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We describe the method for finding the non-Gaussian tails of the probability distribution fucleids for
solutions of a stochastic differential equation, such as the convection equation for a passive scalar, the random
driven Navier-Stokes equation, etc. The existence of such tails is generally regarded as a manifestation of the
intermittency phenomenon. Our formalism is based on the WKB approximation in the functional integral for
the conditional probability of large fluctuation. We argue that the main contribution to the functional integral
is given by a coupled field-force configuration—thstanton As an example, we examine the correlation
functions of the passive scalaradvected by a large-scale velocity fiefdcorrelated in time. We find the
instanton determining the tails of the generating functional, and show that it is different from the instanton that
determines the probability distribution function of high powersiofWe discuss the simplest instantons for the
Navier-Stokes equatiofS1063-651X%96)05010-4

PACS numbefs): 47.10:+g, 47.27—i, 05.40+]

I. INTRODUCTION We start with the dynamical equation

The intermittency phenomenorreflected in non- du+L(u)= ¢, (1.1
Gaussian, scaling-violating tails of the probability distribu- ) ] )
tion function(PDP] is believed to be the hardest part of the that controls the evolution of a flelul(t,r)_ under the action
yet-to-be-built theory of turbulence. Neither the physical®f @ random “force” ¢(t,r). Here L(u) is a nonlinear ex-
mechanism nor the mathematical properties of rare fluctuaRression, it can be thought of as being local in space. Gen-
tions responsible for the intermittency are known. erally, both the fieldu and the forces have a number of

Now, what is the most likely force which can lead to the COmponents. The Gaussian statistics of the fapcis com-
given rare fluctuation of the field? The main idea of thisPletely characterized by the pair correlation function
paper is that such a force is not random at all. It satisfies a .
well defined equation, which follows from the WKB ap- (h(t1.r1) b(t2,r2))=E(tr—tp, 11— Tp). 12
proximation in the functional integral. Asymptotically, the . ) ) )
fluctuations of the force around this are most likely negli-'N Principle, refations1.1) and(1.2) contain all the informa-
gible. In this respect, the method is similar to the “optimal ion about the statistics af. .
fluctuation” method used in treating properties of a solid Eduation(1.1) describes e.g., thermal fluctuations in hy-
with quenched disordefsee e.g., Ref[1]). A similar ap- drodypamlcs where itis reduced to the_we_ll known Langevin
proach has been used to analyze high-order terms of the pefduation(s]. Then¢ is short correlated in time and in space
turbation series in quantum field thedis], and to calculate SUch that it can be treated as a white noise. For some sys-
phonon attenuation due to multiple quasiparticle productior}€™$: this thermal noise produces remarkable dynamical ef-
[3]. The idea that PDF tails in Navier-Stokes turbulence may/€cts- Some examples are collected in Réf. Here we are

be obtained by minimizing the action was discussed earliefnterested in turbulence, wheggis an external “force” cor-
by Giles[4], who tried to find the minimum perturbatively related on large scales in space. Turbulence was first treated

with respect to nonlinearity. We shall see below that the" terms of Eq.(1.1) by Wyld [9], who formulated the dia-

extremal trajectories are nonperturbative objects, as are ifd@Mm technique as a perturbation series with respect to the

stantons in quantum mechanics and field theory. nonlln_ear term in the Naw_er-Stokes equation. The diagram
The problem under consideration is quite general, and cafchnique cannot be applied to our problem since we are

be formulated for any field governed by a nonlinear dynamidnterested in nonperturbative effects. Nevertheless we can

equation and driven by a random “force.” Generally, the US€ the functional that generates the technique since it is a

PDF of the field depends both on the statistics of the driveffonperturbative object. Such a generating functional was in-

force and on the form of the dynamical equation. Here wereduced in[10,11 for Eq. (1.1); it has the form

are interested in the second dependence, so that we assume

the force to be Gaussian. Because of nonlinearity, the PDF of Z()\)E<exp< i f dtdr Au) >

the field is non-Gaussian even for a Gaussian random force.

Note that a strong intermittency also appears for linear prob-

lems with “multiplicative noise,” for instance, for a passive :f Dquex;{iIJrif dtdr \u

scalar advected by a random velocity field. ' 13
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wherep is an auxiliary field, and the effective action is functions att=0. The formal ground for the rule follows
from the consideration of the problem in the restricted time
interval t<tqy, which is possible in=0 att>ty. Then the
minimization of Z+ [dtdr Au over the final valueu(ty)
i gives p(tg) =0, because of the boundary term originating
+—f dtdt drdr'E(t—t',r—r")pp’. (1.4 from/Jdtdrpau. _ o

2 One may also be interested in the probability distribution

function P(u) for the field u. It can be expressed via the

The coefficients of the expansion afin A are the correla-  generating functional(\) by the functional Fourier trans-
tion functions ofu. The auxiliary fieldp determines the re- ¢5rm

sponse functions of the system, for instance, the linear re-

sponse function(Green functioh is G=(up). Note the _
remarkable propertj12] P(u)= | DN\ Z(N)exp —i | dtdrauf. (1.9

7= f dtdr p[au+ L£(u)]

