
Lecture 3
Renormalization group for the Berezinskii–Kosterlitz–Thouless transition

We consider the BKT transition by using the sine-Gordon model. In this lecture, it will be more
convenient for us to use the Euclidean representation:

SSG[φ] =

∫
d2x

(
(∂µφ)2

8π
− α0r

β2
0−2

0 cosβ0φ

)
, (1)

We put noughts at the constants in order to emphasize that these are non-renormalized constants. Later we
will also use the renormalized constants α, β. In addition, in comparison with the action in the first lecture,
we added the dimensionless constant α0. In Lecture 2 we combined the constants α0 and r0 into the constant

µ = α0r
β2−2
0 and assumed that the correlation length rc ∼ µ−1/(2−β2) is much longer than the ultraviolet

cutoff r0. In the case of a relevant perturbation β2 < 2, this allowed us to develop the perturbation theory
with respect to the constant µ, since it corresponded to the case α � 1. Here, on the contrary, we start
with the case of rc & r0, which is more natural for studying the BKT transition and see, how the theory
will look as the scale grows. Generally speaking, this is not easy to do, but since we are interested in the
neighborhood of the phase transition point β2 = 2 + δ, |δ| � 1, we can use the renormalization-group
approach along with the perturbation theory[1, 2].

There is also a purely field-theoretical interpretation of the renormalization group. Let us consider
the system in the regime α0 � 1 (rc � r0), but we will consider correlation functions on the scales r
such that r0 � r � rc. The correlation functions on the scale of r, calculated from the bare action
taking with all the renormalizations taken into account, will behave as correlation functions in the tree
approximation for the renormalized action with suitably renormalized coupling constants. If we know, how
the renormalized coupling constants “run” with a scale of r, we will be able to calculate correlation functions
in this intermediate region.

We said that in the unperturbed theory — the theory of a free massless field — there is a scale parameter
R, which has the meaning of the size of the region in which the theory lives. It will be convenient for us to
use it as a large-scale renormalization parameter, but it will be necessary to determine it in a slightly more
accurate way. In fact, we could consider a theory on space with compact dimensions (compactification).
For example, we could compactify the theory on a cylinder of a circle R, but this would violate isotropy.
Alternative compactification onto the sphere would unduly complicate the calculations. Therefore, instead
of compactifying the theory, we introduce a small mass term into the Lagrangian:

SSG[φ] =

∫
d2x

(
(∂µφ)2

8π
+
m2

0φ
2

8π
− α0r

β2
0−2

0 cosβ0φ

)
. (2)

For ultraviolet regularization, we will replace x2 by x2 + r2
0. Then for m2

0x
2 � 1 the free field propagator

(with α0 = 0) is equal to

G0(x− x′) = log
R2

0

(x− x′)2 + r2
0

, R0 = (cm0)−1, c = eγE/2. (3)

Here γE is the Euler constant. We see that the inclusion of the mass term effectively changes correlation
functions at small distances in the same way as compactification does.

Now write down the renormalized action

SRSG[φ] =

∫
d2x

(
(∂µφ)2

8π
+
m2φ2

8π
− α

R2
cosβφ

)
, R = (cm)−1, (4)

such that SSG[φ] = SRSG[Z
−1/2
φ φ] + Sct[Z

−1/2
φ φ]. We will require that the counterterm contribution to the

action Sct[φ] does not contain counterterms to the “mass” term:

Sct[φ] =

∫
d2x (#(∂µφ)2 + # cosβφ).
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The presence of a counterterm to the kinetic term means that the field φ is renormalized. Although formally
the letter φ in the action is an arbitrary function, we will consider correlation functions for both nonrenor-
malized and renormalized fields. To distinguish these two cases we will denote the renormalized field by φR.
Besides, below we define the renormalized coupling constant α. Thus, the renormalization rule should look
like:

φ = Z
1/2
φ φR,

β0 = Z
−1/2
φ β,

α0 = Zαα,

m0 = Z
−1/2
φ m,

R0 = Z
1/2
φ R.

(5)

Now consider the propagator G0(x − x′) = 〈φ(x)φ(x′)〉0 of the unperturbed (α0 = 0) theory and the
propagator G(x − x′) = 〈φ(x)φ(x′)〉 of the complete theory for the nonrenormalized field. They can be
considered as kernels of the integral operators G0 = 4π(−∂2

µ + m2
0)−1 and G correspondingly. There is a

relation between them

G−1 = G−1
0 +

1

4π
Σ, (6)

where the operator Σ is called the mass operator. We normalized it so as to restore its natural meaning as
corrections to the squared mass.

