Lecture 5

$O(N)$-model: $1 / N$-expansion

Consider the general $O(N)$-model in the Minkowski space:

$$
\begin{equation*}
S[\boldsymbol{n}]=\frac{1}{2 g} \int d^{2} x\left(\partial_{\mu} \boldsymbol{n}\right)^{2}, \quad \boldsymbol{n}^{2}=1 \tag{1}
\end{equation*}
$$

It is convenient to introduce an auxiliary field $\omega(x)$ and write down the action in the form

$$
\begin{equation*}
S[\boldsymbol{n}, \omega]=\frac{1}{2 g} \int d^{2} x\left(\left(\partial_{\mu} \boldsymbol{n}\right)^{2}-\omega\left(\boldsymbol{n}^{2}-1\right)\right) \tag{2}
\end{equation*}
$$

where now the vector \boldsymbol{n} runs through any values in \mathbb{R}^{N}. Consider the functional integral

$$
\begin{equation*}
Z[J]=\int D \omega D \boldsymbol{n} e^{i S[\boldsymbol{n}, \omega]+i g^{-1 / 2} \int d^{2} x J \boldsymbol{n}} \tag{3}
\end{equation*}
$$

The integral over \boldsymbol{n} is Gaussian. Take it. Notice that

$$
i S[\boldsymbol{n}, \omega]+i g^{-1 / 2} \int d^{2} x \boldsymbol{J} \boldsymbol{n}=-\frac{1}{2}\left(\frac{n_{i}}{g^{1 / 2}}, K(\omega) \delta_{i j} \frac{n_{j}}{g^{1 / 2}}\right)+\left(i J_{i}, \frac{n_{i}}{g^{1 / 2}}\right)+i \int d^{2} x \frac{\omega}{2 g},
$$

where

$$
K(\omega)=i\left(\partial_{\mu}^{2}+\omega\right)
$$

From this we obtain

$$
Z[J]=\int D \omega\left(\operatorname{det}\left(\partial_{\mu}^{2}+\omega\right)\right)^{-N / 2} \exp \left(i \int d^{2} x \frac{\omega}{2 g}-\frac{1}{2} \int d^{2} x d^{2} x^{\prime} J_{i}(x) G\left(x, x^{\prime} \mid \omega\right) J_{i}\left(x^{\prime}\right)\right)
$$

where $G\left(x, x^{\prime} \mid \omega\right)$ is the solution of the equation

$$
\begin{equation*}
i\left(\partial_{\mu}^{2}+\omega(x)\right) G\left(x, x^{\prime} \mid \omega\right)=\delta\left(x-x^{\prime}\right) \tag{4}
\end{equation*}
$$

Otherwise, the generating functional can be rewritten in the form

$$
\begin{gather*}
Z[J]=\int D \omega \exp \left(i S_{\mathrm{eff}}[\omega]-\frac{1}{2} \int d^{2} x d^{2} x^{\prime} J_{i}(x) G\left(x, x^{\prime} \mid \omega\right) J_{i}\left(x^{\prime}\right)\right) \tag{5}\\
S_{\mathrm{eff}}[\omega]=i \frac{N}{2} \operatorname{tr} \log \left(\partial_{\mu}^{2}+\omega\right)+\int d^{2} x \frac{\omega}{2 g} \tag{6}
\end{gather*}
$$

Find the saddle point of this integral as $N \rightarrow \infty$. Suppose the saddle point corresponds to

$$
\omega(x)=\text { const }=\omega_{0}
$$

Then

$$
\begin{align*}
\operatorname{tr} \log \left(\partial_{\mu}^{2}+\omega_{0}\right) & =V \int \frac{d^{2} k}{(2 \pi)^{2}} \log \left(\omega_{0}-k^{2}-i 0\right) \\
& =i V \int_{E} \frac{d^{2} k}{(2 \pi)^{2}} \log \left(\omega_{0}+k^{2}\right) \\
& =\frac{i V}{2 \pi} \int_{0}^{\Lambda} d k k \log \left(\omega_{0}+k^{2}\right)=\frac{i V}{4 \pi} \int_{\omega_{0}}^{\omega_{0}+\Lambda^{2}} d u \log u=\frac{i V}{4 \pi}\left[u \log \frac{u}{e}\right]_{\omega_{0}}^{\omega_{0}+\Lambda^{2}} \\
& =\frac{i V}{4 \pi}\left(\left(\omega_{0}+\Lambda^{2}\right) \log \frac{\omega_{0}+\Lambda^{2}}{e}-\omega_{0} \log \frac{\omega_{0}}{e}\right)=\frac{i V}{4 \pi}\left(\omega_{0} \log \frac{\Lambda^{2}}{\omega_{0}}+\Lambda^{2} \log \frac{\omega_{0}+\Lambda^{2}}{e}\right) \tag{7}
\end{align*}
$$

