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Intermittency of Burgers’ Turbulence
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We consider the tails of probability density function (PDF) for the velocity that satisfies
Burgers equation driven by a Gaussian large-scale force. The saddle-point approximation is
employed in the path integral so that the calculation of the PDF tails boils down to finding
the special field-force configuration (instanton) that realizes the extremum of probability. For
the PDFs of velocity and its derivativesuskd ­ ≠k

xu, the general formula is found: lnP sjuskdjd ~

2sjuskdjyRekd3ysk11d. [S0031-9007(97)02444-7]

PACS numbers: 47.27.Ak, 03.40.Kf
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Nonlinear systems usually demonstrate non-Gauss
output even if the input (forcing or initial conditions) is
Gaussian. In turbulence, the deviation of the PDF ta
from Gaussian is regarded as a manifestation of interm
tency. It has been realized recently that those tails can
found by considering the saddle-point configurations (w
call them instantons) in the path integral determining t
probability density function (PDF) [1]. Note the simulta
neous revival of the method of optimal fluctuation in th
description of rare events in disordered metals [2].

We consider the forced Burgers equation

≠tu 1 u≠xu 2 n≠2
xu ­ f , (1)

which describes the evolution of weak one-dimension
acoustic perturbations in the reference frame movi
with the sound velocity [3]. It is natural to assume th
external forcef to bed correlated in time in that frame:
kfst1, x1dfst2, x2dl ­ dst1 2 t2dxsx1 2 x2d. Then the
statistics off is Gaussian and is completely characteriz
by x. We are interested in turbulence excited by a larg
scale pumping with some correlation lengthL so thatx
does not essentially change atx & L and goes to zero
wherex . L. BesidesL, the correlation functionx may
be characterized by the parameterv ­ f2s1y2dx 00s0dg1y3

having the dimensionality of frequency. Then, e.g
xs0d , L2v3. Developed turbulence corresponds to
large Reynolds numberRe ­ L2vyn ¿ 1.

The physical picture of Burgers turbulence is quite clea
arbitrary localized perturbation evolves into shock wa
with the viscous width of the front, which givesk22

for the energy spectrum atRe ¿ kL ¿ 1 [3,4]. The
presence of shocks leads to a strong intermittency, P
of velocity gradients is substantially non-Gaussian [5], a
there is an extreme anomalous scaling for the moments
velocity differencesw ­ usrd 2 us2rd: kwnl ~ sryLd
for n . 1 [6]. Simplicity of the equation and transparenc
of underlying physics make it reasonable to hope tha
consistent formalism for the description of intermittenc
could be developed starting from Burgers equation [7
9]. The instanton formalism has been applied to t
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Burgers equation first by Gurarie and Migdal [10] who
found the right tail lnP swd , 2fwysvrdg3 determined
by inviscid behavior of smooth ramps between the shock
That cubic right tail has been earlier predicted by Polyako
from the conjecture on the operator product expansio
[7]; it corresponds to the same right tail for the gradient
ln P su0d , 2su0yvd3 derived by Gotoh and Kraichnan
[11]. The PDFsP su0d andP swd are not symmetric; the
asymmetry is due to the simple fact that positive gradien
are smeared while the steepening of negative gradien
could be stopped only by viscosity. Here we describ
the viscous instantons that give the left tails of PDFs an
single-point velocity PDF.

Even though some calculations are lengthy, the simp
picture appears as a result. Since white forcing pump
velocity by the laww2 ~ f2t, while the typical time of
growth is restricted by the breaking timet , Lyw, the
Gaussianity of the forcing lnP sfd ~ 2f2yxs0d leads
to lnP swd , 2fjwjysLvdg3. At a shock,w2 . 2nu0

so that lnP su0d , 2f2u0ysvRedg3y2. These simple es-
timates are confirmed below by consistent calculations.

Following [1], we write the high-order moments of
the velocity derivativesuskd ­ ≠k

xu (including velocity for
k ­ 0) and of the differencew as the path integrals:

kfuskdgnl ­
Z

D uD p exp
n
iI 1 n lnfuskds0, 0dg

o
, (2)

kwnl ­
Z

D uD p exphiI 1 n lnfus0, rd 2 us0, 2rdgj .

