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Intermittent Dissipation of a Passive Scalar in Turbulence
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The probability density function (PDF) of passive scalar dissipafitfa) is found analytically in
the limit of large Peclet and Prandtl numbers (Batchelor-Kraichnan regime) in two dimensions. The
tail of PDF ate > (€) is shown to be stretched exponentZiie) =« €'/?; at € < (), P = 1/,/€.
[S0031-9007(98)05479-9]

PACS numbers: 47.27.—i, 05.40.+j, 47.10.+g

Probability distribution of the gradients of turbulent is to express the unknown (statistics of dissipation) via the
fields is probably the most remarkable manifestation oknown (statistics of pumping). Since the Peclet number is
the intermittency of developed turbulence and relatedhe ratio between pumping and diffusion scales, then any
strong non-Gaussianity. A typical plot of the logarithm piece of passive scalar has a long way to go between birth
of gradient’s probability density function (PDF) (which and death, and our goal is to describe how statistics is
would be parabolic for Gaussian statistics) is concavenodified along the way. Dynamical formalism explicitly
rather than convex, with a strong central peak and slowlyeveals the presence of two different time scales, a short
decaying tails. This is natural for an intermittent field one related to stretching and a long one related to diffu-
since rare strong fluctuations are responsible for the tailsion (which eventually restricts the process of stretching);
while large quiet regions are related to the central peakthis time separation has been exploited first in solving a
In particular, such PDFs were observed for the dissipatiosimilar problem for one-dimensional compressible veloc-
field (square gradient) of passive scalar advected bity [4]. The time scale of stretching fluctuations is of or-
incompressible turbulence which is the subject of theder of inverse Lyapunov exponent while the whole time of
present paper. We consider scalar advection within thetretching is In Pe times larger. Clear time separation in
framework of the Kraichnan model assuming velocitythe dynamical history is guaranteed for (but probably not
field to be delta correlated in time [1]. Most of the restricted by) trajectories that correspond to the value of
rigorous results on turbulent mixing have been obtained larger than that produced by the pumpike)/P€, yet
so far with the help of that model which is likely to smaller thar(e)In Pe (whether it is possible to extend the
play in turbulence the role the Ising model played intime-separation procedure for a wider intervakafill be
critical phenomena. High-order moments of the scalathe subject of future analysis). At Re «, we are able to
were treated hitherto by the perturbation theory aroundalculate PDFP(¢€) rigorously, exploiting time separation
Gaussian limits. Clearly, the kind of strongly non- and executing explicitly separate averaging over slow and
Gaussian PDF observed for gradients cannot be treatddst degrees of freedom.
by any perturbation theory that starts from a Gaussian There are three main steps in derivi®fe): (1) Pre-
statistics as zero approximation. senting the PDF as an average of a functional of the

Since we consider developed turbulence with largdime-ordered exponent of the strain matrix; (2) Re-
Peclet number Pe (measuring relative strength of advegarametrization of that average into a path integral over
tion with respect to diffusion at the pumping scale), it isthe measure nonlocal in time; (3) Implementing time
tempting to use P€ as a small parameter. Yet any at- separation which makes reduction to two subsequent path
tempt to treat diffusion term perturbatively is doomed tointegrations both local in time: one describing the long
fail because the PDF of the dissipation is a nonperturbaevolution and another describing the fast fluctuations.
tive object with respect to the inverse Peclet number: itis Let us define the problem and make the first step of the
zero ate # 0 and zero diffusivity yet has nonzero limits derivation. Advection of a passive scalé(s,r) by an
as diffusivity goes to+0. Indeed, the main contribution incompressible flow (z,r) is governed by the equation
into dissipation is given by the scales around the diffu- _ _
sion scale where advection and diffusion are comparable. @ + vaVa = xA)0 = ¢, Vava =0, (1)
Still, the presence of a small parameter calls for findingvhere « is the diffusivity and ¢ (z,r) is the external
a proper way to simplify the description. Following [1— source assumed to be Gaussian ancbrrelated in time:
4], we show here that the dynamical formalism of La-(¢(t1,r1)¢(t2,12)) = (11 — 1) x(r12). Hereyx(r2) as a
grangian trajectories is a proper language to describe thenction of ri = [r; — r,| decays on the scalg, and
probability distribution of the dissipation field. Our goal y(0) is the production rate of?.
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We consider the simplest possible (yet physically re-D & (1) exd— [, dt'(a> + b + ¢*/2)/2D]. The whole
alizable) velocity: smooth in space and delta correlate@xpression (7) is invariant with respect to the global (time
in time. The velocity field is thus a random laminar independent) rotatiom — Rm, 6 — R&oR”, provided
flow, while the scalar field will be considered fully turbu- the pumping is statistically isotropic. That allows one to
lent and multiscale (Batchelor-Kraichnan problem) [1—-3].get rid of the angular integration idm, counting all the
That requires the Prandtl number Prv/« (viscosity-to-  dynamical angles from the direction of.
diffusivity ratio) to be large; that is, our consideration is Let us do step 2 now. The general tool to average
intended for liquids rather than gases. The scalar pumping function of W, particularly (7), is Kolokolov trans-
scaleL lies in the viscous interval where we thus presumeformation replacingl” exp by a regular function of new
the velocity statistics to be described by the pair correlafields [6]. We represen = RyV &, whereRy is the
tion function{v, (t;,r1)vg(t2,12)) given by matrix of rotation by the angleff) dt' 9(t")/2, V is the

