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Statistics of soliton-bearing systems with additive noise
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We present a consistent method to calculate the probability distribution of soliton parameters in systems
with additive noise. Even though the noise is weak, we are interested in probabilities of large fluctuations
(generally non-Gaussiamhich are beyond perturbation theory. Our method is a development of the instanton
formalism(method of optimal fluctuatiorbased on a saddle-point approximation in the path integral. We first
solve a fundamental problem of soliton statistics governed by a noisy nonlinealdBgwoequation. We then
apply our method to optical soliton transmission systems using signal control eleffiléats and amplitude
and phase modulators
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Spatially or temporally coherent nonlinear structuresapproximation in the path integral for probability. The main
(soliton, vortex, breather, domain wall, spiral chemical wave difficulty in applying the formalism is to identify the sym-
collapsing cavern, and many othemay an important role metries of the system and the respective soft modes that may
in the dynamics and statistics of nonlinear systems. Solitofluctuate strongly. One ought to obtain an effective action for
models have arisen in fields as diverse as hydrodynamic§uch soft(slow) degrees of freedom, integrating the distribu-
plasmas, nonlinear optics, molecular biology, solid statdion over the hardfasy degrees of freedom. For our system,
physics, field theory, and astrophysics. Presumably the mo¥{e show that the soft modes are related to the soliton param-
impressive practical implementation of the fundamental soli€ters, whereas the hard ones are related to the continuous
ton concept has been achieved in fiber optics, where solitofPectrum. The existence of the soliton thus greatly simplifies
pulses are used as information carriers to transmit digitanot only the dynamical but also the statistical description. As
signal at high bit rates over long distandsse, e.g.[1,2]). @ specific example, we apply our general scheme to the cal-
In long-haul fiber optic communication systems, the limita-culation of an error probability in fiber-optic soliton trans-
tions on the bit rate and error-free transmission distance ar@!Ssion. .
set mainly by the spontaneous emission noise added by in- We start from the nonlinear Schitimger equatior(NSE)
line optical amplifiers. Existing and future optical transmis-With an additive noise,
sion systems can show no measured errors over long time
intervals, which makes a direct modeling of the bit error rate —i0W =5V +2|W[*W + £ ()

(that must be less than 18) almost impractical. An impor-

tant role is then played by theoretical methods to evaluatélere ¢ is white noise with the correlation function
system performance. Even though the noise is weak com<(t1,X1)&* (t2,%2)) =D 8(t1—t5) 8(x1—Xz), whereD is the
paratively to the soliton signal, in general one cannot use theoise intensity. Equatiofl) has a wide range of applications
perturbation approach to obtain the error probability becaus&anging from optics and plasma physics to solid state phys-
errors occur when signal parameters change substantially digs and quantum statistigsit describes, in particular, trans-
to noise accumulation. Though dynamical deterministicmission of the signal along the fiber line, theis the propa-
properties of many nonlinear systems have been intensivelgation distance angd is time.

studied during last few decades, much less is known about In this Rapid Communication we focus on the problem of
their statistics. Typically, consideration is limited by the as-a single soliton distortion by the noise. We assume the ideal
sumption of the Gaussian statistics and calculations of theoliton signal ¥ (0,x)=cosh Xx at t=0 and examine the
variances(note, however, work§3,4], where non-Gaussian probability distribution of different distortions of the signal
corrections due to soliton interaction have been analyzedat a finitet=T>0. Another important problem is to find the
Difficulties in studies of non-Gaussian statistics in nonlinearprobability to detect “one” at a finite distanc€ provided
systems are caused by lack of appropriate mathematicéthere was no soliton @t=0. Solutions to these problems are
methods. We present here a consistent method to derive thubtained below by analyzing the noise-induced fluctuations
probability density function in soliton-bearing systems with of ¥ around the ideal soliton form costx. We assume that
an additive noise. Our approach is a modification and furthein the soliton units the distance is large T>1 while the
development of a formalism to calculate the “probabilities noise is wealkD<1. A more precise condition ob will be

of improbable events.” The method is based on finding arformulated below. To find the probability to lose digital sig-
optimal fluctuation that provides for a maximum of probabil- nal coded by a solitor{felementary “one’) at t=T, one

ity under given conditions; technically, it is a saddle-pointshould define a particular measuring procedure that is a re-
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ceiver. For example, the_presenlce of the signakal canbe  (£,()£,(0))=8(t)m°D/12%°,  (£1(1)£1(0))=5(t)D 7/3.
established using the integrdl_,dx|¥(T,x)|2, which is o . _ .