(3)

Here I ­
R

dt L su, pd is the effective action with the
LagrangianL determined by the equation (1) [12,13]:

L ­
Z

dx sp≠tu 1 pu≠xu 2 np≠2
xud

1
i
2

Z
dx1dx2p1x12p2 .

The main idea implemented here is that the high-orde
moments (forn ¿ 1) are determined by the saddle-point
© 1997 The American Physical Society
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configurations of the path integrals (2) and (3). T
corresponding saddle-point equations are

≠tu 1 u≠xu 2 n≠2
xu ­ 2i

Z
dx0 xsx 2 x0dpsx0d , (4)

≠tp 1 u≠xp 1 n≠2
xp ­ dstdlsxd , (5)

l ­ infdsx 1 rd 2 dsx 2 rdgyw for differences,l ­
ind0sxdy≠xust, 0d for gradients. The solution of (4) an
(5) gives the moments in the saddle-point approximatio

kfuskdgnl , fuskds0, 0dgneiIextr, kwnl , fws0dgneiIextr . (6)

An instanton solution describes the field-force config
ration that corresponds to the rare fluctuation giving t
main contribution into the high-order moment. This co
figuration can be called also optimal fluctuation.

The initial conditions for the instanton equations we
formulated in [1]:u ! 0 at t ! 2` andp ­ 0 at t . 0.
The role of the last term in (5) is then reduced to t
final conditionpsxd ­ 2lsxd imposed onp at t ­ 20.
Viscosity smearsp to move backwards in time so that a
large negative time both fieldsu andp are zero.

In this Letter, we describe general properties of insta
tons and find their dependence onn, which gives the form
of PDF tails. Complete analytic descriptions of the i
stanton solutions will be published elsewhere.

Since the Lagrangian does not explicitly depend
time, then the “energy”E is conserved by (4) and (5):

E ­ i
Z

dxspu≠xu 1 n≠xp≠xud

2
1
2

Z
dx1dx2p1x12p2 .

Since L does not explicitly depend on coordinate
then the “momentum”J is conserved as well:iJ ­R

dx p≠xu. Because of the conservation laws we shou
treat solutions of (4) and (5) withE ­ J ­ 0 since
they are zero att ! 2`. That gives the following
saddle-point value of the effective action in (6):Iextr ­R

dt dx p≠tu.
Conservation laws help to understand general pr

erties of the solutions. We considert ­ 0, substitute
psxd ­ 2lsxd, and analyze the balance of different term
in E. For the gradientastd ­ ≠xust, 0d, E ­ 2nas0d 1

v3n2ya2s0d 2 nn≠3
xus0, 0dyas0d ­ 0. There is a dif-

ference between the cases of positive and negativea.
For as0d . 0, the viscous contribution to the energy
unessential and two first terms can compensate each o
(see below). On the contrary, the instanton that giv
as0d , 0 cannot exist without viscosity. For the velocity
J ­ ≠xus0, 0d ­ 0 andE ­ xs0dn2yu2s0d 2 n≠2

xus0, 0d.
Without viscous term, energy cannot be zero. Note t
the answer we shall obtain for the velocity PDF does n
contain viscosity, while its consistent derivation requir
the account of the viscous terms in the equations.

Let us first describe the essentially inviscid instanto
producing the right tails of the PDFs for gradients a
differences [7,10,11]. Att ­ 0, the field p is localized
e
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near the origin. A positive velocity slope “compresse
the field p so that one can expect that at negative tim
the width of p remains much smaller thanL despite a
viscous spreading. Then it is possible to formulate t
closed system of equations for the quantitiesastd and
cstd ­ 2i

R
dx x pst, xd since for narrowp and small

x we can put
R

dx0xsx 2 x0dpst, x0d ! 2i≠xxsxdcstd ø
2iv3xcstd:

≠tc ­ 2ac , ≠ta ­ 2a2 1 2v3c . (7)

