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Intermittency of Burgers’ Turbulence
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We consider the tails of probability density function (PDF) for the velocity that satisfies
Burgers equation driven by a Gaussian large-scale force. The saddle-point approximation is
employed in the path integral so that the calculation of the PDF tails boils down to finding
the special field-force configuration (instanton) that realizes the extremum of probability. For
the PDFs of velocity and its derivativeg® = o*u, the general formula is found: B(Ju®|) «
—(|u®|/Rek)¥*+D  [S0031-9007(97)02444-7]

PACS numbers: 47.27.Ak, 03.40.Kf

Nonlinear systems usually demonstrate non-GaussiaBurgers equation first by Gurarie and Migdal [10] who
output even if the input (forcing or initial conditions) is found the right tail IP(w) ~ —[w/(wp)]® determined
Gaussian. In turbulence, the deviation of the PDF taildy inviscid behavior of smooth ramps between the shocks.
from Gaussian is regarded as a manifestation of intermitThat cubic right tail has been earlier predicted by Polyakov
tency. It has been realized recently that those tails can bieom the conjecture on the operator product expansion
found by considering the saddle-point configurations (wg7]; it corresponds to the same right tail for the gradients
call them instantons) in the path integral determining theén P(x') ~ —(u'/w)? derived by Gotoh and Kraichnan
probability density function (PDF) [1]. Note the simulta- [11]. The PDFsP(x’) and P(w) are not symmetric; the
neous revival of the method of optimal fluctuation in theasymmetry is due to the simple fact that positive gradients

description of rare events in disordered metals [2]. are smeared while the steepening of negative gradients
We consider the forced Burgers equation could be stopped only by viscosity. Here we describe
9 S the viscous instantons that give the left tails of PDFs and
Ut udu — vou = ¢, @

single-point velocity PDF.
which describes the evolution of weak one-dimensional Even though some calculations are lengthy, the simple
acoustic perturbations in the reference frame movingicture appears as a result. Since white forcing pumps
with the sound velocity [3]. It is natural to assume thevelocity by the laww? « ¢?¢, while the typical time of
external forceg to be s correlated in time in that frame: growth is restricted by the breaking time~ L/w, the
(p(t1,x1)p(12,x2)) = 6(t1 — )x(x1 — x2). Then the Gaussianity of the forcing IP(¢) < —$2/x(0) leads
statistics of¢ is Gaussian and is completely characterizedo In?(w) ~ —[|w|/(Lw)]?. At a shock,w? = —vu’
by x. We are interested in turbulence excited by a largeso that InP(x’) ~ —[—u'/(wRe)’2. These simple es-
scale pumping with some correlation lengthso thaty  timates are confirmed below by consistent calculations.
does not essentially change at< L and goes to zero Following [1], we write the high-order moments of
wherex > L. BesidesL, the correlation functiory may  the velocity derivatives® = 9%u (including velocity for
be characterized by the parameier= [—(1/2)x"(0)]°  k = 0) and of the differences as the path integrals:
having the dimensionality of frequency. Then, e.g.,
x(0) ~ L*w?. Developed turbulence corresponds to a ([,®7]*) = f@usz exp{iI + nIn[u®(0, o)]}, (2)
large Reynolds numb&e = L’w/v > 1.

The physical picture of Burgers turbulence is quite clear:, .
arbitrary localized perturbation evolves into shock wave™"? = f DuDpexplil + ninfu(0.p) = u(©.—p)}.
with the viscous width of the front, which gives 2 (3)
for the energy spectrum &Re > kL > 1 [3,4]. The ) ) ) )
presence of shocks leads to a strong intermittency, PDFe® I = [ dt L (u,p) is the effective action with the
of velocity gradients is substantially non-Gaussian [5], and-29rangianL determined by the equation (1) [12,13]:

there is an extreme anomalous scaling for the moments of )
velocity differencesw = u(p) — u(—p): (w") « (p/L) L = | dx(pou + pud,u — vpoiu)
forn > 1[6]. Simplicity of the equation and transparency .