85(t — 1) [Vobup — D28%Fr2/2 — rarf)]  (2) diagonal matrix with the elements dxp [j, dr’ n(¢')] and

for the scales less than the velocity infrared cutbff @ = ((1) QDY)), ¢(0) = 0, to provide forw (0) = 1. Our
which is supposed to be the largest scale of the problemransform {a, b, c} — {n, ¥, ¢} is a hybrid version of
We presume also the inequality Pe dDL?*/2x > 1 those used in [7] and in Appendix B of [3]. The relation
which guarantees that the mean diffusion scalje=  between the old and new variables is obtained by differen-
2y/k/D is much less than the pumping scéle It follows tiating R4V & and comparing with (4),

from (2) that the correlation functions of the strain field t

. = Vv, arer independent. That property means a+ ib = nex;{i[ dt'ﬁ}

that o, can be treated as a random function of time 0

only. To exploit that, it is convenient to pass into the P r, .

comoving reference frame that is moving to the frame i exl{fo dr'(2m + 119):|, )
with the velocity of a Lagrangian particle of the fluid

t
[3,5], 2c = —U9 + QbeX[{Zf dt'ﬂj|~
90 + rjoj(1)00 — kA0 = $(1,r). ®) ,

Making spatial Fourier transform and introducing The Jacobian of the transformatidn= J,,J; has a stan-
. d dard product,;, ~ [T'_, exd2 [o dt’ n]and nontrivial Ja-
W) = Texpf o(r)dr, —W=6W, (4 cobianJ, ~ exp{fg dr n(r)] associated with the positive
0 dt Lyapunov exponent, describing the exponential stretching
one can write the solution of (3) as follows: of trajectories. The rotation matri®y, which is the same
ro PP for all the dynamical matrix processes, can be removed
0k(1) = fo di' ¢(t — 1, W= (1)k) by collective transformation of all the external vectors in
. the problem; i.e., one may explicitly integrate ovExd
% exp[—xkﬂf (W (r)W M (7)],,dT k,,}. since we avera_gé-mgeperjdent objects in (6). Averag-
0 ing some function oW (T) is then reduced to averaging
(5) the same function o¥ (T)¢ with respect to the measure

T t
Averaging overd a simultaneous product of thenth  €XH—S1D (D e (1) [1,—o exd2 Jodt' n], where

