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Statistics of soliton-bearing systems with additive noise
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We present a consistent method to calculate the probability distribution of soliton parameters in systems
with additive noise. Even though the noise is weak, we are interested in probabilities of large fluctuations
~generally non-Gaussian! which are beyond perturbation theory. Our method is a development of the instanton
formalism~method of optimal fluctuation! based on a saddle-point approximation in the path integral. We first
solve a fundamental problem of soliton statistics governed by a noisy nonlinear Schro¨dinger equation. We then
apply our method to optical soliton transmission systems using signal control elements~filters and amplitude
and phase modulators!.
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Spatially or temporally coherent nonlinear structur
~soliton, vortex, breather, domain wall, spiral chemical wa
collapsing cavern, and many others! play an important role
in the dynamics and statistics of nonlinear systems. Sol
models have arisen in fields as diverse as hydrodynam
plasmas, nonlinear optics, molecular biology, solid st
physics, field theory, and astrophysics. Presumably the m
impressive practical implementation of the fundamental s
ton concept has been achieved in fiber optics, where so
pulses are used as information carriers to transmit dig
signal at high bit rates over long distances~see, e.g.,@1,2#!.
In long-haul fiber optic communication systems, the limi
tions on the bit rate and error-free transmission distance
set mainly by the spontaneous emission noise added by
line optical amplifiers. Existing and future optical transm
sion systems can show no measured errors over long
intervals, which makes a direct modeling of the bit error r
~that must be less than 1029) almost impractical. An impor-
tant role is then played by theoretical methods to evalu
system performance. Even though the noise is weak c
paratively to the soliton signal, in general one cannot use
perturbation approach to obtain the error probability beca
errors occur when signal parameters change substantially
to noise accumulation. Though dynamical determinis
properties of many nonlinear systems have been intensi
studied during last few decades, much less is known ab
their statistics. Typically, consideration is limited by the a
sumption of the Gaussian statistics and calculations of
variances~note, however, works@3,4#, where non-Gaussian
corrections due to soliton interaction have been analyz!.
Difficulties in studies of non-Gaussian statistics in nonline
systems are caused by lack of appropriate mathema
methods. We present here a consistent method to derive
probability density function in soliton-bearing systems w
an additive noise. Our approach is a modification and furt
development of a formalism to calculate the ‘‘probabiliti
of improbable events.’’ The method is based on finding
optimal fluctuation that provides for a maximum of probab
ity under given conditions; technically, it is a saddle-po
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s
,

n
s,
e
st

i-
n

al

-
re
in-
-

e
e

te
-
e
e
ue
c
ly
ut
-
e

r
al

the

r

n

t

approximation in the path integral for probability. The ma
difficulty in applying the formalism is to identify the sym
metries of the system and the respective soft modes that
fluctuate strongly. One ought to obtain an effective action
such soft~slow! degrees of freedom, integrating the distrib
tion over the hard~fast! degrees of freedom. For our system
we show that the soft modes are related to the soliton par
eters, whereas the hard ones are related to the contin
spectrum. The existence of the soliton thus greatly simpli
not only the dynamical but also the statistical description.
a specific example, we apply our general scheme to the
culation of an error probability in fiber-optic soliton tran
mission.

We start from the nonlinear Schro¨dinger equation~NSE!
with an additive noise,

2 i ] tC5]x
2C12uCu2C1j. ~1!

Here j is white noise with the correlation functio
^j(t1 ,x1)j* (t2 ,x2)&5Dd(t12t2)d(x12x2), whereD is the
noise intensity. Equation~1! has a wide range of application
~ranging from optics and plasma physics to solid state ph
ics and quantum statistics!; it describes, in particular, trans
mission of the signal along the fiber line, thent is the propa-
gation distance andx is time.

In this Rapid Communication we focus on the problem
a single soliton distortion by the noise. We assume the id
soliton signal C(0,x)5cosh21x at t50 and examine the
probability distribution of different distortions of the signa
at a finitet5T.0. Another important problem is to find th
probability to detect ‘‘one’’ at a finite distanceT provided
there was no soliton att50. Solutions to these problems a
obtained below by analyzing the noise-induced fluctuatio
of C around the ideal soliton form cosh21x. We assume tha
in the soliton units the distanceT is large T@1 while the
noise is weakD!1. A more precise condition onD will be
formulated below. To find the probability to lose digital sig
nal coded by a soliton~elementary ‘‘one’’! at t5T, one
should define a particular measuring procedure that is a
©2001 The American Physical Society01-1
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ceiver. For example, the presence of the signal att5T can be
established using the integral*2 l

l dxuC(T,x)u2, which is
close to 2 for the soliton cosh21x if the window l is large
enough. Errors are caused by the events with the value o
integral essentially smaller than 2. Such rare events are
scribed by the tails of the probability density function~PDF!.
The focus of our paper is to develop a regular method
calculate such~generally non-Gaussian! tails of the PDF. In
optical applications there are two leading processes wh
can result in these significant~but rare! deviations of the
measured energy from its mean value. The first process
decrease in soliton powerQ5*2`