of underlying physics make it reasonable to hope that a + Lf dx1dx>p1 x12p -
consistent formalism for the description of intermittency 2

could be developed starting from Burgers equation [7— The main idea implemented here is that the high-order
9]. The instanton formalism has been applied to themoments (forr > 1) are determined by the saddle-point
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configurations of the path integrals (2) and (3). Thenear the origin. A positive velocity slope “compresses”

corresponding saddle-point equations are the field p so that one can expect that at negative time
s the width of p remains much smaller thah despite a
du + udu — voyu = —i] dx' x(x — x")p(x'), (4)  viscous spreading. Then it is possible to formulate the
, closed system of equations for the quantitieg) and
dp + udyp + vayp = 8()Ax) , (®)  ¢(r) = —i [dxx p(t,x) since for narrowp and small
A= in[8(x + p) — 8(x — p)]/w for differences,x = * we can putf dx'x(x — x")p(t,x") = —id x(x)c(t) =
ind'(x)/d,u(t,0) for gradients. The solution of (4) and 2i®’xc(?):
(5) gives the moments in the saddle-point approximation: 9,c = 2ac, d,a= —a® + 2wc. )

1)~ [Wh0,01" e (w") ~[w(O) e (6)  The instanton is a separatrix solution of (7). The ini-
An instanton solution describes the field-force configu-tial condition a(0)c(0) = n by virtue of the energy
ration that corresponds to the rare fluctuation giving theconservation gives(0) = w?c2(0)/n = wn'/3. For dif-
main contribution into the high-order moment. This con-ferences,w = 2a(0)p. One can check thaf., = n,
figuration can be called also optimal fluctuation. which is negligible in comparison witt In[a(0)], so

The initial conditions for the instanton equations werethat {(«/)") ~ [a(0)]" ~ w"n"/3, which gives the right
formulated in [1]:u — 0 att — —wandp = 0 atr > 0.  cubic tails of the PDFs IP(x') ~ —(4'/w)? [11] and
The role of the last term in (5) is then reduced to theln P(w) ~ —[w/(pw)]® [7,10]. The width ofp is much

final condition p(x) = —A(x) imposed onp att = —0.  less thanl through the time of evolutiof ~ n~ /3@ ~!
Viscosity smeargp to move backwards in time so that at giving the main contribution into the action [10]. The
large negative time both fieldsand p are zero. right tails of P(u') and P(w) are thus universal, i.e., in-

In this Letter, we describe general properties of instandependent of the large-scale properties of the pumping.
tons and find their dependence mywhich gives the form  Above consideration does not imply that the instanton
of PDF tails. Complete analytic descriptions of the in-is completely inviscid, it may well have viscous shock

stanton solutions will be published elsewhere. at x ~ L: this has no influence on the instanton answer
Since the Lagrangian does not explicitly depend on(sincep is narrow), while it may influence the fluctuation
time, then the “energyE is conserved by (4) and (5): contribution, i.e., pre-exponential factor in the PDF.
The main subject of this paper is the analysis of the
E = ij dx(pud,u + v, pd.u) instantons that give the tails @ («) and the left tails of
P(u') and P(w) corresponding to negative, w. Even
_ %[ dx1dxapi x12pa - though the fieldp is narrow at_t =0, we cannot use
the simple system (7) to describe those instantons. The

Since £ does not explicity depend on coordinatesreason is that sweeping by a negative velocity slope
then the “momentum”J is conserved as welliJ =  provides for stretching (rather than compression) of the
[dx po,u. Because of the conservation laws we shouldield p at moving backwards in time. As a result, the
treat solutions of (4) and (5) withE = J = 0 since support of p(x) stretches up tal so that one has to
they are zero at — —o. That gives the following account for the given form of the pumping correlation
saddle-point value of the effective action in (8 =  function y(x) atx = L. This leads to a nonuniversality
[dtdx po,u. of P(u) and of the left tails of P(¥') and P(w), which

Conservation laws help to understand general propdepend on the large-scale properties of the pumping.
erties of the solutions. We consider= 0, substitute As we shall see, the form of the tails is universal,
p(x) = —A(x), and analyze the balance of different termsnonuniversality is related to a single constant in PDF.
in E. For the gradient:(r) = 0,u(t,0), E = —na(0) +  Additional complication in analytical description is due
w3n?/a*(0) — nvaiu(0,0)/a(0) = 0. There is a dif- to the shock forming from negative slope near the origin.
ference between the cases of positive and negative The shock cannot be described in terms of the inviscid
For a(0) > 0, the viscous contribution to the energy is equations so that we should use the complete system (4)
unessential and two first terms can compensate each oth&nd (5) to describe what can be called viscous instantons.
(see below). On the contrary, the instanton that gives Apart from a narrow front neax = 0, the velocity
a(0) < 0 cannot exist without viscosity. For the velocity, field has L as the only characteristic scale of change.
J = 0,u(0,0) = 0andE = x(0)n?/u*(0) — v9%u(0,0).  The life time T of the instanton is then determined by
Without viscous term, energy cannot be zero. Note thathe moment when the position gf maximum reaches
the answer we shall obtain for the velocity PDF does not. due to sweeping by the velocity: T ~ L/uy. Such
contain viscosity, while its consistent derivation requiresa velocity ug itself has been created during tinTe by
the account of the viscous terms in the equations. the forcing so thatuy ~ |c|lmaxTLw>. ToO estimate the