o We expect that the behavior @%(u) for largeu as well as
J DuDpexpiZ)=1, the behavior ofZ(\) for large N is associated with some
saddle-point configurations. Generally, the configurations are
related to the causality. That is the reason why the normalnot always the same for both Ed4.3) and(1.9). Indeed, we
ization constant is unity in Ed1.3). This makes it possible see from Eq(1.9) that the tail ofP(u) at largeu corresponds
to average any additional random field directly o\&rif  to a large value oBInZ(\)/S\ which is related to larga
necessary. only if the tails of both the PDF and the generating func-
The asymptotics oE(\) at large\ is determined by the tional decay faster than exponent—see the example in Sec.
saddle-point configuratiofusually called the classical trajec- |I. Otherwise, those tails are determined by different con-
tory or instantoi which should satisfy the following equa- figurations as is demonstrated in Sec. II.
tions obtained by varying the argument of the exponent in - The best starting point to develop the instanton formalism
Eq. (1.3 with respect tau and p: is the problem of white-noise-advected passive saakince
it allows for a detailed analytical treatmelrit4—16. It will
— PAP TS (bt r o be shown in Sec. Il that botR(6) and Z(\) have exponen-
L) IJ drdriE(t—thr=rpthr, 9 tial tails, as was established before by Shraiman and Siggia
[15] (see alsd16]). By using this example, we shall explic-
_ % —\ 16 ity demonstrate that different instanton configurations are
P Su P=A. (1.6 responsible for the tails of the generating functiogéh) at
large\ and of PDF at large), respectively. It is instructive
Solutions of Eqs(1.5 and(1.6) are generally smooth func- to recognize the difference between the instantons: We shall
tions oft andr. Comparing Eqs(1.1) and(1.5) we conclude show that the instanton that is responsible for lafgeorre-
that the right-hand side of E@1.5) just describes a special sponds to a small strain and suppressed stretching. Con-
force configuration necessary to produce the instanton. Wersely, the instanton that determines the tails2otorre-
Uinst IS @ solution of Eq(1.5) and(1.6), then asymptotically, sponds to a large value of strain.
at large\, Section Ill presents the first step in studying instantons of
) the Navier-Stokes equation. Only instantons for the two-
SINZ(N)/ ON=iUjpnst. (1.7 point generating functionalexp(\(u;—u,)) will be consid-
ered. The family of such instantons corresponds to the veloc-
. . . T ) ity fields with a linear spatial profile at<L. Consideration
point equations. Equatiofl.5) implies that we should fix the ¢ 16 instanton perturbatior(giving the fluctuation contri-

valueu;, for the fieldu at the initial timet;,. Conversely, & o into the actionthat correspond to spiral creation in
bpundary condition for fielgh |s'|mpI|ed at the.remote futu_re the straining field of the instanton will be the subject of
since, as follows from Ed1.6), it propagates in the negative further publications.

direction in time. Minimization of the action generally re-
quiresp— 0 att— . For the instantons discussed below, the
finiteness of the action will also requite—~0 att— — .

If one is interested in the simultaneous statistica,ahen

Let us discuss the boundary conditions for the saddle

Il. PASSIVE SCALAR ADVECTED BY A LARGE-SCALE
VELOCITY FIELD

the function\ can be chosen as Let us show how the general formalism described in Sec.
| works for a particular problem: the advection of a passive
A(t,r)=yS(t)ho(r), (1.8 scalar field6(t,r) by an incompressible turbulent flow in

) ) ) i d-dimensional spacgl3-16. The advection is governed by
wherey is a number, and, is an appropriate function of o equation

r depending on what spatial correlation functions we are go-

ing to study. In this case, we should find the solution gor (+v, V,—kN)0=¢, V,v,=0, (2.2
satisfying the rulep=0 att>0. The systen{1.5 and(1.6)

is thus to be treated fdr<<0 only. This corresponds to the where ¢(t,r) is the external source;, is the advecting ve-
causality principle, since only processes occurring in the padocity, and A designates a Laplaciag, being the diffusion
could influence the value of the simultaneous correlatiorcoefficient. Bothv(t,r) and ¢(t,r) are random functions of
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t andr. We regard the statistics of the velocity and thelagrangian trajectory of the particle,8]. We will take the
source to be independent. Therefore, all correlation functionBarticle positioned at the origin at tinte=0, then
of # are to be treated as averages over both statistics. ‘

We assume that the sourgeis & correla_ted in time and Q(t):f drv(r,o(1)). (2.6)
spatially correlated on a scale, and that is has Gaussian 0

statistics completely determined by the pair correlation func- . .
tion pietely y P After the transformatiom—r—o(t), Eq. (2.1) acquires the

form

(P(t1,r1) P(t,r2))=8(t1—tz) x(r12). 2.2

Here x(r,) as a function of the argument,=|r,—r,| de-
cays on the scalk. We are interested in the behavior of the
correlation functions on scales<L. Thus only the constant
P,=x(0) will enter all the answers. The constdhy has the
physical meaning of the production rate @f.

Following Kraichnan[13,14], we consider the case of a
Gaussian velocity & correlated in time and containing only Z()\)=j D6Dp Do exp( —7'"(0)+i1+ij dtdr )\0),
large-scale space harmonics. Then the velocity statistics is 2.8
also completely determined by the pair correlation functions

whereo, is a function of time satisfyingr,,=0, and its
(Valt1,r)va(ta,r2)) = 8(t1—t2)Vag, PDF is exp{-F). The effective actiod and the functional

Fin Eq. (2.8 are
Vaﬁzvoﬁaﬁ_lcaﬁ(rlﬁl ’Caﬁ(o)zo (23)

{0i+[va(t,r)—v(1,0]V,— kA} 6= ¢. 2.7

It can be seen from Eq$2.3) and (2.4) that the statistics
of v,(t,r)—v,(t,0) coincides with the statistics of,r 5.
That means that the generating functional corresponding to
(2.7) can be written as

Here the so-called eddy diffusivity is as follows: iI:if dtdr(pd 0+ poar gV .0+ «kVpVe)
) D(d—1) ;
Kap=D(r 5aﬁ—rarﬁ)+T5aﬁr ) (2.9 —%f dtdrydrypix(ri2pa, (2.9
whered is the dimensionality of the space and isotropy of
the velocity statistics being assumed. Representati®rs F= mf dtf(d+1)04poapt Tupogal-
and (2.4) are valid for scales less than the velocity infrared (2.10

cutoff L, which is supposed to be the largest scale of the

problem. ThenV, and K,z in Eq. (2.3 are the first two Note that there is a difference between E@s3) and(2.8)
terms of the expansion of the velocity correlation function inwhich is in the presence of an additional random field
r/L,, so thatD~V0/Lﬁ. We also presume the inequality o,z-

dDL?>« which guarantees the existence of a convective

interval of scalesy<<r<<L where correlation functions of A. Uniaxial instanton

fche passive scalar are fqrmed mainly b—y stretching _in the Here we examine the saddle-point contribution to the gen-
|rr1]hochT_1f?ge.necTus Vﬁlo\?\'/ty fr|]eld. Hert_gd= 2 hK/[|'D('d_f1h)'] r|1$P erating functionalZ(\). The equations describing the saddle
e dfusin engt. We hus consder e It of 191 P poinis e extrerum conilons G+ ek o

d= 1. ' ing f i . 2.1 fi
the scalar field, the Peclet number should be kept finite, sincgtartIng om expression.9) and (2.10, we find

the variance of the scalar already turns into infinity in the

limit of infinite Peclet numbef13]. GO+ T gl gV ,0— KV 2 0= —if dr'x([r=r"Dp(t,r'),
The statistics of the large-scale velocity field has a re- (2.11)

markable property: It follows from expressiori2.3) and

(2.4 that the correlation function of the strain field P+ T gl gV 4P+ kVZP=1X, (2.12

