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Kinematic dynamo theory is presented here for turbulent conductive fluids. We describe how inho-
mogeneous magnetic fluctuations are generated below the viscous scale of turbulence where the spatial
smoothness of the velocity permits a systematic analysis of the Lagrangian path dynamics. We find
analytically the moments and multipoint correlation functions of the magnetic field at small yet finite
magnetic diffusivity. We show that the field is concentrated in long narrow strips and describe anoma-
lous scalings and angular singularities of the multipoint correlation functions which are manifestations
of the field’s intermittency. The growth rate of the magnetic field in a typical realization is found
to be half the difference of two Lyapunov exponents of the same sign.

PACS numbers: 47.65.+a, 47.10.+g
It is believed that the magnetic fields of planets, stars,
and galaxies have their origin in dynamo action driven
by motions of conducting fluids [1–3]. Inhomogeneous
flow stretches magnetic lines amplifying the field while
the field produces electric currents that dissipate energy
and diffuse the field due to finite resistivity. The out-
come of the competition between amplification and dif-
fusion depends on the type of flow. We consider the
long-standing problem of how turbulence excites inho-
mogeneous fluctuations of magnetic field [4–6]. Since
the growth rate is proportional to velocity gradients, the
fastest growth is for the fluctuations shorter than the vis-
cous scale of turbulence; they are the first to reach satu-
ration and strongly influence the subsequent evolution of
the system [7]. It is then important to have a systematic
description of the field that has emerged from the linear
dynamo phase. A consistent description of the long-time
evolution of the small-scale field with the account of dif-
fusion remained elusive for a long time [3]; only the sec-
ond moment has been found [5,6]. When diffusivity k is
small, the field is almost frozen into the fluid and is ex-
pected to grow exponentially like an infinitesimal material
line element. To what extent this is offset by a transversal
contraction that eventually brings diffusion into play de-
pends on the statistics of stretching and contraction. We
find below the growth rate of the field in a typical real-
ization g � �logB��t for arbitrary velocity statistics and
derive analytically the whole function En � log�B2n��t
for short-correlated velocity. Both En and g are finite at
k ! 10 (known as fast dynamo [3,8]). It is interesting
that g � l1 in a perfect conductor while g # l1�2 at
whatever small k, with l1 being the growth rate of a ma-
terial line element. We also find many point correlation
functions necessary to describe a dynamo-generated field
which is intermittent in space.

Consider the kinematic stage of a dynamo when the only
equation to solve is that for the magnetic field,
0031-9007�99�83(20)�4065(4)$15.00
≠tB 1 �v ? ≠�B � �B ? ≠�v 1 k�B , (1)

while the velocity statistics is presumed to be known.
In many astrophysical applications the viscosity-to-
diffusivity ratio is large and there is a wide interval
of scales between viscous and diffusive cutoffs, where
velocity is spatially smooth while the magnetic field
has the nontrivial spatial structure described below.
Note that there is no folding of magnetic lines (only
stretching and contraction) in this interval. For smooth
velocity, we substitute v � ŝr introducing the local
strain sab � ≠ya�≠rb . Given the initial condition, the
solution of (1) is then conveniently written in Fourier
space [9,10],

B�k, t� � Ŵ�t�B�k�0�, 0� exp

µ
2k

Z t

0
k2�t0�dt0

∂
,

where the wave vectors evolve as k�t0� � ŴT �t, t0�k�t�
and the final condition is k�t� � k. The evolution matrix
Ŵ satisfies dŴ�t, t0��dt � ŝ�t�Ŵ�t, t0�, with Ŵ�t0, t0� �
1 and Ŵ�t� � Ŵ�t, 0�. We adopt here the methods of
Lagrangian path analysis [11,12] developed recently for
the related problem of passive scalar. The moments
of B are to be calculated by two independent averag-
ings: first, (trivial) average over initial statistics and, sec-
ond, average over velocity statistics. Without any loss
of generality, we assume the initial statistics to be ho-
mogeneous, isotropic, and Gaussian, with zero mean and
the variance �Ba�k, 0�Bb�k0, 0�� � Pab�k�k2f�k2�d�k 1