Let us first describe the essentially inviscid instantongmaximal value of|c(z)|, let us consider the backward
producing the right tails of the PDFs for gradients andevolution froms = 0. We first notice that the width of
differences [7,10,11]. At = 0, the field p is localized p (which was zero at = 0) is getting larger than the
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width of the velocity front= uy/a already after the short value (6) is again provided by the terfm,u(0,0)]" and

time = a~!. After that time, the values of anda are  we find ((«')") = [a(0)]* = (wRe)"n?/3, which corre-

of order of their values at = 0. Then one may consider sponds to the following left tail of PDF at > wRe

that p(z, x) propagates (backwards in time) in the almost / , 3/2

homogeneguspve?ocity giehzb so that : P) = exf—C(—u'/wRe)*?]. (12)
o o For higher derivatives(*), by using (11) we get initial

dic = —if dx xup, = 2iuo] dxp. growth ¢(r) = ¢(0) + n(k + 1)¢, which givesu®)(0,0) ~
= 0 N¥F1IL1 "k yRek  leading to ((u®]*) ~ wRekL'* X
The (approximate) integral of motion [dxp can  ,k+)/3 which can be rewritten in terms of PDF:
be estimated by its value at= 0, which is n/2u. ) 17 k-1 3/ +1)
Therefore we getema = nT so that T = n~ 3w ~! PAU = exd—Ci(|lu™|L""/wRe") ]. (13)

anduy = Lon'/*. At the viscosity-balanced shock, the Note that the non-Gaussianity increases with increaking
velocity uo and the gradient are related byjy = va SO On the other hand, the highérthe more distant is the
thata(0) = wRe n?/>. validity region of (13):u® > u®) ~ L'"*wRe.

Let us briefly describe now the consistent analytic For the differencest, = 2npo/w and4é, = —n[1 +
procedure of the derivation of the function(r) that  25.4.(0, po)/w] and we get(w") = (Lw)"n"/3, which
confirms above estimates. We use the Cole-Hopf substgorresponds to the cubic left tail
tution [3] for the velocityd, ¥ = —uV'/2v and introduce 3
P = 2vd,p/V¥. The saddle-point equations fé and P P(w) = exp{~B[w/(Lw)]’} (14)

9,V — pgixp + vF¥ =0, (8) valid at w > Lw. In the intermediate regiodw >
5 , 1 w > pw, there should be a power asymptotics, which
P + v P — vFP = 20A )NV =0 (9) 5 the subject of current debate [7,11,14]. It is natural
contain F determined byd, F(t,x) = —i [dx'y(x —  that thep dependence ofP(w) cannot be found in a
x"\p(t,x")/2v? and fixed by the conditiorF(z,0) = 0.  saddle-point approximation; as a pre-exponential factor,
Calculations are straightforward if one passes to Heiserit can be obtained only at the next step by calculating the
berg representation for (8) introducing the evolutioncontribution of fluctuations around the instanton solution.
operator U(¢) which satisfies the equation,0’ = AU  This is consistent with the known fact that the scaling
with H(r) = v(9> — F). Then one can develop the exponent is: independent fon > 1: (w"(p)) « p.

closed description in terms of two operatdrs= U~ 'xU For the velocity,A(x) = —ind(x)/u(0,0) is an even
andB = U'9,0: function so thatF is a linear (rather than quadratic)
P S S " function of x for narrow p: F(x) = y(0)bx/2v? with
9.4 2vB.d.:8 vFy(t,4). (10) b = —i [dxp(x). Direct calculation shows that energy

We note that all the moments pf[and therefore”(s,x)]  and momentum conservation makés time indepen-
can be expressed in terms af Since we study the dent: b = n/u(0,0). It is easy then to get the de-
time interval whenp(z,x) is narrow, it is enough for pendence ofu(0,0): Velocity stretches the fielp so
our purpose to consider<L whereF(t,x) = c(/)x*w?/  that the width ofp reachesL at T = L/u(0,0), while
2v2. Further simplification can be achieved in this casehe velocity itself is produced by the pumping during
and the closed equation far(r) = —(1/2) [ dxA'(x) X  the same timeu(0,0) = y(0)bT = x(0)nT /2u(0,0) =
W1(0,x)A%(r)¥ (0, x) can be derived from (10): nx(0)L/u(0,0). That givesu(0,0) = Lwn'/? and

(9,0 = 4w’ + 1645 + 40’ . P(u) = exp{—D[u/(Lw)F}.