replicas of the inverse Fourier transform k#,, we get 1 T 5 ! @2
the nth moment of the dissipation field = «(V6)2. The S = 55 f dtyn® — 2Dn + ex 4] dtm | = -
) 2D Jo 0 4
PDF restored from all the moments is
0F +ioe s€ oo (10)
dse —m2 7s‘/‘ drQ . . .
Ple) = o 22 ) dme (e 107 ")y, (6) Finally, we apply the time-separation procedure to
' . 5 . capture the term in (6) dominant at large Pe. Two
_ (4 qW(r)m _qA()q 7 different time scales are clearly seen in (6)—(8) at least
0= AXq| 5 pe | & pe |’ M for e » (e)/P€& when [ Q dt has to be large, which is
; achieved on such realizations §f where the integrand
A = DW(s / d W OW YT YW (). (8 grows equnentlally due tw (¢) un'tll the last exponential
®) ® 0 ) W) ®) factor restricts the growth at the time of order ! In(Pe.
whereq = kL and an extra integration over the auxiliary Well before, on a time scale of the inverse stretching rate
vector fieldm takes care of combinatorics and summation? th? exponentially growingV (¢') makes the integral
over vector indices. Notice that the direction of timeOverd:' in (8) saturated.

in (7) and (8) is opposite to that in (3). The averaging A dynamical picture in- space would be as follows:
b+ c For the Lagrangian trajectories giving the main contribu-

_g )isaccording 1o o1 into (), fluid particles start very close. Diffusion

over the tracelesg = (b a_ c
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remains dominant until the particles separate by a dis- The temporal separation makes it possible to substitute
tance comparable to the diffusion scale This phase ¢ by 7y as an upper limit in integration ovef in (8).

of the dynamics takes place on times of order!; no-  Also, an important manifestation of time separation is a
tice that this time is diffusion independent sineg is  distinctively different behavior of the field (responsible

a scale where diffusion and stretching are comparabldor the “rotation” in the pseudospace) at time intervals
Once the distance between particles outgrowsran- smaller and larger than the separation time. The action
dom multiplicative stretching due to velocity becomes(10) shows that for > ¢, > 1/D the ¢ field is frozen—
dominant. Because of a multiplicative nature of the dy-no dynamics at all,p(r) = ¢(#p), which has a clear
namics, the time to go from,; to L is proportional to physical meaning since stretching proceeds along one
D~ 'In(Pe. Let us now introduce a separation timesat-  direction. At the smallest times the-field dynamics is
isfying 1 < Dty < In(Pg); that time will disappear from essential. Indeed, let us dengiér) = [{ (') dr' and

the final answer. | explicitly transformA(r) according to (9),
R 2 t —4p(t) _ N2 _ ! 2
Ay = (eo" ?)D [ ar exr[2p(t’)—2p(t)](e i el e 19”(’))(60" (1’) (11)

For trajectories with predominantly positive we re- | HeresQ, with O from (12), plays the role of potential, the
place ¢(¢) by ¢(ty) and neglect the integral from 0 to > term of (10) givesaf,, while the linear in they part of
to in (6) att > t5. Sincel[e(t) — o(t')?exd2p(t')]  (10) gives the initial condition of = 0: ®(0; p) = e”.
and exp—2p(t')] decrease exponentially asincreases, SincesQ vanishes ajp — « and ®(0; p) does not, one
then the integral oved:’ saturates, which allows for time obtains the asymptotic behavior & att — «

separation t0o. Finally, nond|agonal and Iow_er diagonal D(1; p) — e'2yPeb.(y), P> — 0. (Peup) ),
elements inA are exponentially small. For time sepa-

ration to be complete, the integrals) at r > 1, has to (16)
be counted fromy; i.e., we replace (r) — p(¢) + p(to), [—y29,y°9, + 2sm’u'U(y)]®(y) =0, (17)
then in the dominant order in the Peclet number we get
) 2 ©
f dtQ =~ m”p ] dt] quqq%eZP*qfez"MBPe’z, Ulx) = (277)724/‘ dk ka12 exp(—k%xz), (18)
0 (ZWPQZ to

(12)  where the new variable = ¢”(Peu)~! has been in-
o troduced. ®. — 1 at y — o« and ®.y should vanish at
w= Df di' e ) 1+ [o(t) — o}, 13) y — 0. P~ is a function of a single argumentn?/u.