k0�. The solenoidal projector Pab � dab 2 kakb�k2

ensures that B is divergence free. The initial magnetic
noise is concentrated at the scale L; we use f�k2� �
L5 exp�2k2L2� whenever an explicit calculation is per-
formed. Inhomogeneous advection produces smaller and
smaller scales and balances with diffusion at the scale rd �p

k�l1; the magnetic Reynolds number L�rd is assumed to
be large. Inhomogeneous advection also produces larger
© 1999 The American Physical Society 4065
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scales; the theory below is valid until L exp�l1t� is less
than the viscous scale.

The wave vectors are of order 1�L initially and for some
period they remain much larger than 1�rd . This is the
stage where dynamics is insensitive to diffusion so that the
field is frozen into the fluid as in a perfect conductor; see
[3,9] and (6) below. At some time td ~ ln�L�rd�, the wave
vectors reach 1�rd , transversal contractions bring diffusion
into play, and the new regime starts, which is the main
subject of this paper. It is supposed that td is much larger
than the velocity correlation time t and we can then carry
over from random matrix theory the well-known Iwasawa
decomposition (see, e.g., [13]): Ŵ�t� � R̂D̂Ŝ. For any
fixed time, R̂ is an SO(3) rotation matrix, D̂ is diagonal
with Dii�t� � exp�ri�t��, and the shearing matrix Ŝ is
upper triangular with unit elements on the diagonal. The
sum of ri’s vanishes by incompressibility and the ratios
ri�t tend at t ! ` to the three Lyapunov exponents li

(arranged in decreasing order); see, e.g., Ref. [14].
Since B is expressed via Ŵ , our aim now is to reformu-

late the average over ŝ into that over Ŵ . The average over
R̂ is equivalent to the integration over the directions of the
vectors involved. The matrix Ŝ tends for each realization
to a time-independent form. Indeed, it will be shown be-
low that the magnetic field moments grow exponentially
in time and the dominant contributions come from real-
izations with r1 ¿ r2 at t ! `. For such realizations
the matrix Ŝ is frozen at large times; the eigendirections
of ŴTŴ do not fluctuate in time and fix an orthogonal
basis, n1, n2, n3, with respective stretching (contraction)
rates 2l1, 2l2, 2l3 [13]. We shall also see below that the
time-independent random matrix elements of Ŝ influence
only constant factors, not of interest for the space-time de-
pendencies studied here. The problem is reduced then, on
one hand, to the integration over the angles of the vectors
involved and, on the other hand, to the average over the
statistics of r1 and r2.

The moments of the magnetic field can be obtained by
considering B2�t� averaged over initial statistics,

B2�t� �
Z

d3 qf�q�e22kqL̂qq2 Tr�ŴP̂�q�ŴT � ,

then taking powers and averaging over velocity. We have
changed the variables q � ŴTk to reexpress the average
in terms of the wave vectors at t � 0. When t ¿ jl3j

21

the main contribution to L̂�t� �
Rt

0 dt0 Ŵ21�t0�Ŵ21,T �t0�
is given by t0 ¿ jl3j

21. By changing the variables q �
ŜT Q we eliminate the constant Ŝ matrix from the diffusive
exponent. The dependence on Ŝ remains only in the
quadratic in the Q prefactor and in f so that in averaging
over velocity we may replace Ŝ by the unit matrix. It
follows that qL̂q �

Rt
0 dt

P
Q2

i e22ri � U�Q, r� and in
the q2 Tr term the main contribution is e2r1 �Q2

2 1 Q2
3�.