The renormalization group theory uses two approaches. One approach (Kadanov’s approach) is used
more often in statistical mechanics, and studies the evolution of seed coupling constants in the ultraviolet
cutoff parameter Λ ∼ r−1

0 for given renormalized coupling constants. Another approach, commonly used in
quantum field theory, assumes that the seed constants and the cutoff parameter are fixed (and thus define the
theory). In this case, it turns out that there is some uncertainty in the definition of the renormalized coupling
constants, depending on a dimensional parameter, for example, the renormalization point κ. The evolution
of coupling constants in this dimensional parameter is studied. The advantage of the second method is that
it can be used to extract equations for correlation functions by means of fairly direct methods. Therefore,
we will take this approach. In our case, for such a dimensional parameter we can take the infrared cutoff
R or, equivalently, the auxiliary mass m. Let us demand that in the vicinity of the point p2 = 0 in the
momentum space the renormalized propagator GR(p2) has the natural form 4π(p2 +M2)−1, where M is a
certain mass parameter. We use it to determine the renormalized coupling constant α. In the direct space
we have

GR(x− x′) = Z−1
φ G(x− x′) = 〈φR(x)φR(x′)〉. (7)

Our requirement is that in the momentum space

GR(p2) =
4π

p2 +M2
+O(p4) as p2 → 0, (8)

with

M2 = m2 +
4παβ2

R2
= m2(1 + 4πc2αβ2). (9)

This condition can be rewritten as Σ(p2) = Σ0 + Σ1p
2 +O(p4). Indeed,

4πG−1(p2) = p2 +m2
0 + Σ(p2) = p2 +m2

0 + Σ0 + Σ1p
2 +O(p4))

= (1 + Σ1)
(
p2 +m2 + Σ0(1 + Σ1)−1

)
+O(p4) = 4π(1 + Σ1)G−1

R (p2). (10)

From this we derive

Zφ =
1

1 + Σ1
, M2 = m2 +

Σ0

1 + Σ1
, m2 =

m2
0

1 + Σ1
. (11)

It will be convenient for us to start calculating the mass operator by expanding for the propagator in
the coordinate representation:

2



G(x− x′) =
〈
φ(x)φ(x′)

〉
=

〈
φ(x)φ(x′)e−S1[φ]

〉
0〈

e−S1[φ]
〉

0

=
〈
φ(x)φ(x′)

〉
0
− 〈φ(x)φ(x′)S1[φ]〉0,c +

1

2
〈φ(x)φ(x′)S2

1 [φ]〉0,c −
1

6
〈φ(x)φ(x′)S3

1 [φ]〉0,c +O(α4
0).

Here the denominator 〈e−S1〉0 cancels the disconnected diagrams. To take this into account, only the
connected parts of the correlation functions, designated here as 〈· · · 〉0,c, should be calculated. We will
exclude disconnected diagrams on the fly. We will also exclude on the fly the one-particle-reducible diagrams
and easily throw away the factors G0 on “legs”, so that, in fact, we will immediately calculate the mass
operator.

To demonstrate the technique, we calculate the first order of the perturbation theory:

−〈φ(x)φ(x′)S1[φ]〉 = α0r
δ0
0

∫
d2y 〈φ(x)φ(x′) :cosβ0φ(y): 〉0.

The expectation value in the right hand side is easily calculated:

〈φ(x)φ(x′) :cosβ0φ(y): 〉0 = 〈φ(x)φ(x′)〉0〈 :cosβ0φ(y): 〉0 − β2
0〈φ(x)φ(y)〉0〈φ(x′)φ(y)〉0〈 :cosβ0φ(y): 〉0.

The first term is the sum of disconnected diagrams and is canceled with the corresponding contribution
from 〈e−S1〉0. The second term naturally splits into two “tail” lines and a contribution to the mass operator.

Given that 〈 :cosβ0φ(y): 〉0 = R
−β2

0
0 , for the first-order contribution to the mass operator we have

− 1

4π
Σ(1)(y − y′) = −α0β

2
0

rδ00

R
β2
0

0

δ(y − y′).