0.5=V v, isr independent,

(0ap(t)o,,(12)) oaﬁ(t)=in dr[(d+21)rgV,0—r,Vg0—135,4r,V,0]p,

(2.13

= D[(d+ 1)505:"5537/_ 50(,/5[3#_ 50([;5/“/] (S(tl_tz)
(2.5  wherep=p(t,r), andd=6(t,r). If to take into account only

) o the saddle-point contribution described by Ed2.11),
This means that the strain fietd,; can be treated as a ran- (2 12 and(2.13, then

dom function of timet only. That property enables one to

find in detail statistical properties of the fiettd[15,16. To )

exploit this property, it is convenient to pass into the comov- 2Z(N)= < ex;{ ! f dtdra6
ing reference frame—that is, to the frame moving with the

velocity of a Lagrangian particle of the fluid. This means thatwhere F,, is the saddle-point value ofF—iZ—ifdtdr \ 6.
we pass to the space variahle- o(t), where o(t) is the  From(2.9), (2.10, and(2.12, one obtains

> °‘-’eXI0( _}—extr)a (2-14)
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symmetry. Therefore, Eq$2.22 and (2.23 have a spheri-
cally symmetrical solution. However, incompressibility con-
dition o,,=0 requires thar, ;=0 on that solution which
makes the respective action to be infinite due to time inte-
gration. The probability of a spherical solution is thus zero.
Let us show that the mostly symmetric solution with a finite

In the following, we will be interested in simultaneous action has a uniaxial form, which means thaj, is a diag-

correlation functions of), so that we take the field in the
form (1.8) and solve the equations for negative tite0.
Let us stress that for functiofi.8) the term\ 8 is not influ-
enced by the transformatior—r—p(t) because of
2(0)=0. Note that the system of equatiofa1l), (2.12,

and(2.13 with function (1.8) is invariant under the transfor-

mation

o—Xo, p—Xp, t—X"1, y— XY,

k= XK, Fexr— XFexirs (2.16

where X is an arbitrary factor. This leads to the conclusion

that
Fexu=Y Tyl ), (2.17

with the functionf to be determined.

We will treat nearly single-point statistics. This means

that the space support of the functippin Eq. (1.8) is taken
to be much smaller than the pumping lendth From the

other hand, we would like to avoid bulky formulas related to
the account of diffusion. Therefore, the size of the support is

believed to be much larger than the diffusion lengih We
thus come to

A(t,r)=yo(t) Su(r), (2.18

where 5, (r) is a function with the characteristic size !
satisfyingL> A ~>r, and normalized’dr §,(r)=1. The

effective Peclet numbdrA is thus assumed to be large. For

example, we can take

Ad
5A(r)=F,7§exq—A2r2). (2.19
We thus examine the object
Zy=(expliy6,)), (2.20
where
0A=f dr S,(r)8(t=0,). (2.21)

Keeping in mind the inequalith “!>ry, in the following

we omit the diffusive terms in the equations. The extremum

conditions(2.11) and(2.12 are then as follows:

(?t9+0'a'3rﬁva0:_|J dr’Xp’, (222

P+ 0ol gV oP=Yy (1) 5p(1), (2.23

According to Eq.(2.13 the structure of the tensar,z
reflects the spatial symmetry of the fieldg) andp(r). The
source term in the right-hand side of Eg.23 has spherical

onal matrix with the components
diagg=(—s,s/(d—1),...). (2.29

As was suggested if16], it is useful to pass to the fields
a(t,r)= o(tex,e ry), Pp(t,r= p(t,eHx,eLrl),(
2
wherex is the coordinate along the marked direction,is

the component of the radius vectorperpendicular to the
direction, and

e”(t'):exp[ ft?dts(t) . elTt=gt. (226

Now Egs.(2.22 and(2.23 can be rewritten
at?éz—if dr’ x(R(t)P(t,r"), (2.27)
IP=Yy8(1)3x(r)—=P=—yd,(r), t<0, (2.28

where we presented an obvious solution forsatisfying
P=0 att>0. The quantityR in Eq. (2.27 is
R?=ef(x—x")2+el(r, —r])>2

(2.29

Note that

s
R=—s(Xdy+ X' d5) R+ d_—l(rL~VL+ri~Vi)R.
(2.30

For the considered uniaxial geometry, relati@il3 gives
s:—in drp[(d—1)xd—r,-V,16.  (2.3D

Now, using Eqs(2.27) and(2.28, we find

9,8= —Dyzf drdr’S,(r)oa(r")

X[(d=1)xdx—r -V, ]x(R). (2.32
By virtue of Eq.(2.30 and the symmetry properties of the
integrand in Eq(2.32, we obtain

_ (d—1)Dy?

Sd;S T&J drdr’8,(r)oA(r")x(R).