The instanton is a separatrix solution of (7). The in
tial condition as0dcs0d ­ n by virtue of the energy
conservation givesas0d ­ v3c2s0dyn ­ vn1y3. For dif-
ferences,w ­ 2as0dr. One can check thatIextr ­ n,
which is negligible in comparison withn lnfas0dg, so
that ksu0dnl , fas0dgn , vnnny3, which gives the right
cubic tails of the PDFs lnP su0d , 2su0yvd3 [11] and
ln P swd , 2fwysrvdg3 [7,10]. The width ofp is much
less thanL through the time of evolutionT , n21y3v21

giving the main contribution into the action [10]. The
right tails of P su0d andP swd are thus universal, i.e., in-
dependent of the large-scale properties of the pumpi
Above consideration does not imply that the instant
is completely inviscid, it may well have viscous shoc
at x , L: this has no influence on the instanton answ
(sincep is narrow), while it may influence the fluctuation
contribution, i.e., pre-exponential factor in the PDF.

The main subject of this paper is the analysis of t
instantons that give the tails ofP sud and the left tails of
P su0d and P swd corresponding to negativea, w. Even
though the fieldp is narrow at t ­ 0, we cannot use
the simple system (7) to describe those instantons. T
reason is that sweeping by a negative velocity slo
provides for stretching (rather than compression) of t
field p at moving backwards in time. As a result, th
support of psxd stretches up toL so that one has to
account for the given form of the pumping correlatio
function xsxd at x . L. This leads to a nonuniversality
of P sud and of the left tails ofP su0d and P swd, which
depend on the large-scale properties of the pumpi
As we shall see, the form of the tails is universa
nonuniversality is related to a single constant in PD
Additional complication in analytical description is du
to the shock forming from negative slope near the orig
The shock cannot be described in terms of the invisc
equations so that we should use the complete system
and (5) to describe what can be called viscous instanto

Apart from a narrow front nearx ­ 0, the velocity
field has L as the only characteristic scale of chang
The life time T of the instanton is then determined b
the moment when the position ofp maximum reaches
L due to sweeping by the velocityu0: T , Lyu0. Such
a velocity u0 itself has been created during timeT by
the forcing so thatu0 , jcjmaxTLv3. To estimate the
maximal value ofjcstdj, let us consider the backward
evolution from t ­ 0. We first notice that the width of
p (which was zero att ­ 0) is getting larger than the
1453
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width of the velocity front. u0ya already after the short
time . a21. After that time, the values ofc and a are
of order of their values att ­ 0. Then one may consider
that pst, xd propagates (backwards in time) in the almo
homogeneous velocity fieldu0 so that

≠tc ­ 2i
Z `

2`

dx xupx ø 2iu0

Z `

0
dx p .

The (approximate) integral of motioni
R

dx p can
be estimated by its value att ­ 0, which is ny2u0.
Therefore we getcmax . nT so that T . n21y3v21

and u0 . Lvn1y3. At the viscosity-balanced shock, the
velocity u0 and the gradienta are related byu2

0 . na so
thatas0d . vRe n2y3.

Let us briefly describe now the consistent analyt
procedure of the derivation of the functioncstd that
confirms above estimates. We use the Cole-Hopf sub
tution [3] for the velocity≠xC ­ 2uCy2n and introduce
P ­ 2n≠xpyC. The saddle-point equations forC andP

≠tC 2 n≠2
xC 1 nFC ­ 0 , (8)

≠tP 1 n≠2
xP 2 nFP 2 2nl0sxddstdC21 ­ 0 (9)

contain F determined by≠xFst, xd ­ 2i
R

dx0xsx 2

x0dpst, x0dy2n2 and fixed by the conditionFst, 0d ­ 0.
Calculations are straightforward if one passes to Heise
berg representation for (8) introducing the evolutio
operator Ûstd which satisfies the equation≠tÛ ­ ĤÛ
with Ĥstd ­ ns≠2

x 2 Fd. Then one can develop the
closed description in terms of two operatorsÂ ­ Û21xÛ
andB̂ ­ Û21≠xÛ:

