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Inverse versus Direct Cascades in Turbulent Advection
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A model of scalar turbulent advection in compressible flow is analytically investigated. It is shown
that, depending on the dimensionalidy of space and the degree of compressibility of the smooth
advecting velocity field, the cascade of the scalar is direct or inverse. >f4 the cascade is always
direct. For a small enough degree of compressibility, the cascade is direct again. Otherwise it is
inverse; i.e., very large scales are excited. The dynamical hint for the direction of the cascade is the
sign of the Lyapunov exponent for particles separation. Positive Lyapunov exponents are associated to
direct cascade and Gaussianity at small scales. Negative Lyapunov exponents lead to inverse cascade,
Gaussianity at large scales, and strong intermittency at small scales. [S0031-9007(97)04955-7]

PACS numbers: 47.27.Eq, 05.40.+j, 47.10.+¢g

The keystone of the celebrated 1941 Kolmogorov-attention for the anomalous scaling discovered there [9—
Obukhov [1,2] theory for 3D fully developed turbulence 11]). A one-dimensional compressible generalization of
is the direct (downscales) energy cascade. Many othethe Kraichnan model was recently introduced in [12]. We
examples of direct cascades have later been found fdrave considered the smooth limit of the model in [13] and
turbulent systems (see [3,4] for a review). The presencehown that an inverse cascade takes place. This has led us
of a direct cascade expresses the fact the average flux tuf investigate the general relation between compressibility
an integral of motion, which holds for the system in theand the direction of the cascade. The aim of this Letter
absence of forcing and dissipation (e.g., energy for 30s to present and analyze a model where we can continu-
Navier-Stokes turbulence and many examples of wave tususly move from inverse to direct cascade by varying two
bulence, vorticity for 2D Navier-Stokes turbulence, etc.),parameters: The dimensionality of spatand the degree
is directed toward small scales and is constant along thef compressibility.
scales. The variety of turbulent systems is not exhausted The dynamical equation is
by direct cascades. When the pumping is supplied, the
flux of an integral of motion can go toward large, and not [0, + uu(t;r)V, — kA)O(t;r) = H(1;r), (1)
small, scales. This is the case of 2D turbulence, where
the dynamical constraints due to the presence of twdor the Lagrangian tracer scalar fieklz;r) (say tem-
integrals of motion lead to the remarkable phenomenomperature or entropy but generally not concentration of
of the inverseenergy cascade discovered by Kraichnama pollutant), steadily supplied by the random Gaussian
in [5]. Other examples of inverse cascade are known irsource¢ and advected by the compressiblgimensional
wave turbulence [3]. Gaussian random velocity(s; r), having zero average.

Advection of a passive scald#z;r) (it might be the The correlation of the pumping &b (¢1;r1) P (f2;12)) =
concentration of a pollutant or temperature) by a turbu-y(r; — r2)8(r; — 2), with y(r) regular at the origin and
lent incompressibleflow belongs to the class of direct decaying fast at distances larger than the integral dcale
cascades [6]. The direct cascade survives if the NaviefFhe molecular diffusivityx is supposed small enough to
Stokes turbulent velocity is replaced by a synthetic fieldoe in the fully turbulent regime; i.eL, is much larger than
with prescribed statistical properties [7,8] (this model, in-the dissipative scale. The pair correlation function of the
troduced by Kraichnan in [8], is attracting a great deal jofvelocity fluctuations{&u, (t; r)éug(t’;r)), is

2(dC? = S?)rqrg — [2C? = (d + 1)S*]8apr?
did — 1)(d + 2)