where Λ is an ultraviolet cutoff parameter. Under the logarithm sign, we neglected ω_{0} in the expression $\omega_{0}+\Lambda^{2}$ in the first term. We find

$$
0=\frac{d S\left[\omega_{0}\right]}{d \omega_{0}}=V\left(-\frac{N}{8 \pi} \log \frac{\Lambda^{2}}{\omega_{0}}+\frac{1}{2 g}\right)
$$

From this we obtain

$$
\begin{equation*}
\omega_{0}=m^{2}=\Lambda^{2} \exp \left(-\frac{4 \pi}{N g}\right) \tag{8}
\end{equation*}
$$

We see that in the limit $\Lambda \rightarrow \infty$ also g should be tended to zero, in such a way that the value $\omega_{0}=m^{2}$ remains finite. For beta-functions at large N we find

$$
\begin{equation*}
\frac{d g}{d \log \Lambda}=\beta(g)=-\frac{N}{2 \pi} g^{2} \tag{9}
\end{equation*}
$$

It is important that, the parameter m of the dimension of mass arises in the theory. We will see now that this is indeed a mass. In the theory a dynamic mass generation takes place. At no scales the correlation functions will decrease in a power-law manner, and the presence of a dimensional parameter will be noticeable in correlation functions at any scales.

Let us now develop the perturbation theory in the parameter $1 / N$. Represent $\omega(x)$ in the form

$$
\begin{equation*}
\omega(x)=m^{2}+(2 / N)^{1 / 2} \rho(x) \tag{10}
\end{equation*}
$$

and expand the effective action in powers of $N^{-1 / 2} \rho(x)$:

$$
\begin{aligned}
S_{\mathrm{eff}}[\omega] & =\text { const }+i \frac{N}{2} \operatorname{tr} \log \left(1+(2 / N)^{1 / 2} \rho\left(\partial_{\mu}^{2}+m^{2}\right)^{-1}\right)+\frac{1}{(2 N)^{1 / 2} g} \operatorname{tr} \rho \\
& =\text { const }+i \frac{N}{2} \operatorname{tr} \log \left(1+i(2 / N)^{1 / 2} \rho G\right)+\frac{1}{(2 N)^{1 / 2} g} \operatorname{tr} \rho \\
& =\text { const }+\left(\frac{1}{(2 N)^{1 / 2} g} \operatorname{tr} \rho-\left(\frac{N}{2}\right)^{1 / 2} \operatorname{tr} \rho G\right)-i \frac{N}{2} \sum_{n=2}^{\infty} \frac{(-i)^{n}(2 / N)^{n / 2}}{n} \operatorname{tr}(\rho G)^{n}
\end{aligned}
$$

Here G is the operator with the kernel $G\left(x, x^{\prime}\right)=G\left(x, x^{\prime} \mid m^{2}\right)$.
The parenthesis in the last expression is equal to zero under the assumption that $\omega=m^{2}$ is a minimum. Let us check this assumption. We have

$$
\begin{aligned}
\operatorname{tr} \rho & =\int d^{2} x \rho(x) \\
\operatorname{tr} \rho G & =\int d^{2} x \rho(x) G(x, x)=G(0,0) \int d^{2} x \rho(x)=G(0,0) \operatorname{tr} \rho \\
& =V \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{i}{k^{2}-m^{2}+i 0} \operatorname{tr} \rho=\frac{V}{4 \pi} \log \frac{\Lambda^{2}}{m^{2}} \operatorname{tr} \rho=(g N)^{-1} \operatorname{tr} \rho
\end{aligned}
$$

We see that indeed the parenthesis vanishes. By studying the next contribution $(n=2)$ one can make sure that the point $\omega=m^{2}$ is a local minimum. There is no way to prove rigorously that this minimum is absolute.

