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Inverse versus Direct Cascades in Turbulent Advection
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A model of scalar turbulent advection in compressible flow is analytically investigated. It is show
that, depending on the dimensionalityd of space and the degree of compressibility of the smooth
advecting velocity field, the cascade of the scalar is direct or inverse. Ifd . 4 the cascade is always
direct. For a small enough degree of compressibility, the cascade is direct again. Otherwise
inverse; i.e., very large scales are excited. The dynamical hint for the direction of the cascade is
sign of the Lyapunov exponent for particles separation. Positive Lyapunov exponents are associat
direct cascade and Gaussianity at small scales. Negative Lyapunov exponents lead to inverse ca
Gaussianity at large scales, and strong intermittency at small scales. [S0031-9007(97)04955-7]

PACS numbers: 47.27.Eq, 05.40.+ j, 47.10.+g
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The keystone of the celebrated 1941 Kolmogoro
Obukhov [1,2] theory for 3D fully developed turbulenc
is the direct (downscales) energy cascade. Many oth
examples of direct cascades have later been found
turbulent systems (see [3,4] for a review). The presen
of a direct cascade expresses the fact the average flu
an integral of motion, which holds for the system in th
absence of forcing and dissipation (e.g., energy for 3
Navier-Stokes turbulence and many examples of wave t
bulence, vorticity for 2D Navier-Stokes turbulence, etc.
is directed toward small scales and is constant along
scales. The variety of turbulent systems is not exhaus
by direct cascades. When the pumping is supplied, t
flux of an integral of motion can go toward large, and n
small, scales. This is the case of 2D turbulence, whe
the dynamical constraints due to the presence of tw
integrals of motion lead to the remarkable phenomen
of the inverseenergy cascade discovered by Kraichna
in [5]. Other examples of inverse cascade are known
wave turbulence [3].

Advection of a passive scalarust; rd (it might be the
concentration of a pollutant or temperature) by a turb
lent incompressibleflow belongs to the class of direct
cascades [6]. The direct cascade survives if the Navi
Stokes turbulent velocity is replaced by a synthetic fie
with prescribed statistical properties [7,8] (this model, in
troduced by Kraichnan in [8], is attracting a great deal
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attention for the anomalous scaling discovered there
11]). A one-dimensional compressible generalization
the Kraichnan model was recently introduced in [12]. W
have considered the smooth limit of the model in [13] a
shown that an inverse cascade takes place. This has le
to investigate the general relation between compressib
and the direction of the cascade. The aim of this Let
is to present and analyze a model where we can cont
ously move from inverse to direct cascade by varying tw
parameters: The dimensionality of spaced and the degree
of compressibility.

The dynamical equation is

f≠t 1 uast; rd=a 2 kngust; rd ­ fst; rd , (1)

for the Lagrangian tracer scalar fieldust; rd (say tem-
perature or entropy but generally not concentration
a pollutant), steadily supplied by the random Gauss
sourcef and advected by the compressibled-dimensional
Gaussian random velocityust; rd, having zero average
The correlation of the pumping iskfst1; r1dfst2; r2dl ­
xsr1 2 r2ddst1 2 t2d, with xsrd regular at the origin and
decaying fast at distances larger than the integral scaleL.
The molecular diffusivityk is supposed small enough t
be in the fully turbulent regime; i.e.,L is much larger than
the dissipative scale. The pair correlation function of t
velocity fluctuations,kduast; rddubst0; rdl, is
2sdC2 2 S2drarb 2 f2C2 2 sd 1 1dS2gdabr2

dsd 2 1d sd 1 2d
dst 2 t0d , (2)
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where C2 ­ kf=auag2l, S2 ­ ks=aubd2l, and
duast; rd ­ uast; rd 2 uast; 0d.

We show for the model thatthe cascade of the scalar
is inverse if d , 4 and the degree of compressibility
C2yS2 . dy4; otherwise it is direct. The dimension
d ­ 4 then turns out to be critical for the direction o
the cascade. When the cascade is inverse and no infra
f
red

cutoffs are present, the smallest excited wave numb
become smaller and smaller witht. Moments of the
scalar field are dominated by infrared contributions a
will diverge in time (linearly, as shown in [13]). Moment
of the scalar differences are, on the contrary, formed
finite wave numbers and will then reach stationary valu
The probability density function (PDF) at the steady sta
© 1998 The American Physical Society



VOLUME 80, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 19 JANUARY 1998

he

.
nt

n
e

er
e,

ts)

is
he
ch

a-
nd
u-

to
r

).
ne-
si-

e

of scalar differences is found explicitly in the convectiv
interval, i.e., at scales much larger than the diffusive on
both for direct and inverse cascades. The Gaussianity
the scalar distribution, known to be present at small sca
in the incompressible case [14], emerges at large sca
when the cascade is inverse. Small scales are then sho
to be strongly intermittent.