In any given realization the growth of the field is thus
described by a simple formula

B2�t� 	
Z

d3 Qf�Q� exp�22kU�e2r1�Q2
2 1 Q2

3� .
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It shows that initially the diffusion is unimportant �kU ø
1� and B2 grows as e2r1 , i.e., as a square of a material
line element. At t 	 td � jl3j

21 logL�rd , the diffusive
exponent starts to decrease substantially and the growth
rate is reduced. Asymptotically for t ¿ td , it is clear
that the realizations and the q’s dominating the growth
are such that the quadratic form kU at the diffusive
exponent remain O�1�. Note that for growing functions
one has with exponential accuracy,

Rt dt0 exp�2r3�t0�� ~

exp�2r3�t��. The integration over Q3 is thus restricted
within an exponentially small interval: the diffusion
exponent remains O�1� only for initial wave vectors with
such a small projection on the contraction direction n3
that the respective component does not reach 1�rd during
the time t [9]. Neglecting Q2

3 comparatively to Q2
2 and

omitting numerical factors, we get, after the integration
over Q,

B2�t� 	 exp�2r1�t�� 
1 1 �rd�L�2 exp�22r3�t���21�2

3

Ω
1 1 �rd�L�2

Z t

dt0 exp�22r2�t0��
æ23�2

. (2)

The first figure bracket reduces for large times to
�L�rd� expr3, and the geometrical factor, due to the
orthogonality condition, to n3. In the second line the
exponential term can be either comparable or larger than
unity depending on the sign of r2, which corresponds
to the geometrical pictures (cone vs pancake in k space)
illustrated in [9].

Moments of (2) should be averaged over the proba-
bility distribution Pt�r1, r2�. When t ¿ l

21
1 , t, the

theory of large deviations ensures that Pt�r1, r2� ~

exp�2tH�r1�t, r2�t��, where the entropy H�x, y� has a
sharp minimum H � 0 at x � l1, y � l2 whose width
decreases as t21�2 [15]; for the vector case see, e.g.,
Ref. [16]. The mean growth rate g�t� � �ln B2�t���2t is
then simply obtained by taking the logarithm of (2) and
substituting with ri � li t (strictly speaking, one must
average the logarithm over the initial measure as well,
yet this differs by a correction decreasing as t21, and the
growth rate does not fluctuate at large time). At t ø td

the growth rate g � l1, as it has to be for a perfect con-
ductor. During an intermediate stage t � td , g decreases
and, eventually at t ¿ td , it comes to an asymptotic value
g`, independent of k (so-called fast dynamo [3,8]):

g` � min
�l1 2 l2��2, �l2 2 l3��2� . (3)

Note that g` $ 0 and g` ! 0 as l2 ! l1, or l2 !
l3, corresponding to the zero growth rate for axially
symmetric cases. Both for time-reversible flow statistics
and for 2D flow, l2 � 0 and g` � l1�2. Note that three-
dimensional fluctuations of the field grow in 2D flow until
our approximation of linear velocity is valid [9]. For
isotropic Navier-Stokes turbulence, numerical data suggest
l2 	 l1�4 [17], so that our prediction for the long-time
growth rate in a typical realization is g` 	 3l1�8.

The moments with n . 0 all grow in a random in-
compressible flow with a nonzero Lyapunov exponent
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since En � log�B2n��2t is a convex function of n (due
to Hölder inequality) with E0 � 0 and dEn�dn�0� �
g $ 0. Even when g � 0, En are positive for n . 0
if H has a finite width, that is, if the flow is ran-
dom (for n � 1 this was stated in [18]). The growth
of the 2nth moment at t ø td is determined by the av-
erage of exp�2nr1�. For t ¿ td , the expression to av-
erage is either exp�nr1 2 nr2� (with r2 . logrd�L) or
exp�nr2 2 nr3�, depending on whether the entropy func-
tion favors positive or negative r2 (cf. [9]). The formula
B2 ~ exp��l1 2 l2�t� was previously derived for a per-
manent strain [19]. Note in passing that at t ¿ td the
magnetic flux (conserved in an ideal conductor) decreases
with the rate g` 1 l2 1 l3 , 0, independent of diffu-
sivity. The function En is nonuniversal since it is de-
termined by the saddle point of Dr1,2 integration which
depends on the particular form of the entropy function.
The saddle point falls within the (universal) parabolic re-
gion of H around the minimum only for n ø �l1t�21.
Therefore, we calculate below, for a short-correlated
strain, the temporal growth of the moments.