Finally we have

$$
\begin{equation*}
S_{\mathrm{eff}}[\omega]=\text { const }-i \frac{N}{2} \sum_{n=2}^{\infty} \frac{(-i)^{n}(2 / N)^{n / 2}}{n} \int d^{2 n} x \rho\left(x_{1}\right) G\left(x_{1}, x_{2}\right) \ldots \rho\left(x_{n}\right) G\left(x_{n}, x_{1}\right) \tag{11}
\end{equation*}
$$

The expansion starts from a quadratic term of the form

$$
\frac{i}{2} \int d^{2} x_{1} d^{2} x_{2} \rho\left(x_{1}\right) G\left(x_{1}, x_{2}\right) \rho\left(x_{2}\right) G\left(x_{2}, x_{1}\right)
$$

Therefore, the propagator $D\left(x_{1}, x_{2}\right)$ of the field $\rho(x)$ is the kernel of the operator inverse to that with the kernel

$$
D^{-1}\left(x_{1}, x_{2}\right)=G\left(x_{1}, x_{2}\right) G\left(x_{2}, x_{1}\right)
$$

Now it is clear why we needed the factor $(2 / N)^{1 / 2}$ before ρ. It allowed us to get rid of the coefficient $2 / N$ in the propagator $D\left(x_{1}, x_{2}\right)$.

Passing to the momentum representation, we obtain

$$
\begin{equation*}
D(k)=-k=-\left(\int \frac{d^{2} q}{(2 \pi)^{2}} \frac{1}{\left(q^{2}-m^{2}+i 0\right)\left((q+k)^{2}-m^{2}+i 0\right)}\right)^{-1} \tag{12}
\end{equation*}
$$

In addition, the operator $G\left(x, x^{\prime} \mid \omega\right)$, which in (5), should also be expanded in $\rho(x)$:

$$
\begin{aligned}
G[\omega] & =\frac{1}{G^{-1}+i(2 / N)^{1 / 2} \rho}=\sum_{n=0}^{\infty}(-i)^{n}\left(\frac{2}{N}\right)^{n / 2} G(\rho G)^{n} \\
G\left(x_{1}, x_{2} \mid \omega\right) & =\sum_{n=0}^{\infty}(-i)^{n}\left(\frac{2}{N}\right)^{n / 2} \int d^{2 n} y G\left(x_{1}, y_{1}\right) \rho\left(y_{1}\right) G\left(y_{1}, y_{2}\right) \ldots \rho\left(y_{n}\right) G\left(y_{n}, x_{2}\right)
\end{aligned}
$$

Represent $G\left(x_{1}, x_{2}\right)$ by a solid line:

$$
\begin{equation*}
G_{i j}(p)=\quad i \frac{p}{} j \quad=G(p) \delta_{i j}=\frac{i \delta_{i j}}{p^{2}-m^{2}+i 0} \tag{13}
\end{equation*}
$$

If we also introduce the vertex

$$
\begin{equation*}
i \quad j=-i\left(\frac{2}{N}\right)^{1 / 2} \delta_{i j} \tag{14}
\end{equation*}
$$

the following rules of the diagram technique can be formulated:

1. A diagram consists of dashed lines (12), solid lines (13) and vertices 14$)$.
2. The outer lines of a diagram can only be solid lines corresponding to the massive particles $\varphi_{i}=g^{-1 / 2} n_{i}$.
3. Closed loops of solid lines must contain at least three vertices.

We see that in this formulation the diagram technique does not contain the coupling constant g at all. The order of the diagram in $1 / N$ is equal to $\frac{1}{2} V-L$, where V is the number of vertices, and L is the number of loops of solid lines. From the rule 3 it follows that the order of the diagram is always positive.

The relation between the coupling constant g, the mass m, and the cutoff parameter Λ can be refined using the relation

$$
\left\langle\sum_{i=1}^{N} \varphi_{i}^{2}(x)\right\rangle=\frac{1}{g}
$$

For example, in the order $1 / N$ one can obtain

$$
\begin{equation*}
m^{2}=\Lambda^{2} \exp \left(-\frac{4 \pi}{(N-2) g^{\prime}}\right), \quad \frac{1}{g^{\prime}}=\frac{1}{g}+\frac{\Lambda^{2}}{4 \pi m^{2} \log \left(\Lambda^{2} / m^{2}\right)} \tag{15}
\end{equation*}
$$

The correction to the inverse coupling constant is the contribution of the specific sigma-model quadratic divergence. The divergence becomes logarithmic, if we add to the action $\sqrt{2}$ a term of the form $\alpha \int d^{2} x \omega^{2}$, which "blurs" the delta-function in the functional integral.