5t — 1), (2

where  C? = ((Vou,?),  S? =((Vaup)®, and | cutoffs are present, the smallest excited wave numbers
Sug(t;r) = ug(t;1) — uy(2;0). become smaller and smaller with Moments of the
We show for the model thahe cascade of the scalar scalar field are dominated by infrared contributions and
is inverse ifd < 4 and the degree of compressibility will diverge intime (linearly, as shown in [13]). Moments
C?/S8? > d/4; otherwise it is direct The dimension of the scalar differences are, on the contrary, formed at
d = 4 then turns out to be critical for the direction of finite wave numbers and will then reach stationary values.
the cascade. When the cascade is inverse and no infrar&the probability density function (PDF) at the steady state
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of scalar differences is found explicitly in the convective § vanishes for incompressible flow. THR&th moment
interval, i.e., at scales much larger than the diffusive oneof R(r) obeys the following differential equation:

both for direct and inverse cascades. The Gaussianity of

the scalar distribution, known to be present at small scales 5, (g2 — 2n (R*™)

in the incompressible case [14], emerges at large scales d

when the cascade is inverse. Small scales are then shown " |:SZ< 1 n- 1) 2n — 1) C2:|

to be strongly intermittent. ) d+ 2 d+ 2

Since the scalar is a tracer, its statistics is very di- 3
rectly related to the one of the Lagrangian trajectories 3
separation and, specifically for smooth velocities, of Lya-qrresponding to the following Gaussian statistics of the

punov exponents, describing the rate of the exponentialyyonential stretching rate = In[R(1)/R(0)]/:
in-time stretching (or contraction) of the separation. We

shall derive below the following relation between the sign [ (A — )t

of the maximum Lyapunov exponent and the direction P(t;A) = 27 GX{—T]

of the cascadeA is positive in the case of direct cas- (4)
cade and negative in the case of inverse cascaBe- —  dS?* — 4¢? / S2 + 22

fore the systematic analysis, it is worth presenting first A= m {= m

some simple intuitive arguments. Indeed, once the statis-
tics of the scalar field is expressed in terms of Lagrangiar he largest Lyapunov exponent (generally there duef
paths properties, the crucial question becomes, given twiéiem) has been denoted byand ¢ is the variance of
particles initially separated by, what is the probability A. For incompressible velocity field;*> = 0 and the
that their distance will ever reach the typical scale of thelyapunov exponent is always positive. The opposite
pumpingL? If the Lyapunov exponent is positivegpa- limit is the one of gradient-type velocity fielda =
rations will typically grow exponentially in time. Start- Vi, where the equaliteC* = > = ((A#)*) holds. The
ing from a separation < L, the scale of the pumping interesting conclusion arising from (4) is that= 4
is almost certainly reached; vice versa,rit> L, there is actually a critical dimension for gradient-type fields.
is practically no chance to readh This is the dynami- For generic smooth flow, the largest Lyapunov exponent
cal hint of the direct cascade. Consider nawegative is always positive ford > 4 and its precise behavior
Lyapunov exponent The picture is completely reversed. (including the value of the possible critical dimension
Since typical trajectories are contracting, the probabilityd. = 4C*/S?) depends on the specific value of the
to reachL is much higher at scales> L thanr < L.  degree of compressibilitC>/5>. It follows from (4)
The characteristic sign of the inverse cascade is emerdhat, if the Lyapunov exponent is negative, the low-order
ing here. Furthermore, the described physics of the remoments of the Lagrangian separation decay in time,
lation between the stretching-contraction interplay doe®ut their high-order moments (e.g., integer moments)
have a certain generality. For incompressible flow, thegrow exponentially. As first highlighted in [16], this
strain tensor being traceless, no strong trapping phenonfireans that the dynamics of Lagrangian separations is
ena are possible and the rate of typical separations growgiominated by rare events and this is the origin of the
is expected to be positive. Strong trapping appears fogtrong intermittency of the scalar at small scales which
compressible flow, where it can lead to a substantial slowwill be evidenced below.
down of transport (see [15]) and, possibly, to a negative We proceed now with the derivation of the scalar sta-
rate of the Lagrangian separations stretching. Finally, théstics. The relation between Lagrangian trajectories and
importance of traps for transport should definitely reducdhe passive scalar field in (1) is very direct. The solu-
when the dimensionality of space increases. tion of the equation can indeed be presented @sr) =