Therefore

Σ(1)(p2) = Σ
(1)
0 =

4πα0β
2
0

R2
0

(
r0

R0

)δ0
. (12)

As expected, this formula is consistent with the semiclassical limit of β → 0 (δ → −2). In this limit, the
contribution of the infrared cutoff vanishes, and M2 = m2

0 + 4παβ2r−2
0 = m2

0 + 4πµβ2.
In the general case, we see that the mass depends on the parameter R of the infrared cutoff. Here we

must take into account that the mass M is not the mass of elementary excitations in theory. The matter
is that for β2 ≤ 2 the theory is asymptotically free, that is, the field φ only describes excitations at small
scales, while at large scales there is a completely different system of excitations, topological solitons and (for
β2 < 1) breathers. Here we will just be interested in the mass of these “asymptotic” excitations.

Comparing the answer with (11), (9), in this approximation we obtain

Zφ = 1, Zα =

(
R

r0

)δ
. (13)

In the first order in the perturbation theory, the renormalization group method will give us nothing new,
and I give it just for illustration. We expand Zα in the small parameter δ:

Zα = 1 + δ log
R

r0
,

We will assume the cutoff parameter r0 and the seed constants α0, δ0 to be constant, and the logarithm of
the infrared scale R to be renormalization group “time”. Then

dα

dt
= −α0δ, t = logR.

In the first order in δ, we must assume α0 = α. Therefore, we obtain the equation

dα

dt
= −αδ,
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which has a solution
α ∼ R−δ,

in consistency with (13). This is natural, since the result (13) is exact, when the coupling constant µ is

much smaller than the cutoff scale rβ
2−2

0 , that is, α� 1. The exactness of this answer is due to the use of
the conformal perturbation theory.

Formally, renormalization-group trajectories look like on Fig. 1. The trajectories are drawn in the plane

δ

α

Figure 1: Renormalization-group trajectories in the first order of the perturbation theory. The arrows point
in the direction of increasing scale R.

(δ, α). We see that for δ < 0, the asymptotic freedom takes place: the coupling parameter α tends to zero
with decreasing scale and grows unlimitedly with increasing scale. In the same way, the diagram looks in
the plane of the seed parameters (δ0, α0), but in this case with respect to the ultraviolet “time” log r0.

Now consider the higher orders in the perturbation theory. In the second order of the perturbation
theory we have

1

2
〈φ(x)φ(x′)S2

1 [φ]〉0,c =
α2

0r
2δ0
0

2

∫
d2y1 d

2y2 〈φ(x)φ(x′) :cosβ0φ(y1): :cosβ0φ(y2): 〉0,c

= α2
0β

2
0r

2δ0
0

∫
d2y1 d

2y2

(
〈φ(x)φ(y1)〉0〈φ(x′)φ(y2)〉0〈 :sinβ0φ(y1): :sinβ0φ(y2): 〉0

− 〈φ(x)φ(y1)〉0〈φ(x′)φ(y1)〉0
(
〈 :cosβ0φ(y1): :cosβ0φ(y2): 〉0 −R

−2β2
0

0

))
.

The factor R
−2β2

0
0 in the last term is related to the fact that each vertex contributes to the diagram R

−β2
0

0 =
〈 :e±iβφ: 〉0. From this we immediately find

− 1

4π
Σ(2)(x) = α2

0β
2
0r

2δ0
0

(
〈 :sinβ0φ(x): :sinβ0φ(0): 〉0 − β2

0R
−2β2

0
0 〈φ(x)φ(0)〉0

− δ(x)

∫
d2y

(
〈 :cosβ0φ(0): :cosβ0φ(y): 〉0 −R

−2β2
0

0

))
=
α2

0β
2
0r

2δ0
0

2R
2β2

0
0

((
R0

x

)2β2
0

−
(
x

R0

)2β2
0

− 2β2
0 log

R2
0

x2

− δ(x)

∫
d2y

((
R0

y

)2β2
0

+

(
y

R0

)2β2
0

− 2

))
.

The term with 〈φ(x)φ(0)〉0 subtracts the one-particle-reducible contribution. In the momentum representa-
tion, we have

Σ(2)(p2) = −2πα2
0β

2
0r

2δ0
0

(∫
d2x (eipx − 1)x−2β2

0

−R−4β2
0

0

∫
d2x (eipx + 1)x2β2

0 − 2β2
0R
−2β2

0
0 G0(p2) + 2R

2−2β2
0

0

)
. (14)
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δ

2παs2 s1

I

II

III

Figure 2: Renormalization-group trajectories in the second order of the perturbation theory.