(2.33

The equation has an obvious first integral, which can be es-
tablished if we take into account that-0 if t— — [oth-
erwise Eq.(2.19 is infinite]:
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field-theoretical formalism, precisely in the way it appeared
52=(d—1)Dy2f drdr’,(r)éa(r')x(R). (2.34  in the classical cases of ferromagnetism, superconductivity,
etc. The probability of a less symmetric state is larger than
One can demonstrate that the main contributioi£jois  that of a symmetric one.
determined by the saddle point wist-0. Our instanton thus ~ As long as we are interested in the tail of the generating
describes a stretching in thedirection and a contraction in function Z,(y) at largey, the instanton contribution&.36
other directions while time moves backwards:increases Or (2.37) give the correct answer. However, it is not enough
with increasing|t| in accordance with2.26). This means o consider that contribution to obtain the tails of the PDF,
that the characteristic value & in Eq. (2.34 can be esti- because the respective tail ai(y) is exponential. Indeed,
mated aQMA—le”_ At small|t|, whereey is not very large, W€ shall see below that the tails B 6) are determined by
x(R) in Eq. (2.34 can be substituted for b,= x(0), and  the contributions at moderage We thus face the problem of

we find thats=s,, where finding Z(y) at arbitraryy. Fortunately, the tails oP(6) are
also determined by the instanton contribution; however, this
$;=y\(d—1)P,D. (2.395 instanton is different from the above uniaxial solution, which

represents the situation where stretching occurs along one

That leads tce||%exp(sl|t|), which is correct ifR<L, which  marked direction. It is obvious that, if the direction slowly
means|t|<s; *In(LA). In the opposite limift|>s; *In(LA),  varies in time, the value of the effective action will not be
the value ofs tends to zero. essentially influenced. The role of such soft fluctuations is

The above analysis shows that the main contribution texpected to be negligible if the characteristic time
Fexr LEQ. (2.15] is associated with the region of integration s[lln(LA) of the stretching is small enough. We thus con-
|t|=s;tIn(LA), when stretching from the distance ! to  clude, taking into account E§2.35), that expressioii2.36)
distanceL takes place. The first term in E(R.15 can be is correct at largey. At moderatey, the fluctuations of the
written as %y2p251*1|n(|_/\)_ Substituting Egs.(2.24 and stretching direction should be taken into account; it is the

(2.35 into the second term of Eq2.15), we find topic of Sec. Il B. There we shall explicitly integrate over the
soft mode, and obtain different equations for the instanton.
Poy?

1/2
}—exn:((d——l)D) In(LA). (2.36

B. Isotropic instanton
Here we take into account the fluctuations of the stretch-
ing direction which were neglected in Sec. Ill A. For that
purpose, it is useful to introduce the variable measuring the
stretching rate along the current stretching direcfiire di-

rection of the maximal Lyapunov expongmtetermined by

Note that the expression is in agreement with Ej17),
since we considered the casgA <1, where the answer
should be k independent. It is also possible to restore
Z,(y) in the limit A —oo; that is, for the single-point object.
For this we should recognize that generatly, is a function ¢ sirajn fieldo 5=V gv,,. For this aim, it is useful to per-
of the dimensionless parametary, and use property Eq. form the transformation of the fieldg and p, generalizing

(2.17. Then in the limitrgA>1, where theA dependence gq (2 25 for an arbitraryo 5 [16]. That is, let us pass to the

should disappear, we obtain fields
Poy? |12 1 (P Bt = B(t.r) =
fextr:(ﬁ) ||n(L/I’d)+ Zh’l Bzyz(d—l))]. 0(t,|’)—0(t,|\/|aﬁr/3), p(t’r)_p(t'MaBrB)’ (2.38
(2.37 with the dXd matrix M,z controlled by the equation

Note the nontrivial dependence of this single-point object on A . .
y. This is a consequence of the time dependence of the ef- M=cM, M(t=0)=1, (2.39
fective diffusion cutoff, which can be seen at the direct so- )
lution with an explicit account of the diffusion. with a formal solution

Above, we considered the simplest case of the uniaxial .
strain matrixo,z. It is not very difficult to generalize the I\A/I=Tex%f dt’&(t’)). (2.40
scheme to the case where principal axesogf are fixed 0

(that is, they do not depend on tim&he answer shows that . ] ) .

it is the uniaxial solution that gives the minimum value of The symbolIT designates the antichronological ordering for
Fexr» and therefore only this contribution should be takennegativet. Note that de¥l =1 due to the incompressibility
into account. The fact that the symmetry of the solution iscondition to=V ,v,=0. Performing the substitution in Eq.
lower than the symmetry of the source means spontaneoy8.9) and passing to the space variaMe (the Jacobian of
symmetry breaking. Note that symmetry breaking in the ranthe transformation is equal to unity due to et 1), one
dom N XN matrix process with SU{)-symmetric statistics obtains

was noticed previously by Dorokhd7], who showed that

the mean Lyapunov exponents are nonzero and that a largest . -~ 1 - -

exponent exists. In our case, this means the existence of a 'I:'f dtdr pa,6— 5[ dtdr,dropix(R)P2,

mean stretching and spectral cascade of the passive scalar. It (2.41

is interesting to note that the irreversibility of scalar turbu-

lence and related symmetry breaking naturally appears in owhere



54 INSTANTONS AND INTERMITTENCY 4901

Ry=M,5(r 15~ 12p). (2.42 cal variable of the instanton is thus the stretching rate given
by a scalar, the direction of the stretching does not enter
We see that onyR is o dependent in Eq(2.41) and, the expressions. That is why we call this instanton isotropic
moreover, only its absolute valuR enters the effective ac- (not to be confused with a symmetric one, where stretching
tion. Just that value is a measure of the stretching irrespeds absent The characteristic value d® on the right-hand
tive of the directions of the current main axes of the matrixside of Eq.(2.50 can be estimated as
o. The statistics oR can be established starting from the o
PDF exp{F); see, e.g.[18]. The answer is that, for nega- oA -1 f
tive times,R can be written as R(t")~A exp( tfdtg(t)>' 259

o If R<L, then the integral on the right-hand side of E2}50
R(t)=ex;{ft dr’{(t ))lrl—r2|, (243 is approximately equal t®,; if R>L, then the integral is
negligible. This means that there are two different time in-
with the random variablg having PDF exp{ F;) with tervals. At largdt|, itis {=(d—1)dD/2, and at smallt| it is
{={4, where
F _f dt 1 d(d—1) D)Z .44 ; o
©J 72pdd-1) 2 p (A i) D2+(d-1)Dy?P,. (252