close to 2 for the soliton coshx if the window | is large It is interesting that there is a single nonzero averége
enough. Errors are caused by the events with the value of the D/2%7 which means a systematic increase of the soliton
integral essentially smaller than 2. Such rare events are démplitude due to the noiséx(T))=1+DT/2. N

scribed by the tails of the probability density functiG?DP). We are going to study phase-independent quantities so the
The focus of our paper is to develop a regular method tar variable can be neglected, since it neither enters the equa-
calculate sucligenerally non-Gaussianails of the PDF. In  tions for 5, 8, andy nor the noise correlators. We may now
optical applications there are two leading processes whickrite P(Q,Y) as an average over the noise of the solutions
can result in these significartbut rare deviations of the of Egs.(3) satisfying the boundary conditiong=1, y=p
measured energy from its mean value. The first process is a0 att=0 andp=Q, y=Y att=T. Instead of dealing with
decrease in soliton powe®=[”_dx|¥(T,x)|?/2, equal to the equations, it is convenient to take the path integral over
unity for the ideal signal. The second process is a shift of th@rbitrary functionsy, 8, andy, taking Egs.(3) into account
soliton position characterized by the integra¥ by correspondings-functions which can be rewritten as ex-
=", dxXW¥(T,x)|?/(2Q) that gives the location of the Pponentials introducing auxiliar fields, u;, andu,. Aver-
soliton “center of mass.” For the ideal signat,=0. It is aging over the noise we come to the standard Martin-Siggia-
clear that when the soliton almost leaves the detection winRose formalism,

dow{—1,1}, the integralf",dx¥* ¥ one measures can sub- T

stantially deviate from 2. Therefore, below we will look for P(Q’Y):f DBDDYDuDum,Dus ex;{f dtﬁ(t)},

the joint PDFP(Q,Y). 0

We parametrize our signaf in the following way: . L
P g g way where the effective Lagrangian is as follows:

L=2i[ uoml = uDI2— p10B+ pa(dy —2B)]

where z= 5(x—y) and we defined the “internal time” as 2 2 2

. —D[12u“+(2 + . 4
dr=5?dt. The soliton parametera, 3, », andy may be (126" 20"+ (mpa /7)1 (67) @
arbitrary functions of time, The field describes the continu- Here 44(t) and u,(t) are arbitrary functions on the interval
ous spectrum of perturbations on the background of the solicg Ty while w,(T)=0 since the final valued(T) is not
ton. An important observation is that &1 the probabili-  fixed. From now on, we omit the term with the linear drift of
ties of large deviations are determined by fluctuations of the, peing interested in valuds;— 1|> Dt.
soliton parameters. This is because the discrete modes are gince we are interested in the events with small probabil-
localized on the soliton and the integral effect of a continuedy \ve calculate the path integral in the saddle-point ap-
in time _fluctuatlon can be significant. On the other hand, thebroximation: P~ [ Loqadlt. The applicability condition of
fluctuations ofv_are spread over the_whole space. We showje saddle-point approximation BT<1. The extrema con-
below that the influence of the continuous spectrum on stagjtions that determine the saddle-point trajecttaigo called
tistics of the ZSOft variablesa, f, 7, andy is neglibile in  jnstanton or optimal fluctuatiorcan be found from Eq(4).
the limit DT"<1. The soliton variables themselves aregecause we are interestedti 1 one can neglect the field
coupled dynamically in a strong way. We first restrict our ;. in comparison withu, (as follows from the relation

qonsideration _by the set, B, », andy, then we will estgb- d i~ 115), imposing the corresponding conditigry=0 at
lish the conditions when one can neglect the continuous$—g The resulting equations are

V=gpexpipx+ia+ir)cosh (z)+v], 2)

spectrum.
Neglectingv we get from Eq(1) omp=2iDu, idu=Dnyus/3—Du?y, (5)
dn=nl, hB={1, AYy—2B=1{(s, € , 4 ,
idfy==Dnuq, Jfu=0. (6)
plus an equation for the phasgr+yd,8+ B2= (5. Here the i 3~ v
new noise((t), ...,{3(t) are some spatial integrals &f

These equations have been derived before, albeit without % solution of Egs(5) and(6) is written via Bessel functions,
careful definition of the statistics of the noid&3. To define