Since the scalar is a tracer, its statistics is very d
rectly related to the one of the Lagrangian trajectorie
separation and, specifically for smooth velocities, of Lya
punov exponents, describing the rate of the exponenti
in-time stretching (or contraction) of the separation. W
shall derive below the following relation between the sig
of the maximum Lyapunov exponent and the directio
of the cascade:l is positive in the case of direct cas-
cade and negative in the case of inverse cascade. Be-
fore the systematic analysis, it is worth presenting fir
some simple intuitive arguments. Indeed, once the stat
tics of the scalar field is expressed in terms of Lagrangi
paths properties, the crucial question becomes, given t
particles initially separated byr , what is the probability
that their distance will ever reach the typical scale of th
pumpingL? If the Lyapunov exponent is positive,sepa-
rations will typically grow exponentially in time. Start-
ing from a separationr ø L, the scale of the pumping
is almost certainly reached; vice versa, ifr ¿ L, there
is practically no chance to reachL. This is the dynami-
cal hint of the direct cascade. Consider nowa negative
Lyapunov exponent. The picture is completely reversed
Since typical trajectories are contracting, the probabili
to reachL is much higher at scalesr ¿ L thanr ø L.
The characteristic sign of the inverse cascade is eme
ing here. Furthermore, the described physics of the r
lation between the stretching-contraction interplay do
have a certain generality. For incompressible flow, th
strain tensor being traceless, no strong trapping pheno
ena are possible and the rate of typical separations grow
is expected to be positive. Strong trapping appears
compressible flow, where it can lead to a substantial slo
down of transport (see [15]) and, possibly, to a negativ
rate of the Lagrangian separations stretching. Finally, t
importance of traps for transport should definitely reduc
when the dimensionality of space increases.

Let us now start the systematic analysis of the mod
by considering Lagrangian separations statistics. T
stochastic differential equation governing the evolution o
the separationRastd between two Lagrangian particles, in
the absence of molecular diffusion, is≠tRa ­ sabRb.
The statistics of the random strainsab is Gaussian.
Its irreducible correlation functionkfsgastdsdbst0dgl
is simply obtained operating with=

g
r =d

r y2 on (2).
ksabl ­ 2dabC2yf2dg as follows from the condition
dkRastdlydt ­ 0, which is an immediate consequenc
of isotropy, and the symmetric temporal regularizatio
(the choice of which is customary) corresponding t
ksabRbl ­ ksabsbgl kRgly2. Note that the average of
e
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ŝ vanishes for incompressible flow. The2nth moment
of Rstd obeys the following differential equation:

≠tkR2nl ­
2n
d

kR2nl

3

"
S2

√
1
2

1
n 2 1
d 1 2

!
1

2sn 2 1d
d 1 2

C2

#
,

(3)

corresponding to the following Gaussian statistics of t
exponential stretching ratel ; lnfRstdyRs0dgyt:

P st; ld ­

s
t

2pz 2
exp

"
2

sl 2 ld2t
2z 2

#
,

l ­
dS2 2 4C2

2dsd 1 2d
, z ­

s
S2 1 2C2

dsd 1 2d
.

(4)

The largest Lyapunov exponent (generally there ared of
them) has been denoted byl and z is the variance of
l. For incompressible velocity fields,C2 ­ 0 and the
Lyapunov exponentl is always positive. The opposite
limit is the one of gradient-type velocity fieldsu ­
=c, where the equalityC2 ­ S2 ­ ksDcd2l holds. The
interesting conclusion arising from (4) is thatd ­ 4
is actually a critical dimension for gradient-type fields
For generic smooth flow, the largest Lyapunov expone
is always positive ford . 4 and its precise behavior
(including the value of the possible critical dimensio
dc ­ 4C2yS2) depends on the specific value of th
degree of compressibilityC2yS2. It follows from (4)
that, if the Lyapunov exponent is negative, the low-ord
moments of the Lagrangian separation decay in tim
but their high-order moments (e.g., integer momen
grow exponentially. As first highlighted in [16], this
means that the dynamics of Lagrangian separations
dominated by rare events and this is the origin of t
strong intermittency of the scalar at small scales whi
will be evidenced below.

