!5u~r/2!2u~2r/2!}r, ~3.33!

which would give the asymptotics of the right tail of the PDF
P(du,r)}exp@2(du/r)3# obtained by the Fourier transform
of Z(y). It is unclear at the moment if there are flows where
such asymptotics take place; most probably, this simplest
instanton does not realize the main extremum of the action.
Note that the similar instanton with the linear profile is found
for the Burgers problem@20#, where it indeed determines the
right tail (du.0) of the velocity PDF due to sawtooth
waves. The general analysis of the whole family of instanton
solutions for the two-point velocity statistics at the frame-
work of the Navier-Stokes equation will be published else-
where. Also, the crucial problem of the contribution to the
action from the fluctuations against the instanton background
will be considered. It is clear that, in the straining flow of the
instanton, any vorticity perturbation produces a spiral with
the accumulation point at the velocity null. The scaling of the
perturbation contribution is different from Eq.~3.33!; for in-
stance, it will give Kolmogorov’s53 law for the pair correla-
tion function as in the Lundgren example@22#. The analysis
of the instanton fluctuations will be the subject of further
publications. Note that the instanton formalism provides a
natural~and long-expected! tool for incorporating numerous
results on particular solutions of the Navier-Stokes equations
into the statistical theory of turbulence.
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