— _ 2
the statistics, one needs proper regularization of the equa- 7=(T=[C1Iya(x)+Cod_1u(x)]%, (7)

tions; that can be done by considering a limit of a ﬁnitewherex=)\(T—t)2/2 while the relation of the parameter
correlated caseé(t)£(0))=g(t) with a symmetric function 4 v angQ is found from the boundary conditions. The con-
g. As a result, one may sho(he details will be published giantsc, and C, can be expressed via, for instance,
elsewhergthat averaging oveé is equivalent to the Gauss- 2C,=T(3/4\Y4/Q. Other fields are easily found now
ian average over the new noises with zero cross correlatio omZEqs (5)=(7) Wé are interested here in~1 (though

and the following dispersions: 1— 7 can be much larger than its rms valughen Y

_ ~\T2. Therefore, considering a region<T we get\T?
t)¢(0))=46(t)D/ 7, t)¢3(0 ’ . .
(¢(0¢(0))=81DI 7, (£5(1)¢s(0) <1. That procedure corresponds to taking only the first

= §(t)(12+ w?)D/367, terms of the expansion of the Bessel functions in Eq.
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Then we get a contribution which is of the second order over 2 5 3eY?
Y (that is Gaussian as a direct result of the applied perturba-  INP(T,Q,Y)~— 5+ ( VQ —1)2-Ry(Q) DT (12)

tion procedure withT2<1),
with R,(Q)=3(1+/Q+Q) % We see that for window

2 2 ov? -1/2 ; i :
InP(T,Q,Y)~— ﬁ(\/a_ 1)°— R(Q)—3, (8) I>e€ the fluctuations of both timing and amplitude con-
DT tribute the error rate, which can be calculated using sb-
stantially non-GaussiarPDF (12).
R(Q)=10(1+8/Q+Q)(6+3/Q+Q) 2. 9 Let us discuss now the role of the continuous spectrum.

First, it is coupled to the discrete degrees of freedom already

Thus, a joint energy-timing PDF for the NSE is obtained. Itin the linear approximation because of noise. Indeed, if we
is correct atY<T andDT?<1 while DT? is arbitrary. The  denote asm the field conjugated to (exactly in a wayu
PDF is Gaussian with respect to timing and non-Gaussiafields are conjugated to the discrete variajlésen the terms
with respect to energy. The most important feature of(B.  proportional toD mu appear in the action. A straightforward
is the consistent analytical confirmation of the empirica”y"near ana|ysis shows thm<ﬂ and those mixed terms can
well-known fact that the dispersion of the tlmln@13/9 is be neg|ected provideﬂ'»l_ The physica| mechanism be-
much larger than that of the energT), so that the error hind that is the frequency gap in the continuous spectrum,
rate of any receiver with an integration winddw&T is de-  which makes the mixing nonresonant. Second, the continu-
termined by the timing jitter due to the Gordon-Haus-Elginous spectrum influences the soliton parameters via nonlinear
effect [5,6]. Note that the probability of detecting “one” interaction. The most essential interaction is related to the
formed from noisewithout any soliton initially preseitis  terms in the Lagrangian containingy?. Note that the fluc-
given by a similar instanton solution because an optimal wayuations of the continuous spectrum grow with time; this
for a weak noise to create a large signal is to grow a solitoneffect is related to the noise distributed over the whole space
Solving the saddle-point equations with the boundary condiand is therefore insensitive to the presence of the soliton.
tions 7(0)=0 and 7(T)=»; we find the probability |ntegrating over the continuous spectrum, we can find fluc-
P(n¢) ~exp(=27:/DT) to observe the amplitudey;. Our  tuation corrections to the reduced Lagrangian associated with
achievement here is factor 2. the nonlinear interaction. A relevant contribution to the La-

Next, we examine more sophisticated schemes of opticajrangian is~(DT)?u?. It has to be compared with the bare
soliton transmission designed to suppress the timing jittertermD 2. Thus, we come to the conclusion that our scheme
Their general feature is that to compensate for the effect of & valid if DT?<1. Note that our analysis of the continuous
weak noise it is enough to modify the system only slightly sospectrum is not sensitive to the presence of(theak para-
that an analysis can be done as an extension of the aboygic potential(basically, because of the nondissipative char-

one. acter of the phase contjolTherefore the criterid>1 and
We consider first the phase modulation which is deSCfibe(bT2<1 are the same for the phase modulation case.
by the equatior7] The most elaborated control scheme that we consider in
) ) ) ) this paper is when filters and amplitude modulators are in-
—i19 W= +2| W[V + - ex*V, (10 serted along the propagation line. This scheme is dissipative

_ and it allows one to saturate completely the growth of the
where the term witte is regarded to be small. It produces an dispersions of both amplitudg and timingy with an obvi-

additional contribution to the Lagrangiafy=4ieu,y 10 be o5 potential for an unlimited propagation or information
added to Eq(4). Varying the sumC+ £, we get the saddle- gioragd1,2,8. We analyze below finite fluctuations and dis-
point equations cover a differentcollapse mechanism of the signal loss that
restricts the propagation distance or storage time. The propa-