Here & =i [dxA(x)x and 4&=—i [dxA(x)d, X

Lxu(0.1)]. Integrating we get The productL w plays the role of the root-mean square
xul0, x)|.

velocity u.,s. The numerical factor€”, B, and D are
= 1 [ dx (11) determined by the evolution atz(T), i.e., by the behavior
2 > 3’ of pumping correlation functiory (x) atx = L.

0 \/‘”3x3 + 46 + w6 We thus found the main exponential factors in the PDF
which describes:(r) in an implicit form. Further analy- tails. Complete description of the tails requires the analy-
sis depends on the case considered. For the gradientss of the fluctuations around the instanton, which will be
we substitute¢; = n/ag and &, = —n/2 and see that, the subject of future detailed publications. Here our aim
as time goes backwards, negatiue) initially decreases is to show that fluctuation contributions are not infinite
by the law c(r) = ¢(0) + 2nt until T = &~ '(n/2)"'3  and the saddle-point approximation is meaningful. The
then it grows and the approximation loses validity whenaccount of the fluctuations in the Gaussian approximation
c(r) approaches zero and the account of the pumping forris straightforward and leads to the shift &, insignifi-
x(x) atx = L is necessary. For self-consistency, we re<cant atn > 1. However, the terms of the perturbation
quire the width ofp(x) at this time to be of ordet. and  theory with respect to the interaction of fluctuations are
get the estimate:(0) = wRe n?*? and thus confirm the infrared divergent (proportional to the observation time).
above picture. The main contribution to the saddle-poinfThat means that there is a soft mode which is to be taken
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into account exactly. A soft mode usually corresponds t@onstant which depends on a large-scale behavior of the
a global symmetry with a continuous group: if one allowspumping. The left tails come from shock fronts where
the slow spatiotemporal variations of the parameters ofv> = —vu’ so that the cubic tail for velocity differences
the transformation then small variations of the action ap{14) corresponds to a semicubic tail for gradients (12).
pear. Our instantons break Galilean invariance so that th€he formula (14) is valid forw > u;,s = Lw, where
respective Goldstone mode has to be taken into accour?(w) should coincide with a single-poin®(«) since

Namely, under the transformation the probability is small for bothu(p) and u(—p) being
0 large simultaneously. Indeed, we saw that the tails of
x—x —rux)—ux—r)+uvr= [ v(r)dr, InP(u) at u > ums are cubic as well. Note that (13)
t

(15) is the same as obtained for decaying turbulence with
white (in space) initial conditions by a similar method
the action is transformed ag — I — i [dxdtpd,v.  employing the saddle-point approximation in the path
The source term/dxdtAu is invariant with respect to integral with time as large parameter [15]. That probably
(15) for antisymmetricA(x). To integrate exactly along means that white-in-time forcing corresponds to white-in-
the direction specified by (15) in the functional space wespace initial conditions. Note that if the pumping has a
use the Faddeev-Popov trick inserting the additional factofinite correlation timer then our results, strictly speaking,

0 are valid foru,w < L/7 andu’ < 1/7.
1= [ Dv(t)ﬁ[bt(t,f v(T)d’f) - v(t)}.f (16) We are grateful to M. Chertkov, V. Gurarie, D. Khmel-
! nitskii, R. Kraichnan, and A. Polyakov for useful discus-
sions. The work was supported by the Minerva Center for
®Nonlinear Physics (I.K. and V.L.) , the Minerva Einstein
“Center (V.L.), the Israel Science Foundation (E.B.), and
the Oiserman Research Fund (G.F.).

into the integrand in (2) and (3). Jacobighis deter-
mined by a regularization of (15) according to our choic
of the retarded regularization for the initial integral: at dis
cretizing time we putd,;u + udu — (u, — u,—1)/€ +
Un— U1 (otherwise, some additionad-dependent term
appears in the effective action [13]). The discrete ver-
sion of (15)1pn(x)_’pn(x - Ez.j'v:_nl Uj), un(x)_’ un(x -

N—1
€

i—n Vj) — Un, uy(x) = uy(x) — vy gives
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