≠t Â ­ 22nB̂ , ≠tB̂ ­ 2nFxst, Âd . (10)

We note that all the moments ofp [and thereforeFst, xd]
can be expressed in terms ofÂ. Since we study the
time interval whenpst, xd is narrow, it is enough for
our purpose to considerxøL whereFst, xd ­ cstdx2v3y
2n2. Further simplification can be achieved in this cas
and the closed equation forcstd ­ 2sıy2d

R
dxl0sxd 3

C21s0, xdÂ2stdCs0, xd can be derived from (10):

s≠tcd2 ­ 4v3c3 1 16j2
2 1 4v3j3

1 .

Here j1 ­ i
R

dxlsxdx and 4j2 ­ 2i
R

dxlsxd≠x 3

fxus0, xdg. Integrating we get

t ­
1
2

Z c

cs0d

dxq
v3x3 1 4j

2
2 1 v3j

3
1

, (11)

which describescstd in an implicit form. Further analy-
sis depends on the case considered. For the gradie
we substitutej1 ­ nya0 and j2 ­ 2ny2 and see that,
as time goes backwards, negativecstd initially decreases
by the law cstd ­ cs0d 1 2nt until T ­ v21sny2d21y3

then it grows and the approximation loses validity whe
cstd approaches zero and the account of the pumping fo
xsxd at x . L is necessary. For self-consistency, we r
quire the width ofpsxd at this time to be of orderL and
get the estimateas0d . vRe n2y3 and thus confirm the
above picture. The main contribution to the saddle-po
1454
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value (6) is again provided by the termf≠xus0, 0dgn and
we find ksu0dnl . fas0dgn . svRednn2ny3, which corre-
sponds to the following left tail of PDF atu0 ¿ vRe

P su0d ~ expf2Cs2u0yvRed3y2g . (12)

For higher derivativesuskd, by using (11) we get initial
growth cstd ­ cs0d 1 nsk 1 1dt, which givesuskds0, 0d ,
Nk11L12kvRek leading to kfuskdgnl , vRekL12k 3

nsk11dy3, which can be rewritten in terms of PDF:

P sjU sKdjd~ expf2CksjuskdjLk21yvRekd3ysk11dg . (13)

Note that the non-Gaussianity increases with increasingk.
On the other hand, the higherk the more distant is the
validity region of (13):uskd ¿ uskd

rms , L12kvRek.
For the differences,j1 ­ 2nr0yw and4j2 ­ 2nf1 1

2r0uxs0, r0dywg and we getkwnl . sLvdnnny3, which
corresponds to the cubic left tail

P swd ~ exph2BfwysLvdg3j (14)

valid at w ¿ Lv. In the intermediate regionLv ¿

w ¿ rv, there should be a power asymptotics, whic
is the subject of current debate [7,11,14]. It is natur
that the r dependence ofP swd cannot be found in a
saddle-point approximation; as a pre-exponential fact
it can be obtained only at the next step by calculating t
contribution of fluctuations around the instanton solutio
This is consistent with the known fact that the scalin
exponent isn independent forn . 1: kwnsrdl ~ r.

For the velocity,lsxd ­ 2indsxdyus0, 0d is an even
function so thatF is a linear (rather than quadratic
function of x for narrow p: Fsxd ­ xs0dbxy2n2 with
b ­ 2i

R
dxpsxd. Direct calculation shows that energy

and momentum conservation makesb time indepen-
dent: b ­ nyus0, 0d. It is easy then to get then de-
pendence ofus0, 0d: Velocity stretches the fieldp so
that the width ofp reachesL at T . Lyus0, 0d, while
the velocity itself is produced by the pumping durin
the same time:us0, 0d . xs0dbT ­ xs0dnTy2us0, 0d .
nxs0dLyus0, 0d. That givesus0, 0d . Lvn1y3 and

P sud ~ exph2DfuysLvdg3j.

The productLv plays the role of the root-mean squar
velocity urms. The numerical factorsC, B, and D are
determined by the evolution att . T , i.e., by the behavior
of pumping correlation functionxsxd at x . L.