The generating functiondR.20 is thus rewritten as
The boundary between the regions igtat-¢; In(LA). The
z. = | DODEDrexiyo,+iT—F,), 24 main contribution taF,,, (2.49, is associated with the re-
A f PDexply Oy +1 J (249 gion |t|<t;={; YIn(LA). Again, this has a simple physical
meaning: the action(i.e., probability is determined by

whered, is defined by Eq(2.21). , _the time interval when the given piece of the scalar is
We have performed the exact transformation of the statiSgiratched until the pumping correlation scale The first

tical weight introducing the variabl¢ which measures the .. in Eq. (2.49 can be substituted for by?P,t,/2

sequent minimization of the action with respect #pis  (2p(d—1))~1(¢,—(d—1)dD/2)%,. Using Eq.(2.52, we
equivalent to the following system: find

ap=ys(t)8\(r), (2.49 d2 Py? \¥2 d
fextr:[( ) _Em(LA). (2.53

FRETE)

,0(t,r =—inr R(t)JP(t,ry), 2.4
Y 2 RIVIP(LT2) (247 Comparing expression®.53 and (2.36), we conclude that

d(d—1 e fluctuations of the stretching direction can be neglected if
(= (d—-1) D= th dtdrldrz'ﬁlﬁza—XR. y?>Dd’P, ", Let us stress that 3f~Dd*P, *, the value of
2 2 — JR Eq. (2.53 is much larger than unity. That means that viola-
. tion of Eq.(2.36 is not associated with a destructing saddle-
(2.48 [ f EQ.(2.36) i iated with a d i ddl

] point regime; it is rather related to an incorrect calculation of
Equation(2.46 has the same form as E@.28, and conse-  goft fluctuations in the saddle-point regime. Note also that

quently has the same soluti@= —y3,(r). It follows from  the role of fluctuations increases with increasing space di-
Egs.(2.45 and(2.46 that, in the saddle-point approxima- mensjonalityd.

tion, Z,cexp(—Fey), Where

C. Probability distribution functions

1 —_— 1
fextr:if dtdry drypy pox(R)+ 2D(d—1) The scheme proposed in the preceding subsections can
) also be applied to calculating PDF,(39) of the quantity
d-1)d
XJ dt(g— ( . ) D) . (2.49 0, [Eq. (2.21)]. Let us start from the average

2n\ _ i7T—
It follows from Eq.(2.43 that9,R= —{R. Using that, we (oA >_f DoDp Do expil=F,+2nInd,). (2.54

can find the first integral of Eq2.48, ) o o )
The saddle-point contribution t91") is determined by the

, d(d-1)% 5 extrema of iZ—F,+2nlInd, which coincide with Egs.
{f=—— Db+ (d-1)by (2.1, (2.12, and(2.13 if we substitute
2ni
XJ drydryo,(ry) oa(r2) x(R). (2.50 R (2.59

The constant here is established using the propertfhen an attempt to find the analog of the uniaxial instanton
{—(d—-1)dD/2 at t——« following from 6#—0 at fails. The formal reason for this is in additionalin Eq.
t— —oo [Eq. (2.49 is infinite otherwisg¢ The only dynami- (2.55. The physical reason is that the uniaxial instanton is an
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adequate object for the statistics of fast processes, whereas d
(63" is determined by slow processes with suppressed Pa(¥)<exp 5In(LA)| 1~

stretching.
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d-1 ﬂZ 1/2
1+P_2DInZ(LA)) ”
(2.63

To find a solution, we should pass to the isotropic instan-
ton. That means that we should perform the same transfowhich is in agreement with15,18,16. Formally, expression
mation of the fields as in Sec. Il B, which leads to the saddle{2.63 is valid at9— <, but it really covers the whole region

point equationy2.46), (2.47), and (2.48), with Eq. (2.55.

of ¥ because the PDF is Gaussian at sm&l[16]. The

The equations have a solution of the same type as considereliktant tails of the PDF are exponential, as was established

above, with

d?(d—1)? 4n?
ﬁzTDZ—(d—l)DPZG—Z.
A

(2.5

The value of, in Eq. (2.56 is the parameter which can be

found from the equation analogous to Eg.47), which now
reads

~ 2n
&tez—g fder(R)éA(rz). (2.57
A

by Shraiman and Siggifl5]. Note that the value of the
Lyapunov exponent; corresponding to the saddle point in
Eq.(2.62 is

2 —1/2

d —
gextrzi(d_l)D 1+P_2D|I’l2—(LA) (2.69
We see that the value decreases with increasinghereas
the value(,, Eq. (2.52), increases with increasing. The
physical meaning is quite transparent here: to observe a large
fluctuation of the scalar one needs suppressed stretching.
Note also that the value of corresponding to the extremum

As previously, the integral on the right-hand side of Eg.point is

(2.57 for r;=0 is equal toP, if [t|<In(LA)/{;, and is neg-
ligible otherwise. We thus come to the conclusion that

In(LA)
&Hoo

Substituting the relation into E42.56), we find the equation
on ¢, leading to
1/2)

We see that{; decreases with increasing, and conse-
qguently the characteristic time Ind)/{; increases with in-
creasingn. Now substituting Eq(2.59 into Eq. (2.58, one
obtains

03 =6%(t=0r=0)=2nP, (2.59

n2 d?
nZ(LA) ~ 4

n
gl:(d_l)D{_ln(LA)+ (2.59

, _8nPaIn(LA) n ( n2 d2)1/2
s~ @D(d-1) |inn) iy T
(2.60

It is not very difficult to recognize that the main contribu-

tion to the saddle-point value of— F,+2nIng, is deter-
mined by the last term. This means that
(637 o= €XP — Fo) = 031, (2.6

with 6,,, from Eq. (2.60.

2 _
extr—

(d—1)d’D 92
4P,  9°+P,/(d—1)D)’

(2.69

This means thaty2,,|] <d®D/P,, and consequently the extre-
mum point lies beyond the applicability region of the ap-
proximation(2.36). This is the reason why E@2.36 does
not restoreP, (9).