Let us now start the systematic analysis of the model/.. dt’ ¢[t'; p(¢')], where the Lagrangian trajectopyr)
by considering Lagrangian separations statistics. The&atisfiesp(r') = u(r'; p(¢')] and p(r) = r. For the sake
stochastic differential equation governing the evolution ofof simplicity of the presentation, we have not taken into
the separatioi, (1) between two Lagrangian particles, in account molecular diffusion (see, for example, [13] for
the absence of molecular diffusion, i8R, = o.sRg.  the detailed path integral formulation including diffusion).
The statistics of the random straim®? is Gaussian. Its smearing effects on Lagrangian trajectories can be ne-
Its irreducible correlation function([ o, (t)oss(t')]y  glected in the analysis presented in the sequel. The si-
is simply obtained operating withtVviV?/2 on (2). multaneou2nth order scalar correlation function can be
(c?Py = —82PC?/[2d] as follows from the condition rewritten in terms of the average ov&r Lagrangian tra-
d(R,(1))/dt = 0, which is an immediate consequencejectories as
of isotropy, and the symmetric temporal regularization

. . : . n T R: (t)
(the choice of which is customary) corresponding to (g....¢ ) = f di ixji 5
(c*PRBY = (c*BaPY)(R7)/2. Note that the average of o 2n) pe%utkl:[l o “X L S
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where the sum is over all the possible permutationgositive A case fixes the same boundary condition4or
{it,. s insjis. .., juy Of the indices{l,...,2n}. The La- butin the opposite limity — -+ (it is worth mentioning
grangian separatioR ;;(¢) satisfies the Langevin equation that a finite diffusivity is needed for this). We thus arrive
associated with (3) and the two Lagrangian particles arat the Fokker-Planck equation

initially located atr; andr;, respectively. T stands for — 5

the time of evolution and should tend to infinity for the | 252 4 (1 + 22,5 — 294 [ (0)= v(3)] |2 = /.
. . o y 5 |y9y 5 Lx x(y

system to attain the stationary state. The statistics of { ¢

the whole set ofd Lyapunov exponents is required to 7
reconstruct the Lagrangian dynamics of a genérai- it the following boundary conditions o ( y, ¢):
mensional structure. However, to analyze the structure _ -

functions of the scalar (or multipoints correlation func- atA <0 Z|,—o— 1L[Zy*¢ Iy—1/e=e— 0, (8)
tions where all the points are elongated on a straight line), B

we do not need to go into the heavy details of sublead- atX >0 Z|,—/eme — 1,[Zy"¢]ljm0 — 0. (9)
ing Lyapunov hierarchy. The point is that, modulo the . .

dissipation that will be discussed later on, the collineat €€ ¢ should be considered asyandependent parame-

geometry is preserved by the dynamics [11,17]. Here, wéE" {0 be replaced by, /r after integration of (7).
shall therefore consider only collinear geomatyy= nx;, Note that the Fokker-Planck equation (7) is the same

with all the distances large enough for dissipative effect&S the one found directly from (1), taking two replicas,
to be negligible. Then-order structure functiors,,(x) ~ 2veraging with the appropriate weight and discarding the

can be easily reconstructed from theth order correla- Contribution of the molecular diffusivity term. If the
tion function{w (T, r,) - - - (T, 2,)) of the scalar gradient latter term is kept, the so-called anomaly term appears

w(t:r;) = 9,.0(t;1,), in the collinear geometry. This is (following the field-theoretical terminology introduced
simply done integrating all the coordinatesfrom 0 to x 2 Polyakov in [19]) and the equation is not closed.

and the final result fos,, = ([0(x) — 8(0)]*") is In turbulent systems, it is generally expected that the
T n anomaly term (for a discussion of the Polyakov theory
Son = an<|:j dt[x(e*rq/L) — x(eMr/L)] > in the context of the present passive scalar model, see
0 [20]) does not vanish in the zero diffusivity limit. The