We thus found the main exponential factors in the PD
tails. Complete description of the tails requires the ana
sis of the fluctuations around the instanton, which will b
the subject of future detailed publications. Here our ai
is to show that fluctuation contributions are not infinit
and the saddle-point approximation is meaningful. Th
account of the fluctuations in the Gaussian approximati
is straightforward and leads to the shift ofIextr insignifi-
cant atn ¿ 1. However, the terms of the perturbation
theory with respect to the interaction of fluctuations a
infrared divergent (proportional to the observation time
That means that there is a soft mode which is to be tak
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into account exactly. A soft mode usually corresponds
a global symmetry with a continuous group: if one allow
the slow spatiotemporal variations of the parameters
the transformation then small variations of the action a
pear. Our instantons break Galilean invariance so that t
respective Goldstone mode has to be taken into accou
Namely, under the transformation

x ! x 2 r , usxd ! usx 2 rd 1 y, r ­
Z 0

t
ystddt ,

(15)

the action is transformed asI ! I 2 i
R

dxdtp≠ty.
The source term

R
dxdtlu is invariant with respect to

(15) for antisymmetriclsxd. To integrate exactly along
the direction specified by (15) in the functional space w
use the Faddeev-Popov trick inserting the additional fact

1 ­
Z

D ystdd
∑

u

µ
t,

Z 0

t
ystddt

∂
2 ystd

∏
J (16)

into the integrand in (2) and (3). JacobianJ is deter-
mined by a regularization of (15) according to our choic
of the retarded regularization for the initial integral: at dis
cretizing time we put≠tu 1 u≠xu ! sun 2 un21dye 1

un21u0
n21 (otherwise, some additionalu-dependent term

appears in the effective action [13]). The discrete ve
sion of (15),pnsxd ! pnsx 2 e

PN21
j­n yjd, unsxd ! unsx 2

e
PN21

j­n yjd 2 yn, uN sxd ! uN sxd 2 yN gives

J ­ exp

∑Z 0

2T
dtu0

µ
t,

Z 0

t
ystddt

∂∏
.

Substituting (16) into (2),(3) and making (15) we
calculate

R
D y as a Fourier integral (the saddle-poin

method is evidently inapplicable to such an integration
and conclude that after the integration over the mode (1
the measureD uD peiI acquires the additional factorY

t
d

∑Z
≠2

t pst, xddx

∏
dfust, 0dgexp

∑Z 0

2T
u0st, 0ddt

∏
.

The last (Jacobian) term here exactly corresponds
the term u0P su0d in the equation forP su0d derived in
[5,11]. This term makes the perturbation theory for th
fluctuations around the instanton to be free from infrare
divergences; the details will be published elsewhere.

Let us summarize. At smooth almost inviscid ramps
velocity differences and gradients are positive and linear
relatedwsrd ø 2ru0 so that the right tails of PDFs have
the same cubic form [7,10,11]. Those tails are universa
i.e., they are determined by a single characteristics
the pumping correlation functionxsrd, namely, by it’s
second derivative at zerov ­ f2s1y2dx 00s0dg1y3. On the
contrary, the left tails found here contain a nonunivers
o
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constant which depends on a large-scale behavior of t
pumping. The left tails come from shock fronts where
w2 . 2nu0 so that the cubic tail for velocity differences
(14) corresponds to a semicubic tail for gradients (12
The formula (14) is valid forw ¿ urms . Lv, where
P swd should coincide with a single-pointP sud since
the probability is small for bothusrd and us2rd being
large simultaneously. Indeed, we saw that the tails o
ln P sud at u ¿ urms are cubic as well. Note that (13)
is the same as obtained for decaying turbulence wi
white (in space) initial conditions by a similar method
employing the saddle-point approximation in the pat
integral with time as large parameter [15]. That probabl
means that white-in-time forcing corresponds to white-in
space initial conditions. Note that if the pumping has
finite correlation timet then our results, strictly speaking,
are valid foru, w ø Lyt andu0 ø 1yt.
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