Now we can calculaté63") starting from the definition

(63" = f dd 92"Pu( D). (2.66
This integral can be calculated, again using the saddle-point
method. The result coincides, of course, with E61). We
thus conclude that Eq2.49 or (2.63 cover both cases of
slow and fast processes. This means that an account of fluc-
tuations of the direction of stretchingperformed in Sec.
I B) gives us a tool for finding the tails of both the PDF and
the generating functional.

In much the same way we can find the PDF for the dif-
ferencesA 8= 60(r) — 6(—r). Instead of Eq(2.18), we use

A(r)=Yy[ox(ri—r)=da(ratr)]. (2.67
We consider the isotropic instanton and use Eg#19 and

(2.50 with p(t,r;)=—y[S\(r;—r)—8,(r1+r)]. Then, we
find for the integral in Eq(2.49),

The same result can be deduced by the alternative

method. That is, starting from E@2.53, we can calculate

the tail of the PDFP, () for the quantityd,, Eq. (2.21).
The functionP, () is the Fourier transform of, (y):

PA(0)=f dyexp(—iyd) Z,(y)

« [ ayex—iy-F. @62

Here, substituting Eq2.49 and calculating the integral over Eq. (2.50

y by the saddle-point methdd 8], we find

J drydr,pipox(R)

=—4M?y"(0)r?2, —t,;<t<o, M<LI/r,

X :2P2, _(t1+t2)<t<_t1, L/r<M<LA,

-0, t<—(t;+1,), M>LA,
(2.69

whereM =R/|r;—r,|; that is,9;M = — M. It follows from
that for —t,;<t<0, ¢(~(d—1)dD/2; for
_(t1+t2)<t<_t1, é’mgz’ where



54 INSTANTONS AND INTERMITTENCY

d—1)%d?
£§=¥D2+2(d—1)Dy2P2;

2 (2.69

and fort<—(t;+t,), again{~(d—1)dD/2.
The main contribution to the extremum val(2.49 is
determined by the region (t;+t,)<t<—tq, itis

2P,y?

d2 1/2 d
]:eXtr:[(Z—’_(d——l)D) —E In(rA),

(2.70

instead of EQ.(2.53. Then we can find the PDF for the

difference taking the integral of Eq2.62 type. Instead of
Eqg. (2.63, one obtains

d—1_(A9)? )1/2
2P, Dlnz(rA) ]
(2.70

PA(Aﬁ)ocexp{ gln(rA)[1—<1+
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soft since those variations weakly influence the action.
Therefore, the fluctuations related to the soft mode are rel-
evant, and should be taken explicitly into account: If the
extremum is not steep at some directions in the functional
space, then integration over the respective degrees of free-
dom should be performed explicitly. The contribution of that
integration depends on the lifetime of the instanton, as was
discussed above. The well-known analogy from the theory of
phase transitions is that Goldstone modes appearing due to
spontaneous symmetry breaking in the low-temperature
phase may destroy the long-range order., restore the sym-
metry).

Ill. SIMPLEST INSTANTON OF AN INCOMPRESSIBLE
VELOCITY FIELD

Here we describe the first step in considering a much
more complicated problem of finding the tails of the PDF for

The tails of the PDF are exponential while the core is Gaussa velocity field in three-dimensional incompressible turbu-

ian [for (A9)?<P,In(rA)/d(d—1)D]:

d(d—1)D (A9)?
8P, In(rA)|’ 272

That PDF can be used for calculating mome((ta 9)2")
with n<In(rA); in particular, Eq.(2.72 gives

PA(Aﬂ)ocexp{—

4P,In(rA) 48P2In%(rA)
<(Aﬁ)2>~m, (( )4>*m,
(2.73

which exactly corresponds to the answers obtained=a2
in[16,19.

D. Discussion

lence. We consider two-point statistics, and show that an
instanton with a linear spatial profile naturally appears as a
basic flow.

The effective actior(1.4) for the Navier-Stokes equation
can be written as follows:

I:f dtdr(pediv ot Pav gV gva— vp, Vo,
+p£¥VQP+QVC¥v£Z)
i
+§Jdtdt'drdr’E(t—t’,r—r’)papg. 3.1

The additional independent fields and Q play the role of
Lagrange multipliers enforcing the incompressibility condi-

tionsV ,v,=0 and the analogous conditidh,p,=0 for the

We consider the statistics of the passive scalar advectegsponse fielp,. The fieldP has the meaning of pressure
by the random velocity field in the framework of the instan- (divided by the mass densip). The origin of the terms with
ton formalism. The consideration is very instructive, since itthe fieldsP and Q in the effective action is related to the
reveals some nontrivial peculiarities of the formalism. First,continuity equatiord,p+V ,(pv,)=0, which should be in-
we see that a direct solution of the saddle-point equationsorporated into the effective actio is just the auxiliary
gives us an answer which satisfactorily describes the tail ofresponsgfield corresponding to the equation. At the condi-
the generating functionaZ(\), but cannot serve to restore tion that all velocities are much smaller than the sound ve-
the tail of PDFP(9). The physical reason for this lies in the locity, it is possible to neglect the time derivative in
difference between the processes forming the tails: The tail,p+V ,(pv,)=0 and variations of the mass density, which
near Z is related to the fast stretching process, with a chardeads to the ter@V v, in Eq. (3.1). While variations of the
acteristic time decreasing asincreases, while the tail near mass density can be neglected, variations in the pressure are
P is related to slow stretching, with a characteristic timerelevant. Therefore, it is natural to pass from the integration
increasing as® increases. This conclusion can be directlyover the mass density to the integration over the pressure as
extracted from Eqs(2.35 and (2.64). For slow processes, it is implied in Eq.(3.1).
those fluctuations of the stretching direction which are rel- We are going to examine the generating functional for the
evant do not destroy the saddle-pofintstanton regime but  velocity,
renormalize the naive answer. For that particular problem,