` dxuC(T,x)u2/2, equal to
unity for the ideal signal. The second process is a shift of
soliton position characterized by the integralY
5*2`

` dx xuC(T,x)u2/(2Q) that gives the location of the
soliton ‘‘center of mass.’’ For the ideal signal,Y50. It is
clear that when the soliton almost leaves the detection w
dow $2 l ,l %, the integral*2 l

l dxC* C one measures can sub
stantially deviate from 2. Therefore, below we will look fo
the joint PDFP(Q,Y).

We parametrize our signalC in the following way:

C5h exp~ ibx1 ia1 i t!@cosh21~z!1v#, ~2!

where z5h(x2y) and we defined the ‘‘internal time’’ as
dt5h2dt. The soliton parametersa, b, h, and y may be
arbitrary functions of time, The fieldv describes the continu
ous spectrum of perturbations on the background of the s
ton. An important observation is that atT@1 the probabili-
ties of large deviations are determined by fluctuations of
soliton parameters. This is because the discrete modes
localized on the soliton and the integral effect of a continu
in time fluctuation can be significant. On the other hand,
fluctuations ofv are spread over the whole space. We sh
below that the influence of the continuous spectrum on
tistics of the ‘‘soft’’ variablesa, b, h, andy is neglibile in
the limit DT2!1. The soliton variables themselves a
coupled dynamically in a strong way. We first restrict o
consideration by the seta, b, h, andy, then we will estab-
lish the conditions when one can neglect the continu
spectrum.

Neglectingv we get from Eq.~1!

] th5hz, ] tb5z1 , ] ty22b5z2 , ~3!

plus an equation for the phase] ta1y] tb1b25z3. Here the
new noisesz(t), . . . ,z3(t) are some spatial integrals ofj.
These equations have been derived before, albeit witho
careful definition of the statistics of the noises@2#. To define
the statistics, one needs proper regularization of the eq
tions; that can be done by considering a limit of a fin
correlated casêj(t)j(0)&5g(t) with a symmetric function
g. As a result, one may show~the details will be published
elsewhere! that averaging overj is equivalent to the Gauss
ian average over the new noises with zero cross correlat
and the following dispersions:

^z~ t !z~0!&5d~ t !D/h, ^z3~ t !z3~0!&

5d~ t !(121p2)D/36h,
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^z2~ t !z2~0!&5d~ t !p2D/12h3, ^z1~ t !z1~0!&5d~ t !Dh/3.

It is interesting that there is a single nonzero average^z&
5D/2h which means a systematic increase of the soli
amplitude due to the noise:^h(T)&511DT/2.

We are going to study phase-independent quantities so
a variable can be neglected, since it neither enters the e
tions forh, b, andy nor the noise correlators. We may no
write P(Q,Y) as an average over the noise of the solutio
of Eqs. ~3! satisfying the boundary conditionsh51, y5b
50 at t50 andh5Q, y5Y at t5T. Instead of dealing with
the equations, it is convenient to take the path integral o
arbitrary functionsh, b, andy, taking Eqs.~3! into account
by correspondingd-functions which can be rewritten as ex
ponentials introducing auxiliar fieldsm, m1, andm2. Aver-
aging over the noise we come to the standard Martin-Sig
Rose formalism,

P~Q,Y!5E DbDhDyDmDm1Dm2 expF E
0

T

dtL~ t !G ,
where the effective Lagrangian is as follows:

L52i @m] th/h2mD/22m1] tb1m2~] ty22b!#

2D@12m21~2hm1!21~pm2 /h!2#/~6h!. ~4!

Here m(t) and m2(t) are arbitrary functions on the interva
(0,T), while m1(T)50 since the final valueb(T) is not
fixed. From now on, we omit the term with the linear drift o
h, being interested in valuesuh21u@Dt.

Since we are interested in the events with small proba
ity, we calculate the path integral in the saddle-point a
proximation: lnP'*Lsaddledt. The applicability condition of
the saddle-point approximation isDT!1. The extrema con-
ditions that determine the saddle-point trajectory~also called
instanton or optimal fluctuation! can be found from Eq.~4!.
Because we are interested int@1 one can neglect the field
m2 in comparison withm1 ~as follows from the relation
] tm1;m2), imposing the corresponding condition] ty50 at
t50. The resulting equations are

] th52iDm, i ] tm5Dhm1
2/32Dm2/h, ~5!

i ] t
2y5

4

3
Dhm1 , ] t

2m150. ~6!