0 The potentialU(x) is everywhere positive; it has to turn
where we denote@ = ex2p(#))]. Next, one needs to into a constant at — 0 and behave as > at largex.
average eXp-s [dt Q] over the short-timeDn-D¢  Under such a general assumption on the pumping func-
and a long-timeD 7~ separately. The corresponding tion y,, one can show that the only singularities®f (z)
weights of averaging with respect ip. andn< are com-  are poles on the negative semiaxis at a finite distance from
pletely decomposedS = S< + S~. The great advan- zero. The asymptotic condition ah.(y) gives the nor-
tage of (12) is that, in the long-time averaging, bgtland  malization?,”(0) = 1 and atz — «In[1/P,”(z)] ~ /z.

w are just external parameters, depending neither on timgor example, in the particular case
t nor onns. Once the average over. is performed, we 1 r <1
are left with a function ofu. The final result forP(e) Ucx) = {1’/x3 o2 1,
will then be obtained by averaging over and . ’ ’
We first average exXp-s [ dr Q] over 5~ using (10) one finds 2P7(z) = z[L(2yz)L(VZ) + L(2yz) X
P7(m, p) = }im e T 02T = 19:p = 0), (14) I(JZ)I™' and P~(z) — (z%/4m)exd—3z] at
—® 7 — +oo,
— oD ~ [l[@D)" p*+s50]dr Now we have to averag®,” (2sm*/u) overn< ande,
®Tp)=e f Dpnelp0)]e ' which is equivalent to averaging over the random variable
Heree (T ~%)/2 is a normalization factor (the inverse value # (responsible for the fluctuations of the diffusion scale
of the path integral without eXp-s [ dt Q]). Exactly in  due to strain variationsfe ~*?), = (P (2sm*/p)),. A
a way that Schrodinger equation appears from the patitonvenient auxiliary object to calculate is the generating
integral representation of quantum mechanics [8], fronfunction P = (exg—Ax]), which can be expressed via

(19)

(14) one get$d, — H-)D(r, p) = 0 with the solution of another differential equation:
A _ 1 2 szﬁ 2 2p— ]2ezp Pe2 o * . A o
H- = 5 % (2nPe? ]dq)(qqle p—gqie npPe P, = 7oodgo Y(ip =0,¢), QH- + Hh¥ =0,
(15) (20)
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* Al —p the scalar fluctuation at the diffusion scad® (which
f_m de ¢"WVe — 8o, Wy = 0. has exponential PDF tail [2,3,9]) times an inverse local
. p“+1°° diffusion scale [which is Gaussian according to (21)],
Ao = —2e"%0, — 505 + de (1 + ¢%e*), then (") ~ k™((§60)*)"n®"r;>"n" which corresponds to
where the static equation (20) follows at > 1  (24). Note that the asymptotics (24) is determined by
from the respective dynamical one similar to the waythe dynamics of stretching (not of rotations), thus it is
(16) follows from (14). The exact solution of (20), likely to take place in any dimensions. The data of

Vi1 + p2e® = \2h e K (e Py2A(1 + @2e*)), numerics done directly for the Kraichnan model [10] are
gives satisfactorily fitted by thel /3 stretched exponent within

_ the window expanding when Pe grows. The expori¢at

P(p) = Qap’) P exp—1/[2u]). (21)  agrees also with the values 0.3—0.36 given by numerics

Note thatu ~!/2 (which can be interpreted as inverse local[11] and 0.37 by experimental data on air turbulence
diffusion scale) has exactly Gaussian PDF that seems {d2]. Moreover, our exponent derived formally at®r 1
be a consequence of strain Gaussianity. Integration aigrees with the data of [11,12] obtained at=Prl as well.

P> (2sm?/u) with P(u) gives the final answer, This is surprising becaus®(¢) is independent of Pe at
1 o large Pr, while at P 1 the statistics ok is markedly
P(e) = Ime f ds P (is) different since (") « P& where u, are anomalous

exponents of the scalar [13]. It may be, however, that
> [xdx eX[(isxz _ £> 22) the PDF tail is still given by (24) for any Pr with, and
0 x /) preexponent factor in (24) generally depending on both

That formula is our main result. It expresses dissipatiof’" @nd Pe; this will be the subject of future studies. To

PDF in terms of the functio?> determined by (16) and conclude, the agreement .of our result ywth a variety of

(17) with the potential (18) given by the pumping. For data suggests that the_Kralchnan model is apropgr_tool for
any pumping, all that is necessary to @@te) is to solve ~"€covering exponents in the theory of turbulent mixing.
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