Let us try now to calculate the S-matrix of the $O(N)$-model. Let us examine kinematics first. We have N particles of mass m. Let two such particles with momenta p_{1} and p_{2} be scattered on each other, forming two new particles of the same mass with momenta p_{1}^{\prime} and p_{2}^{\prime}. It is convenient to parameterize the momenta p_{a} by rapidities θ_{a} :

$$
p_{a}=m \operatorname{sh} \theta_{a}, \quad p_{a}^{\prime}=m \operatorname{sh} \theta_{a}^{\prime}
$$

Then

$$
\begin{aligned}
& m \operatorname{ch} \theta_{1}+m \operatorname{ch} \theta_{2}=m \operatorname{ch} \theta_{1}^{\prime}+m \operatorname{ch} \theta_{2}^{\prime} \\
& m \operatorname{sh} \theta_{1}+m \operatorname{sh} \theta_{2}=m \operatorname{sh} \theta_{1}^{\prime}+m \operatorname{sh} \theta_{2}^{\prime}
\end{aligned}
$$

These equations have just two solutions: $\theta_{1}^{\prime}=\theta_{1}, \theta_{2}^{\prime}=\theta_{2}$ and $\theta_{1}^{\prime}=\theta_{2}, \theta_{2}^{\prime}=\theta_{1}$. The scattering matrix of two particles into two can be presented as

$$
S_{i j}^{i^{\prime} j^{\prime}}\left(\theta_{1}, \theta_{2} ; \theta_{1}^{\prime}, \theta_{2}^{\prime}\right)=(2 \pi)^{2} \delta\left(p_{1}^{\prime}-p_{1}\right) \delta\left(p_{2}^{\prime}-p_{2}\right) S_{i j}^{i^{\prime} j^{\prime}}\left(\theta_{1}-\theta_{2}\right)+(2 \pi)^{2} \delta\left(p_{2}^{\prime}-p_{1}\right) \delta\left(p_{1}^{\prime}-p_{2}\right) S_{i j}^{j^{\prime} i^{\prime}}\left(\theta_{1}-\theta_{2}\right)
$$

To properly normalize, one has to convert the delta-functions to the standard form of the delta-function over space-time momenta:

$$
\begin{aligned}
S_{i j}^{i^{\prime} j^{\prime}}\left(\theta_{1}, \theta_{2} ; \theta_{1}^{\prime}, \theta_{2}^{\prime}\right)=(2 \pi)^{2} \delta^{(2)}\left(P^{\prime}-P\right) \frac{\operatorname{sh}\left(\theta_{1}-\theta_{2}\right)}{\operatorname{ch} \theta_{1} \operatorname{ch} \theta_{2}} S_{i j}^{i^{\prime} j^{\prime}} & \left(\theta_{1}-\theta_{2}\right) \\
& =(2 \pi)^{2} \delta^{(2)}\left(P^{\prime}-P\right) \frac{4 m^{2} \operatorname{sh}\left(\theta_{1}-\theta_{2}\right)}{4 \varepsilon_{1} \varepsilon_{2}} S_{i j}^{i^{\prime} j^{\prime}}\left(\theta_{1}-\theta_{2}\right),
\end{aligned}
$$

where $P^{\mu}=p_{1}^{\mu}+p_{2}^{\mu}, P^{\prime \mu}=p_{1}^{\mu}+p_{2}^{\mu}$. Therefore, in the standard notation

$$
S_{i j}^{i^{\prime} j^{\prime}}\left(\theta_{1}-\theta_{2}\right)=\delta_{i}^{i^{\prime}} j_{j}^{j^{\prime}}+\frac{M_{i j}^{i^{\prime} j^{\prime}}\left(\theta_{1}-\theta_{2}\right)}{4 m^{2} \operatorname{sh}\left(\theta_{1}-\theta_{2}\right)},
$$

where the $M_{i j}$ amplitude is calculated according the Feynman rules.
The compatibility condition with the $O(N)$-symmetry gives

$$
\begin{equation*}
S_{i j}^{i^{\prime} j^{\prime}}(\theta)=\delta_{i^{\prime} j^{\prime}} \delta_{i j} S_{1}(\theta)+\delta_{i^{\prime} i} \delta_{j^{\prime} j} S_{2}(\theta)+\delta_{j^{\prime} i} \delta_{i^{\prime} j} S_{3}(\theta) . \tag{16}
\end{equation*}
$$