) . (6) absence of the anomaly term is therefore neither a trivial
wherea, = (2n — 1)!!2" and the averaging with respect nor 5 general fact. To derive (7) rigorously we started
to A is fixed by (4). The regularity of the pumping(x)  from the multipoint object given by a compact average
at the origin has been exploited in (6) and the integranf 5 4(r) dependent functional (5). Fussion of the
tions over ther;'s have been cut from below by the dif- oints along a collinear path allowed to reduce (5) to
fusive scaler; = /x. We will indeed see that in those (g) which was shown to be equivalent to the anomaly-
cases when the cutoff is important, the resulting depengee Eq. (7) conditioned by (8) or (9), respectively. No
dence orv, is logarithmic, thus justifying the used regu- goupt in the general case of a nonsmooth incompressible
larization. Equation (6) works generically for all the  ye|ocity an analogous procedure would give a nonzero
from the convective interval and all the with one ex-  anomaly [9-11]. The respective question addressed to
ception. Equation (6) is not applicable for the highestihe compressibie yet nonsmooth case is not yet resolved.
moments,n > In[L/r], in the case of the direct cas- | et ys finally show how to get from (7) and (8) or (9) the
cade and high enough dimensionality> 2 [18]. The  gca|ar differences PDF, with a special accent on the issue
exceptional limit requiring an account for_off-collinear of ynjversality. The PDF is indeed not globally universal,
trajectories will be discussed elsewhere. The generating, the sense that it will generally depend on the explicit
function Z(r/L,q) (Fourier transform of the respective form of the pumping functiony(x). A relevant question
PDF) of scalar differences is simply restored from (6) inyg ask is then: What is universal in the PDF? There are
the form of a matrix element over an auxiliary quantumyyg different universality issues which may be discussed
mechanics (see [13] for more details) with the Hamilton-j, thjs respect. A kind of universality, typical of the case
ian 4 = —502 + ¢*[x(e”/P8 — x(e"r/L)]. Indeed, of positive Lyapunov exponents both at large and small
7 = [e,ﬂz/(w)q,(T; n)],—0, Where the wave function scales, suggests that the only relevant parameter is the
v satisfies the Schrédinger equatipay + ATV = 0, flux of 62 [x(0)] pumped into the system at the mtggral
with the initial conditionW(0; ) = ¢*"/¢. The asym- scale [14]. Indeed, ai >.0 the asymptotic solution
metry between negative and positiveclearly emerges of .(7) can be found replacmg(o) — x(/L) by X.(O)'
in the different asymptotic behaviors &F. For nega- Using (9) and the fact thef is t_he smallest value in the
tive A, the nonvanishing aty — —o initial condition probl_em, one gets an aIgeEralq form for the generating
exd An /%] will survive in the stationaryl — ) limit, function Z = (r4/ min{r, L})*, with the exponenta =
since the potential part of the Hamiltoniar 42) is also \/Xz/g“ + 2¢2x[0]/£% — X/£2. Calculating the Fourier
vanishing atp — —o. Analogous consideration of the integral for the PDF in the saddle-point manner (the large
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parameter isr/r;), one gets the Gaussian behavior athigh-order structure functions scaling exponents should

166, < In[x*] be contrasted with the Gaussian normal scaling observed
exd —862A/(4x[0]In[x*])] for the direct cascade. These different scalings are an

P(r/L,60,) = —= » (10) illustration of the profoundly different behaviors that have

A/ x[0]In[x*] been found for the model below and above its threshold

wherex* = min{r,L}/r,. For very large value6,| > of compressibility where the direction of the cascade is
In[x*], the Gaussian behavior transforms into an exponerreversed.

tial tail [14,21]. The detailed form of the tail requires how-  llluminating discussions with E. Balkovsky, G.
ever the knowledge of the whole hierarchy of LyapunovFalkovich, U. Frisch, K. Gawedzki, V. Lebedev, A.
exponents and cannot be calculated within the collinealPolyakov, B. Shraiman, P.L. Sulem, and V. Yakhot are
approach used in the present Letterdat- 2 [18]. The  gratefully acknowledged. We have benefited from the
unknown exponential tail does not affect the behavior ostimulating atmosphere of the IHES, Bures-sur-Yvette,
the structure functions of order < In[x*], that are equal Wwhere we participated in the workshop on turbulence.
to (2n — 1)!!n! 2" In"[x*]x"[0]/A". This kind of univer- ~ This work was partly supported by ONR/DARPA URI
sality (and the corresponding restrictions on collinear conGrant No. N00014-92-J-1796 (M.C.), Russian Fund
siderations) can be easily extended to the case of negati@ Fundamental Researches under Grant No. 97-02-
Lyapunov exponents far > L. To this aim, we replace 18483 (I.K.), and the GdR “Mécanique des Fluides
again y(0) — x(x/L) by x(0) in (7), impose the bound- Géophysiques et Astrophysiques” (M. V.).

ary condition (8), and perform the saddle-point integral, as
discussed above. We arrive finally at the expressions for
the PDF and the structure functions (valid for> L and

negativel), which are identical to (10) with the replace-
ments of mitr, L}/rs by r/L and A by |A]. [1] A.N. Kolmogorov, Dokl. Akad. Nauk SSSRO, 9 (1941).