We proceed now with the derivation of the scalar st
tistics. The relation between Lagrangian trajectories a
the passive scalar field in (1) is very direct. The sol
tion of the equation can indeed be presented asust; rd ­Rt

2` dt0 fft0; rst0dg, where the Lagrangian trajectoryrstd
satisfies Ùrst0d ­ ust0; rst0dg and rstd ­ r. For the sake
of simplicity of the presentation, we have not taken in
account molecular diffusion (see, for example, [13] fo
the detailed path integral formulation including diffusion
Its smearing effects on Lagrangian trajectories can be
glected in the analysis presented in the sequel. The
multaneous2nth order scalar correlation function can b
rewritten in terms of the average over2n Lagrangian tra-
jectories as

ku1 · · · u2nl ­

* X
permut

nY
k­1

Z T

0
dt x

"
Rikjk std

L

#+
, (5)
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where the sum is over all the possible permutatio
hi1, . . . , in, j1, . . . , jnj of the indicesh1, . . . , 2nj. The La-
grangian separationRijstd satisfies the Langevin equation
associated with (3) and the two Lagrangian particles a
initially located atri and rj, respectively. T stands for
the time of evolution and should tend to infinity for the
system to attain the stationary state. The statistics
the whole set ofd Lyapunov exponents is required to
reconstruct the Lagrangian dynamics of a generald di-
mensional structure. However, to analyze the structu
functions of the scalar (or multipoints correlation func
tions where all the points are elongated on a straight lin
we do not need to go into the heavy details of sublea
ing Lyapunov hierarchy. The point is that, modulo th
dissipation that will be discussed later on, the colline
geometry is preserved by the dynamics [11,17]. Here,
shall therefore consider only collinear geometryri ­ nxi ,
with all the distances large enough for dissipative effec
to be negligible. The2n-order structure functionS2nsxd
can be easily reconstructed from the2nth order correla-
tion functionkvsT , r1d · · · vsT , r2ndl of the scalar gradient
vst; ri d ; ≠xi ust; ri d, in the collinear geometry. This is
simply done integrating all the coordinatesxi from 0 to x
and the final result forS2n ­ kfusxd 2 us0dg2nl is

S2n ­ an

*"Z T

0
dtfxseltrdyLd 2 xseltryLdg

#n+
,

(6)
wherean ; s2n 2 1d!! 2n and the averaging with respec
to l is fixed by (4). The regularity of the pumpingxsxd
at the origin has been exploited in (6) and the integr
tions over thexi ’s have been cut from below by the dif-
fusive scalerd ­

p
k. We will indeed see that in those

cases when the cutoff is important, the resulting depe
dence onrd is logarithmic, thus justifying the used regu
larization. Equation (6) works generically for all ther
from the convective interval and all then with one ex-
ception. Equation (6) is not applicable for the highe
moments,n ¿ lnfLyrg, in the case of the direct cas-
cade and high enough dimensionality,d . 2 [18]. The
exceptional limit requiring an account for off-collinea
trajectories will be discussed elsewhere. The generat
function Z sryL, qd (Fourier transform of the respective
PDF) of scalar differences is simply restored from (6)
the form of a matrix element over an auxiliary quantum
mechanics (see [13] for more details) with the Hamilton
ian Ĥ ­ 2

z 2

2 ≠2
h 1 q2fxsehyPed 2 xsehryLdg. Indeed,

Z ­ fe2Tl
2
ys2z 4dCsT; hdgh­0, where the wave function

C satisfies the Schrödinger equationf≠T 1 ĤgC ­ 0,
with the initial conditionCs0; hd ­ elhyz 2

. The asym-
metry between negative and positivel clearly emerges
in the different asymptotic behaviors ofC. For nega-
tive l, the nonvanishing ath ! 2` initial condition
expflhyz 2g will survive in the stationary (T ! `) limit,
since the potential part of the Hamiltonian (,q2) is also
vanishing ath ! 2`. Analogous consideration of the
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positivel case fixes the same boundary condition forC,
but in the opposite limith ! 1` (it is worth mentioning
that a finite diffusivity is needed for this). We thus arriv
at the Fokker-Planck equation"

y2≠2
y 1

√
1 1

2l

z 2

!
y≠y 2

2q2

z 2
fxs0d 2 xs ydg

#
Z ­ 0 ,

(7)

with the following boundary conditions onZs y, qd:

at l , 0 Zjy!0 ! 1, fZylyz 2

gjy!1yj!` ! 0 , (8)

at l . 0 Zjy!1yj!` ! 1, fZylyz 2

gjy!0 ! 0 . (9)

Here,j should be considered as ay-independent parame-
ter to be replaced byrdyr after integration of (7).