The second line tends to zero as R0 →∞. The first integral contributes only to Σ1:

Σ(2)(p2) = πα2
0β

2
0r

2δ0
0

∫
d2x (px)2x−2β2

0 +O(p4) ' π2α2
0β

2
0p

2 log
R0

r0
+O(p4) (δ0 � 1). (15)

Under the logarithm sign, we can replace R0 with R. From this in the second order we obtain

Zφ = 1− π2α2
0β

2
0 log

R

r0
, Zα = 1 + δ0 log

R

r0
. (16)

The renormalization group equations in the second order of α and in the leading order of δ have the form:

dα

dt
= −δα, dδ

dt
= −4π2α2, t = logR. (17)

Note that these equations can be written as

d(2πα∓ δ)
dt

= ±2πα(2πα∓ δ). (17a)

This means that the straight lines 2πα = ±δ are renormalization-group trajectories. These lines divide
the half-plane (δ, α) into three parts. In each of these parts it is not difficult to qualitatively construct
renormalization-group trajectories (Fig. 2).

What is this diagram talking about? First of all, region I represents the region of the low-temperature
(“molecular”) phase. The points on the right semiaxis δ are stable fixed points. This means that in the
infrared limit the coupling constant α tends to zero and the theory is described by a free massless boson.
The separatrix s1, separating regions I and II, is a line of critical points. Any point on the separatrix flows
to the point α = δ = 0. Regions II and III are regions of the high-temperature (“plasma”) phase, and
region III is asymptotically free, that is, it is described by the theory of the free field in the ultraviolet limit.
With increasing scale, the interaction constant α grows, so that the excitations in the infrared region are in
no way connected with the initial free boson. In fact, these excitations are massive particles, and massive
particles are also present at the point β2 = 2. This follows from the fact that, if we turn on even a weak
interaction at this point, we immediately get into region II, in which the trajectories go to infinity in the
infrared limit. On the other hand, at this point the theory is not described by the massless theory on small
scales either: the trajectories in region II also begin at infinity.

How do the trajectories behave further? It cannot be obtained from the perturbation theory, because
the perturbation theory makes it possible to obtain a renormalization group only in the case of an almost
dimensionless coupling constant (δ � 1). It is conjectured that in the region 1 < β2 < 2 (−1 < δ < 0) the
trajectories tend to the line β2 = 1, which corresponds, as we have seen, to the free-fermion point.
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Problems

1. Show that the second line in (14) is negligible and derive (15).
2. Solve the system of equations (17) exactly. Find the algebraic equation for the trajectories and their

explicit dependence on t = logR.
3. Let ϕ(z) be the chiral (right) field. Let us introduce the currents of scale dimension 1:

J0(z) =
i√
2
∂ϕ(z), J±(z) = e±i

√
2ϕ(z).

Show that these currents have operator product expansions (these operator product expansions are equiva-
lent to the relations of the Kac–Moody ŝl2 algebra with the central charge equal to 1):

J0(z′)J0(z) =
1/2

(z′ − z)2
+O(1),

J+(z′)J−(z) =
1

(z′ − z)2
+

2J0(z)

z′ − z
+O(1),

J±(z′)J0(z) = ∓J
±(z)

z′ − z
+O(1).

All other operator product expansions are regular.
4. Let Jα be the currents from the previous problem. Find the operator product expansions of these

currents with the operators V±(z) = e
± i√

2
ϕ(z)

.
5∗. In the theory of a free boson field, show that the energy-momentum tensor has only two nonzero

components:

Tzz = −T (z)

2π
=

(∂φ)2

4π
, Tz̄z̄ = − T̄ (z)

2π
=

(∂̄φ)2

4π
.

In the quantum case, the product must be replaced with the normal product :. . .: .
Show that the components of the energy-momentum tensor have the following operator product expan-

sion:

T (z′)T (z) =
1/2

(z′ − z)4
+

2T (z)

(z′ − z)2
+
∂T (z)

z′ − z
+O(1).

Show that

T (z′)Vα(z) =
∆αVα(z)

(z′ − z)2
+
∂Vα(z)

z′ − z
+O(1), Vα(z) = eiαϕ(z),

with ∆α = α2/2 being the scaling dimension of the operator Vα(z).

6