A solution of Eqs.~5! and~6! is written via Bessel functions

h5~T2t !@C1J1/4~k!1C2J21/4~k!#2, ~7!

wherek5l(T2t)2/2, while the relation of the parameterl
to Y andQ is found from the boundary conditions. The co
stants C1 and C2 can be expressed vial, for instance,
A2C25G(3/4)l1/4AQ. Other fields are easily found now
from Eqs.~5!–~7!. We are interested here inh;1 ~though
12h can be much larger than its rms value!, then Y
;lT3. Therefore, considering a regionY!T we get lT2

!1. That procedure corresponds to taking only the fi
terms of the expansion of the Bessel functions in Eq.~7!.
1-2
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Then we get a contribution which is of the second order o
Y ~that is Gaussian as a direct result of the applied pertu
tion procedure withlT2!1),

ln P~T,Q,Y!'2
2

DT
~AQ21!22R~Q!

9Y2

8DT3
, ~8!

R~Q!510~118AQ1Q!~613AQ1Q!22. ~9!

Thus, a joint energy-timing PDF for the NSE is obtained
is correct atY!T andDT2!1 while DT3 is arbitrary. The
PDF is Gaussian with respect to timing and non-Gauss
with respect to energy. The most important feature of Eq.~8!
is the consistent analytical confirmation of the empirica
well-known fact that the dispersion of the timing 4DT3/9 is
much larger than that of the energy (DT), so that the error
rate of any receiver with an integration windowl !T is de-
termined by the timing jitter due to the Gordon-Haus-Elg
effect @5,6#. Note that the probability of detecting ‘‘one’
formed from noise~without any soliton initially present! is
given by a similar instanton solution because an optimal w
for a weak noise to create a large signal is to grow a solit
Solving the saddle-point equations with the boundary con
tions h(0)50 and h(T)5h f we find the probability
P(h f);exp(22hf /DT) to observe the amplitudeh f . Our
achievement here is factor 2.

Next, we examine more sophisticated schemes of opt
soliton transmission designed to suppress the timing jit
Their general feature is that to compensate for the effect
weak noise it is enough to modify the system only slightly
that an analysis can be done as an extension of the a
one.

We consider first the phase modulation which is descri
by the equation@7#

2 i ] tC5]x
2C12uCu2C1j2ex2C, ~10!

where the term withe is regarded to be small. It produces a
additional contribution to the LagrangianLe54i em1y to be
added to Eq.~4!. Varying the sumL1Le we get the saddle
point equations

] ty52b1 iD
p2

6h3
m2 , ] tb522ey2

2i

3
Dhm1 ,

~11!
] tm152m2 , ] tm2522em1 .

For h andm we get the same instantonic equations~5!. Be-
low, we will be interested in distancesT@1/Ae when the
additional termLe plays an important role.

One may show that the evolution ofh and m is weakly
influenced by other degrees of freedom ify!e21/2. Then we
can develop a scheme similar to that in the basic case:
examine first the dynamics ofh, and then the dynamics ofy
on its background as a perturbation. Note that the physic
different now: The variabley oscillates in a parabolic poten
tial while the amplitude of the oscillations grows secula
with time. Solving the equations we get forT.e21,
02560
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ln P~T,Q,Y!'2
2

DT
~AQ 21!22Rp~Q!

3eY2

DT
, ~12!

with Rp(Q)53(11AQ1Q)21. We see that for window

l .e21/2 the fluctuations of both timing and amplitude co
tribute the error rate, which can be calculated using the~sub-
stantially non-Gaussian! PDF ~12!.

Let us discuss now the role of the continuous spectru
First, it is coupled to the discrete degrees of freedom alre
in the linear approximation because of noise. Indeed, if
denote asm the field conjugated tov ~exactly in a waym
fields are conjugated to the discrete variables!, then the terms
proportional toDmm appear in the action. A straightforwar
linear analysis shows thatm!m and those mixed terms ca
be neglected providedT@1. The physical mechanism be
hind that is the frequency gap in the continuous spectru
which makes the mixing nonresonant. Second, the cont
ous spectrum influences the soliton parameters via nonlin
interaction. The most essential interaction is related to
terms in the Lagrangian containingmv2. Note that the fluc-
tuations of the continuous spectrum grow with time; th
effect is related to the noise distributed over the whole sp
and is therefore insensitive to the presence of the soli
Integrating over the continuous spectrum, we can find fl
tuation corrections to the reduced Lagrangian associated
the nonlinear interaction. A relevant contribution to the L
grangian is;(DT)2m2. It has to be compared with the bar
termDm2. Thus, we come to the conclusion that our sche
is valid if DT2!1. Note that our analysis of the continuou
spectrum is not sensitive to the presence of the~weak! para-
bolic potential~basically, because of the nondissipative ch
acter of the phase control!. Therefore the criteriaT@1 and
DT2!1 are the same for the phase modulation case.