Note that the Fokker-Planck equation (7) is the sam
as the one found directly from (1), taking two replicas
averaging with the appropriate weight and discarding t
contribution of the molecular diffusivity term. If the
latter term is kept, the so-called anomaly term appea
(following the field-theoretical terminology introduced
by Polyakov in [19]) and the equation is not closed
In turbulent systems, it is generally expected that t
anomaly term (for a discussion of the Polyakov theo
in the context of the present passive scalar model, s
[20]) does not vanish in the zero diffusivity limit. The
absence of the anomaly term is therefore neither a triv
nor a general fact. To derive (7) rigorously we starte
from the multipoint object given by a compact averag
of a ŝstd dependent functional (5). Fussion of th
points along a collinear path allowed to reduce (5)
(6) which was shown to be equivalent to the anomal
free Eq. (7) conditioned by (8) or (9), respectively. N
doubt in the general case of a nonsmooth incompressi
velocity an analogous procedure would give a nonze
anomaly [9–11]. The respective question addressed
the compressible yet nonsmooth case is not yet resolve

Let us finally show how to get from (7) and (8) or (9) th
scalar differences PDF, with a special accent on the iss
of universality. The PDF is indeed not globally universa
in the sense that it will generally depend on the explic
form of the pumping functionxsxd. A relevant question
to ask is then: What is universal in the PDF? There a
two different universality issues which may be discuss
in this respect. A kind of universality, typical of the cas
of positive Lyapunov exponents both at large and sm
scales, suggests that the only relevant parameter is
flux of u2 [xs0d] pumped into the system at the integra
scale [14]. Indeed, atl . 0 the asymptotic solution
of (7) can be found replacingxs0d 2 xsxyLd by xs0d.
Using (9) and the fact thatj is the smallest value in the
problem, one gets an algebraic form for the generati
function Z ­ srdy minhr , Ljda, with the exponenta ­q

l
2yz 4 1 2q2xf0gyz 2 2 lyz 2. Calculating the Fourier

integral for the PDF in the saddle-point manner (the lar
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parameter isryrd), one gets the Gaussian behavior a
jdurj ø lnfxpg

P sryL, durd ­
expf2du2

r lys4xf0g lnfxpgdgq
lypxf0g lnfxpg

, (10)

wherexp ; minhr , Ljyrd . For very large valuesjdurj ¿
lnfxpg, the Gaussian behavior transforms into an expone
tial tail [14,21]. The detailed form of the tail requires how
ever the knowledge of the whole hierarchy of Lyapuno
exponents and cannot be calculated within the colline
approach used in the present Letter atd . 2 [18]. The
unknown exponential tail does not affect the behavior
the structure functions of ordern ø lnfxpg, that are equal
to s2n 2 1d!! n! 2n lnnfxpgxnf0gyl

n. This kind of univer-
sality (and the corresponding restrictions on collinear co
siderations) can be easily extended to the case of nega
Lyapunov exponents forr ¿ L. To this aim, we replace
againxs0d 2 xsxyLd by xs0d in (7), impose the bound-
ary condition (8), and perform the saddle-point integral, a
discussed above. We arrive finally at the expressions
the PDF and the structure functions (valid forr ¿ L and
negativel), which are identical to (10) with the replace
ments of minhr , Ljyrd by ryL andl by jlj.

For negativel, another kind of universal behavior is
found at small scalesr ø L. In the vicinity of the origin,
the PDF depends only on the second derivative of t
pumpingx 00s0d. This part of the PDF is indeed formed
at the largestq ¿ 1, where one can keep only the firs
term of the expansion ofxsxyLd in the “potential” of (7).
We arrive then at the following expression for the PDF a
jdurj ø 1 andr ø L:

P ­ c

√
x 00f0gr2

z 2L2

!2lyz 2"
du2

r 1
x 00f0gr2

z 2L2

#lyz 221y2

,

(11)

c ; Gf1y2 2 lyz 2gysGf2lyz 2g
p

pd. The expression
(11) shows that all the structure functionsSnsrd of low
orders 21 , n , 22lyz 2 are controlled by (11) and
scale normally,rn. The behavior of the PDF at values
larger than those where (11) holds is not universal; i.e
it depends on the whole form ofxsxyLd. For very
large valuesdur ¿ 1 and at small scalesr ø L, it is
however possible to show, from the expression of (7) a
(8) at q & 1 and y ø 1, that the far tail is exponential,
P , fryLg22lyz 2

exps2p
x z jdurjyld. The nonuniver-

sality emerges via the dimensional constantx , which
depends on the precise shape of the source function (
detailed explanations on the asymptotics, see [13], whe
the tail was fully determined in the one-dimensional cas
for a specific form of the pumping). The form of the
tail, along with (11), shows that the structure function
of order larger than22lyz 2 all scale in the same way
S2nsrd , sryLd22lyz 2

at r ø L. This collapse of the
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high-order structure functions scaling exponents sho
be contrasted with the Gaussian normal scaling obser
for the direct cascade. These different scalings are
illustration of the profoundly different behaviors that hav
been found for the model below and above its thresh
of compressibility where the direction of the cascade
reversed.
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