2 gation equation in this case rea@ee, €.9.[2])

T 2i
dhy=2p+iD Fﬂvzv hB=—2ey— ED N1
7 (11) — 10, W =2V + 2| V|2 + E—i e,V —i €02V +iex°W,
O 1=2y, Oipho=—2€U1.
T ek 2 H where alle’s are assumed to be small. Tegterm describes
For » and « we get the same instantonic equati¢fs Be-  an additional amplification necessary to compensate the
low, we will be interested in distanceE>1/\/e when the losses due to filteringel, term) and amplitude modulation
additional termZ, plays an important role. (e5 term). Without noise, one has a steady soliton wgh
One may show that the evolution af and x is weakly —=Yy=0 and an amplitude s, satisfying e;=e,7%/3
influenced by other degrees of freedony# e Y2 Thenwe  +e€3m?/127% . Itis linearly stable for 4,75> €375 2, the
can develop a scheme similar to that in the basic case: Weondition is assumed to be satisfied as well ag
examine first the dynamics of, and then the dynamics gf >26§ 77;‘/9, which provides for the stability of zef@]. The
on its background as a perturbation. Note that the physics idispersions of the energy and timing have been derived be-
different now: The variablg oscillates in a parabolic poten- fore and can be found in Reff2]. Here we describe some
tial while the amplitude of the oscillations grows secularly properties of the whole joint PDF, including its time-
with time. Solving the equations we get fo> e 2, dependent part responsible for a total loss of the signal. The
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additional terms produce an additional effect provided whereF is a dimensionless function of order unity that can
>1/e; the inequality will be implied below. be found only numerically by finding the extremum of
An additional contribution to the reduced action, -(I)—Zdt, which is, evidenﬂy, much Simp|er than massive di-
rect simulations of the noisy NSE. At>1/e the PDF decays
fast in the regior}Y|>Y,,; near the boundary one can esti-
mate —InP(Q,Y)~e(Y—Y)?D. Thus, the regionY

-~ 4. . , 8 )
L=diep—gleun —dieup ™t zeunp

5 >Y,, practically does not contribute to the probability of the

A 2 :
—ieal — +2v2 | =2 e 172, 13)  signal lost.
3 67> y 3 3ty (13 The possibility of the collapse leads to the following in-
. . _ _ teresting and practically important phenomenon. There is a
gives the following saddle-point equations: finite probability per unit time for the amplitude to escape
5 o, ) the stability region without returning. This probability can be
—2p- moegy ID7T B=— ff 25 ED found as a result of the competition of the returning terms in
Yi 372 67 ' 3 27 3~ ™1 the equation forp and the noise;, which indirectly influ-
encesy through pumping3 andy. The result is the linearly
ﬁ:g L €77 . ,32) . 77—2+2y2 . 2iD growing probability of the total loss of the signal,
o 1”3 T 3 612 7

Piost=Texp(—Feo),  Feor~ €*/D. (16)

This system is too complicated to solve analytically, yet the
most important feature can be understood/([f)=Y is suf-  Thus, we see that there is a limit time for keeping the infor-
ficiently large, then the amplitude collapses to zero in a mation.
finite time according taj, 7°= — e3m%/3. For P(Q,Y), that The analysis of the continuous spectrum in this case is
means that there is a critical valdg,~1 so thatP(Q,Y) slightly different due to the dissipative character of the addi-
falls into 6(Q) if |Y|>Y,. Of course,Y, is a complicated tional terms. Therefore, a saturation of the amplitude is ob-
function of Q, €;, €,, ande3, that can be found only nu- served which of course is-dependent and tends to infinity
merically. Below we assume all epsilons to be of the samevhene—0. An estimation of the continuous spectrum fluc-
order: e;~ e,~ €3~ €. tuations give a conditio® < €'/ for the above scheme to be
Let us examine the region of parameté <Y, Q  valid. Note that the conditions of practical applicability is
~1; that is,y~1 and 1- »~1. Then the lifetime of the more restrictiveY?)=D/e,e,e53<1 (otherwise the signal
corresponding instanton can be estimatec¢as Next, we  will be lost already aff=1). Note thatD<e€> is also the

come to estimates applicability condition of the saddle-point approximation, as
5 is seen from Eq(15).
B~€ Dupi~e€, u~pr~eu;. (14) In conclusion, we have developed a consistent method to

derive the probability distributions in soliton-bearing sys-
tems with additive noise. The method is general and power-
ful enough and has made possible finding probabilities of
3 large deviations in practical propagation schemes.

InP(Q,Y):_%F(62/61,63/€1,Q,Y), (15)

So, we can conclude that Bf|<Y,, the stationary part of
the PDF is as follows:
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