Z()\)E<exp<if dtdrA-v >

the fluctuations can be explicitly taken into account after the
=J Dp Dv DPDQexr{iIHJ dtdr-Av

special transformations of the fields. Although the trick can-
not be widely generalized, it shows the direction of improv-
ing naive answers. In a general case, we expect that a direct
solution of the saddle-point equations will produce nonsym-
metric instantons with a degeneracy paramgike the di-
rection of the marked axis in the case considgré&ithen
there exists the “Goldstone” mode related to slightly non- The extremum conditions for the argument of the exponent
homogeneous variations of the parameter. Such a mode i8 Eq. (3.2) determining the Navier-Stokes instanton read

(3.2
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90 (1) +0 51, 1)V go (1) = vV 2, (t,1) +V P(t,1)

, d% o
:_IJ dt,fWGXKIk'r)ﬂ(t—t,,k)pa(t’,k),
3.3
atpa(t!r)_pﬁ(t!r)vavﬁ(t’r)+vﬁ(t’r)vﬂpa(t!r)
+ V2P, (1,1 +V ,Q(t,r) =N\, (t,r), (3.9

where = (k) andp,(k) are Fourier transforms ¢&(r) and
p.(r), respectively. In Eqs(3.3) and (3.4) the conditions
V.w,=0 andVp,=0, which originate from varying over

the fieldsP andQ, are also implied. Then the values of the
fields P andQ can also be found from the conditions. This

gives the relations
(3.9
(3.6

VZP: _Va(UﬁVﬁUa),

VZQ:Va(pBVaU,B_UBVBpa)'

In the following we consider the simultaneous correlation

functions of the velocity differences ([v(0,p/2)

—v(0,— p/2)]?"), where p is the separation between the
points. The functional generating such functions is extracte

from Z(\) if one obtains

No=YyNn,é(t)[8(r—pl2)— &(r + pl2)], (3.7

wheren is a unit vector. As was explained in Sec. I, the

presence of such a term on the right-hand side of (Bd)

means that we should solve the problem at negative times

with the final condition

Pa(01)= = Y(8us— V.V 5V NG 8(r —pl2) — 5(r + pl2)].
(3.9

We assume that the pumping correlation funct®ris 6
correlated in time:E (t,r)=&(t) x(r). Then the system of
equations(3.3)—(3.6) is invariant under the transformation
analogous to Eq2.17):

t—X"1, P—X?P, Q—X%Q,

V— XV,

v—Xv, A—=X\, p—X°p, (3.9
where X is an arbitrary factor. For the functio(8.8) the
transformation(3.9) meansy—X?y. The extremum value
Fexer Of the argument of the exponent in E§.2) transforms
aS Fexr— X Fexr at Eq.(3.9). This leads to the conclusion
that

Fextr= y3/2f(y/ Vz)a

Z(y)ocexq_]:extr)a (3-1()
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structure of the fieldp determined by conditiori3.8): The
condition means that at=0 p(r)=—p(—r), the property is
reproduced by the equations, so tpék) = —p(—k) at any
time t. Thus the leading term of the expansion of the right-
hand side is linear im. This means that Eq3.3) admits a
linear profile as a solution in the region <L,

(3.11)

Let us emphasize that E(B.3) may well have other instan-
ton solutions with more complicated profiles; their analysis
is left for future studies. For Eq3.11), we obtain, from Eq.
(3.3,

va=(raﬁ(t)l’ﬁ, (raa=0.

d
kapa(k)X(k)-
(3.12

Here we substituted the expression for the pressure,

1
WO oy TopTpy— d Oa 0T y) = f

(3.13

P=- a(o-,uva-vM)rzy

hich provides for the conditioW ,v,=0. Note thatP is
efined up to a harmonic function; expressi@il3 is cho-
sen because of its isotropy.
For the linear velocity profile, Eq.3.4) can be rewritten
in Fourier representation as

J .
P~ Uﬂapﬁ_ Uﬁykﬁmpa_ szpa+ IkaQ= 0,
(3.19

which should be solved with the condition following from
Eq. (3.9):

K,k
p,(t=0K)= 2iy( Sap— vﬁ) ngsin(k-p/2). (3.19

The characteristic wave vecthrin Eq. (3.12) is of the order
of L™, Thus we can expand skp/2) in k-p and keep
only the first nonvanishing term of the expansiok- p. As
was discussed in Sec. |, the response fi#ldt) propagates
backwards in time, starting with the initial valuy8.15 at
t=0. We shall see that for a long tim@etermined by a
small viscosity the field p(t,k) at k~L~! has the same
structurexk- p.

There is a general family of the flows with linear
profiles—see Sec. IlIC below. We start by considering the
simplest case. We assume below that the point separgtion
is directed along the same vectyy as the measured velocity
componentsp,=n,p. Then the problem possesses the axial

with the functionf to be determined. We expect that in the symmetry, which allows us to look for the following uniaxial
limit y—o a v dependence in the function disappears. Therstrain matrix:

we concludeF,,, <y

The characteristic wave vect&y in the correlation func-

tion x(k) of the pumping force is of the order of the inverse

pumping lengthL. Then examining the region<L one can
expand the exponent ex(r) in Eq. (3.3 into the series

overk-r. The first term of the expansion produces the zero

contribution to the right-hand side of EE.3) because of the

T ap=S(345—dNyNp). (3.16

The same symmetry admits the anzatz

KoKg| .
Pa(t.K)={ dap= 2~ |IyNo(t,2)k-np, (3.17
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correct in the limit of smalk. In Eq. (3.17), z=k-n/k, and
the function¢(t,z) to be found has the initigffinal) value
¢(t=0,2)=1. Substituting Eq.(3.15 and (3.17) into Eq.
(3.14 we findQ=0 and

s Y o,— vk?) p+dz(1—2%)9,0+2[(d—1)—dZ2]$=0.
(3.189

Substituting expressio(8.17) into the right-hand side of
Eqg. (3.12, we find

d’k
fkapa(k)x(kFG(dnany—6a7), (3.19

where
1
G= iypcf dz Z2(1-2%)4"Y2¢t,z)  (3.20
-1
and

_ St-1 ” +
c—mfodkkd (k). (3.20)