The most elaborated control scheme that we conside
this paper is when filters and amplitude modulators are
serted along the propagation line. This scheme is dissipa
and it allows one to saturate completely the growth of
dispersions of both amplitudeh and timingy with an obvi-
ous potential for an unlimited propagation or informatio
storage@1,2,8#. We analyze below finite fluctuations and di
cover a different~collapse! mechanism of the signal loss tha
restricts the propagation distance or storage time. The pro
gation equation in this case reads~see, e.g.,@2#!

2 i ] tC5]x
2C12uCu2C1j2 i e1C2 i e2]x

2C1 i e3x2C,

where alle ’s are assumed to be small. Thee1 term describes
an additional amplification necessary to compensate
losses due to filtering (e2 term! and amplitude modulation
(e3 term!. Without noise, one has a steady soliton withb
5y50 and an amplitudehs , satisfying e15e2hs

2/3
1e3p2/12hs

2 . It is linearly stable for 4e2hs
2.p2e3hs

22 , the
condition is assumed to be satisfied as well ase3

.2e2
2hs

4/9, which provides for the stability of zero@2#. The
dispersions of the energy and timing have been derived
fore and can be found in Ref.@2#. Here we describe som
properties of the whole joint PDF, including its time
dependent part responsible for a total loss of the signal.
1-3
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additional terms produce an additional effect providedT
@1/e; the inequality will be implied below.

An additional contribution to the reduced action,

L̃e54i e1m2
4

3
i e2mh224i e2mb21

8i

3
e2m1h2b

22i e3mS p2

6h2
12y2D 2

2p2

3
i e3m2y/h2, ~13!

gives the following saddle-point equations:

yt52b2
p2e3y

3h2
1

iDp2m2

6h3
, b t52

4

3
e2h2b2

2i

3
Dhm1 ,

h t

h
52S e12

e2h2

3
2e2b2D2e3S p2

6h2
12y2D 1

2iDm

h
.

This system is too complicated to solve analytically, yet
most important feature can be understood: Ify(T)5Y is suf-
ficiently large, then the amplitudeh collapses to zero in a
finite time according to] th

252e3p2/3. For P(Q,Y), that
means that there is a critical valueYcr;1 so thatP(Q,Y)
falls into d(Q) if uYu.Ycr . Of course,Ycr is a complicated
function of Q, e1 , e2, and e3, that can be found only nu
merically. Below we assume all epsilons to be of the sa
order:e1;e2;e3;e.

Let us examine the region of parametersuYu,Ycr , Q
;1; that is, y;1 and 12h;1. Then the lifetime of the
corresponding instanton can be estimated ase21. Next, we
come to estimates

b;e, Dm1;e2, m;m2;em1 . ~14!

So, we can conclude that atuYu,Ycr the stationary part of
the PDF is as follows:

ln P~Q,Y!52
e1

3

D
F~e2 /e1 ,e3 /e1 ,Q,Y!, ~15!
02560
e

e

whereF is a dimensionless function of order unity that c
be found only numerically by finding the extremum
*0

TL̃dt, which is, evidently, much simpler than massive d
rect simulations of the noisy NSE. AtT@1/e the PDF decays
fast in the regionuYu.Ycr ; near the boundary one can es
mate 2 ln P(Q,Y);e(Y2Ycr)

2/D. Thus, the regionY
.Ycr practically does not contribute to the probability of th
signal lost.

The possibility of the collapse leads to the following i
teresting and practically important phenomenon. There
finite probability per unit time for the amplitude to esca
the stability region without returning. This probability can b
found as a result of the competition of the returning terms
the equation forh and the noisez1, which indirectly influ-
encesh through pumpingb andy. The result is the linearly
growing probability of the total loss of the signal,

Plost5T exp~2Fcol!, Fcol;e3/D. ~16!

Thus, we see that there is a limit time for keeping the inf
mation.

The analysis of the continuous spectrum in this case
slightly different due to the dissipative character of the ad
tional terms. Therefore, a saturation of the amplitude is
served which of course ise-dependent and tends to infinit
whene→0. An estimation of the continuous spectrum flu
tuations give a conditionD!e1/2 for the above scheme to b
valid. Note that the conditions of practical applicability
more restrictive:̂ Y2&.D/e1e2e3!1 ~otherwise the signa
will be lost already atT.1). Note thatD!e3 is also the
applicability condition of the saddle-point approximation,
is seen from Eq.~15!.

In conclusion, we have developed a consistent metho
derive the probability distributions in soliton-bearing sy
tems with additive noise. The method is general and pow
ful enough and has made possible finding probabilities
large deviations in practical propagation schemes.
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