Here, we continue with the general case to establish
what is universal in the different point correlation func-
tions F2n � �

Qn
k�1�B�x2k21, t�B�x2k , t���. Its calculation

is reduced to averaging �2n 2 1�!! terms arising from the
Wick decomposition in the Gaussian integration over the
random initial condition. Each term is a product of n in-
tegrals generalizing that for B2 with the inclusion of re-
spective exp�irjŴT ,21q� in the integrand. The n vectors
rj are the differences between couples of xk’s. The new
feature, with respect to the moments, is the presence of the
rotation matrix R̂ in the exponential factor. The q integra-
tions proceed along the same lines as previously: in every
one of the n integrals we change variables q � ŜT Q, and
the dependence on Ŝ is entirely moved into the prefactors.
Substituting Ŝ by the unit matrix and performing the Q in-
tegrations, we obtain the long-time asymptotics for any of
the �2n 2 1�!! contributions to F2n:
*
�L�rd�n exp�n�r1 2 r2��

�1 1 e22r2r2
d�L2�5n�2

Z 1

21
d cosu

Z 2p

0
dw

Z 2p

0
df

nY
j�1

"
2 2

R2
2je22r2

L2

#
exp

"
2

R2
2j

4�L2e2r2 1 2r2
d�

2
R2

3j

8r2
d

#+
,

(4)
where Rj � R̂3�w�R̂2�u�R̂3�f�rj, and R̂2,3 stand for ro-
tations around the Y and Z axes, respectively. We con-
sider time-reversible statistics, where the scaling laws turn
out to be universal. Let us explain the physical meaning
of (4) and derive the correlation functions starting from
n � 1. The realizations contributing have the advective
exponent exp�irŴT ,21q� of order unity. This requires
r2 . ln�r�L� and the direction of contraction n3 to be al-
most perpendicular to r, which gives the geometrical factor
�L�r� expr3. At l1t . ln�L�r� we then obtain

F2�r , t� 	
L
r

Z `

2`
dr1

Z `

ln�r�L�
dr2er12r22tH

~ r222heE2t ,

where h � ≠H�≠y is taken at y � 0 and at x given by
the saddle point ≠H�≠x � 1. Time reversibility means
that H�x, y� � H�x 1 y, 2y� so that h � 1�2 and F2 ~

r25�2 exp�E2t�. At r ø L and l1t ø ln�L�r�, F2 is r
independent. This generalizes the consideration of [7]
for arbitrary time-reversible statistics. To understand the
simple geometrical picture behind this derivation, note
that the integral over r2 comes from r2 	 ln�r�L�. That
means that the field configurations in the form of strips
with width r dominate F2�r�. The angular integral in (4)
comes from w 	 1, that is, the strips with the stretching
direction almost parallel to r do not contribute (because of
cancellations due to solenoidality).

For n $ 2, the geometry of the vectors rj becomes
important. Let us consider the case where all of the vectors
are in the same plane (their length being r). They can
be either collinear or not. Almost orthogonality of rj

to n3 involves therefore either one angle or two, giving
the angular factor �L�r� expr3 or its square, respectively.
The other difference concerns the behavior along n2. For
noncollinear geometry, all vectors cannot be orthogonal to
n2, and r2 should then be constrained as r2 . logr�L.
This is technically signaled by the fact that the integra-
tion over w is not saddle point. Conversely, for collinear
geometry all of the vectors can be orthogonal both to n2
and n3, giving an additional angular factor �L�r� expr2:
the saddle-point integrations over u and w pick u � p�2,
w 	 exp�r2�L�r. In the rest of the integrals (either n 2 1
or n 2 2, respectively) the above angular constraints en-
sure that the advective exponents are O�1� so the diffusive
exponents exp�22kqLq� become important. The calcu-
lation of these integrals is essentially the same as for the
moments and this is where diffusion comes into play. The
wave vectors should be quasiorthogonal to n3, giving ei-
ther n 2 1 or n 2 2 factors �L�rd� expr3. The growth
along n2 for a generic planar geometry is automatically
controlled by the previous constraint r2 . logr�L; for
collinear geometry it provides the bound r2 . logrd�L.
Simply speaking, the strips with the width rd stretched
along r contribute in the collinear case, while the width
is r in the generic case. The resulting integrations over r1
are saddle point and those over r2 are dominated by the
lower bounds. Finally,

F2n 	 eEnt

µ
L
rd

∂5n�2µ
rd

r

∂2

3

Ω
1 collinear
�rd�r�3n�2 planar .