In the order $1 / N$, the matrix elements are given by the following diagrams:

$$
\begin{aligned}
& 4 m^{2} \operatorname{sh} \theta S_{1}(\theta)\left.=\begin{array}{c}
p_{1} \\
4 m^{2} \operatorname{sh} \theta\left(S_{2}(\theta)-1\right)
\end{array}\right) \quad p_{1} \\
& p_{2} \\
& p_{2}
\end{aligned},
$$

To calculate these diagrams, we need an explicit formula for $D(k)$. It has the form

$$
\begin{equation*}
D^{-1}(k)=\frac{i}{2 \pi k^{2}} \frac{1}{\sqrt{1-\frac{4 m^{2}}{k^{2}}}} \log \frac{\sqrt{1-\frac{4 m^{2}}{k^{2}}}+1}{\sqrt{1-\frac{4 m^{2}}{k^{2}}}-1} \tag{17}
\end{equation*}
$$

This cumbersome formula becomes quite elementary in the parameterization

$$
\begin{equation*}
k^{2}=-4 m^{2} \operatorname{sh}^{2} \frac{\theta}{2} . \tag{18}
\end{equation*}
$$

Note that the angle θ in this parameterization coincides with $\theta_{1}-\theta_{2}$ in the case of the diagram for S_{3}. We have

$$
\begin{equation*}
D(k)=4 \pi i m^{2} \frac{\operatorname{sh} \theta}{\theta} . \tag{19}
\end{equation*}
$$

Substituting these expressions into the diagrams, we obtain

$$
\begin{align*}
& S_{1}(\theta)=-\frac{2 \pi i}{N(i \pi-\theta)}, \\
& S_{2}(\theta)=1-\frac{2 \pi i}{N \operatorname{sh} \theta}, \tag{20}\\
& S_{3}(\theta)=-\frac{2 \pi i}{N \theta} .
\end{align*}
$$

Bibliography

[1] A. B. Zamolodchikov, Al. B. Zamolodchikov, Annals Phys. 120 (1979) 253.
[2] A. M. Polyakov, Gauge fields and strings, CRC Press, 1987.
[3] A. M. Tsvelik, Quantum field theory in condensed matter physics, Cambridge University Press, 2003.

Problems

1. Obtain formulas (17) and 19).
2. The Gross-Neveu model for the N-component Majorana (i.e. real in the representation with purely imaginary γ-matrices) Fermi-field is defined by the action

$$
S[\psi]=\int d^{2} x\left(\frac{i}{2} \bar{\psi}_{i} \gamma^{\mu} \partial_{\mu} \psi_{i}+\frac{g}{8}\left(\bar{\psi}_{i} \psi_{i}\right)^{2}\right)
$$

(summation is assumed over repeated indices; in a representation with purely imaginary gamma-matrices we have $\bar{\psi}=\psi^{T} \gamma^{0}$).

Show that this model is equivalent to the model with an auxiliary boson field

$$
S[\psi, \omega]=\int d^{2} x\left(\frac{1}{2} \bar{\psi}_{i}\left(i \gamma^{\mu} \partial_{\mu}-\omega(x)\right) \psi_{i}-\frac{\omega^{2}(x)}{2 g}\right) .
$$

Demonstrate that dynamic mass generation takes place in the model with

$$
\omega_{0}=m=\Lambda \exp \left(-\frac{2 \pi}{N g}\right) .
$$

3. Construct a diagrammatic technique for the $1 / N$-decomposition in the Gross-Neveu model. Find the S-matrix in the tree approximation.
4. Consider the model with the weakened condition for \boldsymbol{n}^{2} :

$$
\begin{equation*}
S[\boldsymbol{n}]=\frac{1}{2 g} \int d^{2} x\left(\left(\partial_{\mu} \boldsymbol{n}\right)^{2}-\frac{2 \mu^{2}}{g}\left(\boldsymbol{n}^{2}-1\right)^{2}\right), \tag{21}
\end{equation*}
$$

where μ is the constant with the dimension of mass. Find the mass of excitations in the model (21) in the leading order. Show that in the limit $\mu \rightarrow \infty$ the model tends to the sigma-model (1).
5^{*}. Find the mass of excitation in the model from Problem 5 to Lecture 4 in the leading order in $1 / N$.