For negativex, another kind of universal behavior is [2 A-M. Obukhov, Dokl. Akad. Nauk SSSR2, 22 (1941).

found at small scales < L. In the vicinity of the origin, 13} V- Zakharov, V. L'vov, and G. FalkovichKolmogorov

- Spectra of Turbulenc€Springer, Berlin, 1992), Vol. I.
the PDF depends only on the second derivative of th(:"[4] U. Frisch, Turbulence. The Legacy of A.N. Kolmogorov

pumping x"(0). This part of the PDF is indeed formed (Cambridge Univ. Press, Cambridge, 1995).
at the largesy > 1, where one can keep only the first [5] R. Kraichnan, Phys. Fluid$0, 1417 (1967).
term of the expansion gf(x/L) in the “potential” of (7).  [6] A.M. Obukhov, Izv. Akad. Nauk SSSR, Geogr. Geophiz.
We arrive then at the following expression for the PDF at 13 58 (1949).
|66, < 1andr < L: B [7] G.K. Batchelor, J. Fluid Mechs, 113 (1959).
I 2\ ~A/E P ) M EP-1/2 [8] R. Kraichnan, Phys. Fluid1, 945 (1968).
x"[0]r x"[0]r ;
P=c 593 + , [9] M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev,
{212 {212 Phys. Rev. E52, 4924 (1995).
(11)  [10] K. Gawedzki and A. Kupianen, Phys. Rev. Lét6, 3834
c=T[1/2 = 2/2?)/(T[—=A/]J7). The expression (1995). o .
(11) shows that all the structure functiofs(r) of low  [11] B. Shraiman and E. Siggia, C.R. Acad. Sci. Sei322,

orders —1 < n < —21/¢? are controlled by (11) and 279 (1995). .
scale normally~r". The behavior of the PDF at values [*%] (I\ié;/%rgassola and A. Mazzino, Phys. Rev. L&, 1849

!arger than those where (11) holds is not universal; i'(:"'[13] M. Chertkov, I. Kolokolov, and M. Vergassola, Phys. Rev.
it depends on the whole form of(x/L). For very E 56, 5483 (1997).

large valuessé, > 1 and at small scales < L, it iS  [14] M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev,
however possible to show, from the expression of (7) an Phys. Rev. B1, 5609 (1995).
(8) atg = 1 andy < 1, that the far tail is exponential, [15] M. Vergassola and M. Avellaneda, Physica (Amsterdam)
P ~ [r/L]1 M exp—/x {186,1/2). The nonuniver- 106D, 148 (1997).
Sa“ty emerges via the dimensional Constqnt which [16] Ya.B. Zel'dOViCh, S.A. MOlChanOV, A A. RUZmaikin, and
depends on the precise shape of the source function (for_. D-D- Sokolov, Sov. Phys. JETE2, 1188 (1985).
detailed explanations on the asymptotics, see [13], wherg /) E: Balkovsky, M. Chertkov, I. Kolokolov, and V. Lebe-
the tail was fully determined in the one-dimensional CaS‘T18 dev, JETP Lettb61, 1012 (1995). ,

- . ] D. Bernard, K. Gawedzki, and A. Kupianen, IHES report,
for a specific form of the pumping). The form of the 1997
tail, along with (11), shows that the structure functlons[lg] A.M. Polyakov, Phys. Rev. B2, 6183 (1995).
of order larger than-21/¢? all scale in the same way [20] V. Yakhot, Princeton University report, 1997.
Son(r) ~ (r/L)™2"¢ at r < L. This collapse of the [21] B. Shraiman and E. Siggia, Phys. Rev4€ 2912 (1994).

515