(5)

Here, En � xn 2 H�xn, 0� with ≠H�≠x�xn, 0� � n. That
the integrals over r2 are all dominated by the lower
bounds indicates the geometric nature of the scaling
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universality found: the field configurations that contribute
are narrow strips (not ropes and layers as suggested in
[9]) with one direction of stretching, one of contraction,
and a neutral one. The factor �rd�r�2 is the probability
for two points at distance r to lie within the same strip
of width rd . The peculiar nature of strips has another
dramatic consequence for n $ 3: the correlation functions
are strongly suppressed in a generic situation when at least
three vector rj’s do not lie in parallel planes. Indeed, they
cannot then be on parallel strips, and nonzero correlation
appears only because the strips have exponential diffusive
tails. As a result, the factor �rd�r�2 in the planar formula
is replaced by exp�2ar2 sin2Q�r2

d�, where a 	 1 and
Q is the minimal angle between a vector and the plane
formed by another two vectors. This can be derived from
(4), where all angular integrations are not saddle point
now. For general irreversible velocity statistics, the r
dependences are different yet the qualitative conclusions
(that the correlation functions are not exponentially
suppressed only for planar geometry and are anomalously
large for collinear geometry) are generally valid. Angular
anomalies are peculiar to the viscous interval, where
advection by a smooth velocity preserves collinearity.
Similar collinear anomalies have been described before for
a passive scalar advected by a smooth velocity [20–22].
Note that the cliff-and-ramp structures observed in passive
scalar experiments (see [23] for review) are probably also
related to the strips.

It is left to find En for the standard Kazantsev-
Kraichnan model of an isotropic short-correlated Gaussian
strain with �sab�t�sab�0�� � 10l1d�t�. Straightfor-
ward derivation gives Gaussian Pt�r1, r2� with H �
�r1 1 r2�2 2 l1t�2�l1t 1 3r

2
2�4l1t. Note that

l2 � 0. Now we integrate the moments of (2) with such
Pt . We integrate exp�2nr1� and get the answer for the
perfect conductor [3,9],

�B2n� 	 exp�2l1n�2n 1 3�t�3� . (6)

The main contribution to the nth moment comes from
r1 � l1t�4n 1 3��3, r2 � 22nl1t�3 so that (6) is valid
until L expr3 . rd , that is, for t , 3td��2n 1 3� with
td � l

21
1 ln�L�rd�. There is then a logarithmically wide

crossover interval when the growth is nonexponential. The
asymptotic regime starts at t . 3td��n 1 2� when unity in
the first parenthesis of (2) may be neglected. The integral
over r1 now comes from r1 1 r2�2 � �n 1 2�l1t�2
while that over r2 is dominated by the lower bound r2 	
ln�rd�L�:

�B2n� 	 �L�rd�5n�2 exp�Ent�, En � l1n�n 1 4�t�4 .

(7)

For n � 1, this was obtained by Kazantsev [6]. The
difference between (6) and (7) formally means that the
two limits t ! ` and k ! 0 do not commute (called
dissipative anomaly). The physical reason is quite
clear: realizations with continuing contraction along two
directions contribute most in a perfect conductor, while
4068
with diffusion present, one direction is neutral. A mag-
netic field initially concentrated in the ball with the radius
L will have the fastest growth rate g if the ball turns into
a strip with the dimensions L�L�rd�1�2 exp�3Dt�, rd , and
L�rd�L�1�2 exp�23Dt�. The nth moment is given by strips
with the dimensions L�L�rd�1�2 exp�3�n 1 2�Dt�2�, rd ,
and L�rd�L�1�2 exp�23�n 1 2�Dt�2�. In conclusion, we
have related the growth rate of the small-scale dynamo
to the Lypunov exponents of the flow and described
analytically the strip structure of the magnetic field.
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