HereS, is the area of the unit sphere dadimensional space
Sq=27YIT'(d/2). The constantC can be estimated as
C~&IL?, whereE=(v dw,) is the energy dissipation rate.
Now, substituting Eqs(3.16 and(3.19 into Eq.(3.12, we
find
ds=(d—2)s*—G. (3.22
Our next problem is to fin€ as a functional 0§, to close
this set of equations. We have to solve E2j18) for ¢. Here
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In(2h?9—1)
h?—1

iypCh?[ 2 1
G(h): th_l 1_h*2d_§_

The relevant solution, which vanishes tat —«, corre-
sponds to the zero energy in this potenfia(t)e— 1/t as
t— —o]. Thereforeg®=2U(0)—2U(q) and

dio=v2[U(0)—U(1)]=C,VEyp/L.  (3.26

Then the strain at the moment=0 becomes o,z
=q(8,5—dn,ng)/q(2—d). In accordance with Eq(1.7),
the logarithmic derivative of th& functional is related to the
average initial value of the velocity difference
Z' W 2(Y)=n(vo(p,0)—vy(—p,0)). In the leading
WKB approximation at largg, this average can be replaced
by the contribution from the instanton solution:

2q(d—1
(In2>'<y>=2pnanﬁoaﬁ=%=cz¢6yp3r2.
(3.27

Finally, we obtain the surprisingly simple result

Z(y)<exfd CaVE(yp)°L 7. (3.28

with the dimensionless constar®s, C,, andC3 to be cal-
culated. This result is in agreement with the general form Eqg.
(3.10, it also containg dependence.

B. Account of viscosity

When the viscous terms are kept, the solution is modified
as follows. With the same assumptikgp=p/L<1, we can
still look for the uniform strain solution. The viscosity will

viscous and inviscid cases are slightly different. We start byyrop from the velocity equation, but not from the response
considering an inviscid Euler equation, we then account foig|q equation(3.14). The extra termvk?p can be compen-

the viscosity.

A. Instanton of the Euler equation

Neglecting viscosity in Eq(3.18, we obtain a general

solution
Z2h—2d t
¢=h222F< > ) h(t)=exp( J s(t’)dt’).
1-z 0
(3.23
The initial condition¢(0,2) =1 fixes the functiorF:
h2—2d
HD=T 2 7= (3.29
We obtain the system of equations
5=(d—2)s?>~G(h), h=sh. (3.29

This system for the variablg=h?"9 becomes the usual po-
tential problemg=—U’(q) with the potential

U(q)= —(d—2)f dqqG(g*?9).

Ford=3,

sated for by the extra time dependent exponential

( kakﬁ)_ 5
p.(t,k)= 5aﬁ—? iynge(t,z)k-np exg vR(t,z)k<].
(3.29

The balance ok® andk® terms in the equation is the same as
before. The balance & terms gives the equation

. - dR
R=1+sLR=1-ds 2(1—22)E+25(1—d22)R,
(3.30

with the boundary conditionR(0)=0. The substitution
R(z,t)=A(t)+B(t)z? reduces the partial differential equa-
tion to two ordinary differential equations,

A=1+2As,
B=2s(B—Bd—Ad).

The solution is expressed v&t); att— —x, it grows lin-
early: R~t. The influence of the viscosity on our solution is
weak, it smears the peaks ptand manifests itself when
vR=L2, i.e., att=L?/v. That time should be much larger
than the time of instanton formatiofL?/Eyp. Our asymp-
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totic expression (3.28 is insensitive to viscosity if t—, —w. The basic result I&(y,p)x(yp)¥2JE/L is valid for

v<L|&yp; i.e., the Reynolds number on the instanton isthe whole family in agreement with E¢3.10.
large.

) D. Discussion
C. Instanton family

L . . The particular instanton found has the scaling
Considering a more general strain does not change basic

conclusions of this section. Let us describe, for instance, a Su(p)=u(pl2)—u(—pl2)xp, (3.33
general three-dimensional symmetric flow of the type con-
sidered in[21]. In the cylindrical coordinates with theaxis  which would give the asymptotics of the right tail of the PDF

alongp, the velocity vector field at<<L is given by P(bu,p)cexd —(8u/p)®] obtained by the Fourier transform
of Z(y). Itis unclear at the moment if there are flows where
u=(Ur,Ug,U;)=(—0r/2,0r2,02). (33D such asymptotics take place; most probably, this simplest

instanton does not realize the main extremum of the action.
Note that the similar instanton with the linear profile is found
for the Burgers problerf20], where it indeed determines the
right tail (su>0) of the velocity PDF due to sawtooth
P=—gr2—e[r2sind cosd+ rz(sind+ cosd)]. waves. The general analysis of the whole family of instanton
solutions for the two-point velocity statistics at the frame-
Particular details of the solution depend on the relation bework of the Navier-Stokes equation will be published else-
tweeng ande. The diagonal elementproportional tog) are  where. Also, the crucial problem of the contribution to the
determined locally from the Poisson equationaction from the fluctuations against the instanton background
AP=—div(u-Vu). Note that the off-diagonal pressure ele- will be considered. It is clear that, in the straining flow of the
ments are generally determined by the global structure of thistanton, any vorticity perturbation produces a spiral with
flow. In our case, the value @& is determined by the distant the accumulation point at the velocity null. The scaling of the
asymptoticsu— 0,P— const atr—o, and matching condi- perturbation contribution is different from E(B.33); for in-
tions atr=L which depend on the particular choice of the stance, it will give Kolmogorov's; law for the pair correla-
pumpingy. The global description of the flows for the whole tion function as in the Lundgren examgd22]. The analysis
instanton family is still ahead of us. As far as the functionalof the instanton fluctuations will be the subject of further
dependence of the respecti#y,p) is concerned, it is the publications. Note that the instanton formalism provides a
same for the whole family and does not depend on the largeratural(and long-expectgdool for incorporating numerous
scale behavior of the pumping. Considering, for instance, théesults on particular solutions of the Navier-Stokes equations
caseg=0 [opposite to the diagonal ca$8.13 considered into the statistical theory of turbulence.
abovd, we obtainw= /3s, and a system of equations simi-

lar to Eq.(3.25, ACKNOWLEDGMENTS
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