Lecture 8
 Heisenberg spin chain and its scaling limit

Heisenberg spin chain

Consider a chain of N spins $S=1 / 2$, that is, the space

$$
\begin{equation*}
\mathcal{H}_{N}=\underbrace{\mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}}_{N} \tag{1}
\end{equation*}
$$

Consider a chain of N spins $S=1 / 2$, that is, the space

$$
\begin{equation*}
\mathcal{H}_{N}=\underbrace{\mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}}_{N} \tag{1}
\end{equation*}
$$

The Hamiltonian

$$
\begin{equation*}
H_{X Y Z}=-\frac{1}{2} \sum_{n=1}^{N}\left(J_{x} \sigma_{n}^{x} \sigma_{n+1}^{x}+J_{y} \sigma_{n}^{y} \sigma_{n+1}^{y}+J_{z} \sigma_{n}^{z} \sigma_{n+1}^{z}\right) \tag{2}
\end{equation*}
$$

with the periodic boundary condition $\sigma_{N+1}^{i}=\sigma_{1}^{i}$.

Consider a chain of N spins $S=1 / 2$, that is, the space

$$
\begin{equation*}
\mathcal{H}_{N}=\underbrace{\mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}}_{N} \tag{1}
\end{equation*}
$$

The Hamiltonian

$$
\begin{equation*}
H_{X Y Z}=-\frac{1}{2} \sum_{n=1}^{N}\left(J_{x} \sigma_{n}^{x} \sigma_{n+1}^{x}+J_{y} \sigma_{n}^{y} \sigma_{n+1}^{y}+J_{z} \sigma_{n}^{z} \sigma_{n+1}^{z}\right) \tag{2}
\end{equation*}
$$

with the periodic boundary condition $\sigma_{N+1}^{i}=\sigma_{1}^{i}$.

- XYZ chain: generic J_{i};
- XXZ chain: $\left|J_{x}\right|=\left|J_{y}\right|$;
- XXX chain: $\left|J_{x}\right|=\left|J_{y}\right|=\left|J_{z}\right|$;
- XY chain: $J_{z}=0$. Today we will mostly consider this case.

Consider a chain of N spins $S=1 / 2$, that is, the space

$$
\begin{equation*}
\mathcal{H}_{N}=\underbrace{\mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}}_{N} \tag{1}
\end{equation*}
$$

The Hamiltonian

$$
\begin{equation*}
H_{X Y Z}=-\frac{1}{2} \sum_{n=1}^{N}\left(J_{x} \sigma_{n}^{x} \sigma_{n+1}^{x}+J_{y} \sigma_{n}^{y} \sigma_{n+1}^{y}+J_{z} \sigma_{n}^{z} \sigma_{n+1}^{z}\right) \tag{2}
\end{equation*}
$$

with the periodic boundary condition $\sigma_{N+1}^{i}=\sigma_{1}^{i}$.

- XYZ chain: generic J_{i};
- XXZ chain: $\left|J_{x}\right|=\left|J_{y}\right|$;
- XXX chain: $\left|J_{x}\right|=\left|J_{y}\right|=\left|J_{z}\right|$;
- XY chain: $J_{z}=0$. Today we will mostly consider this case.

Let $J_{x}=1, J_{y}=\Gamma, J_{z}=\Delta$ with $|\Gamma| \leq 1$. Then

Consider a chain of N spins $S=1 / 2$, that is, the space

$$
\begin{equation*}
\mathcal{H}_{N}=\underbrace{\mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}}_{N} \tag{1}
\end{equation*}
$$

The Hamiltonian

$$
\begin{equation*}
H_{X Y Z}=-\frac{1}{2} \sum_{n=1}^{N}\left(J_{x} \sigma_{n}^{x} \sigma_{n+1}^{x}+J_{y} \sigma_{n}^{y} \sigma_{n+1}^{y}+J_{z} \sigma_{n}^{z} \sigma_{n+1}^{z}\right) \tag{2}
\end{equation*}
$$

with the periodic boundary condition $\sigma_{N+1}^{i}=\sigma_{1}^{i}$.

- XYZ chain: generic J_{i};
- XXZ chain: $\left|J_{x}\right|=\left|J_{y}\right|$;
- XXX chain: $\left|J_{x}\right|=\left|J_{y}\right|=\left|J_{z}\right|$;
- XY chain: $J_{z}=0$. Today we will mostly consider this case.

Let $J_{x}=1, J_{y}=\Gamma, J_{z}=\Delta$ with $|\Gamma| \leq 1$. Then

$$
\begin{align*}
H_{X Y Z}= & -\frac{1}{2} \sum_{n=1}^{N}\left((1+\Gamma)\left(\sigma_{n}^{+} \sigma_{n+1}^{-}+\sigma_{n}^{-} \sigma_{n+1}^{+}\right)+(1-\Gamma)\left(\sigma_{n}^{+} \sigma_{n+1}^{+}+\sigma_{n}^{-} \sigma_{n+1}^{-}\right)\right. \\
& \left.+\Delta \sigma_{n}^{z} \sigma_{n+1}^{z}\right) \tag{3}
\end{align*}
$$

where

$$
\sigma^{+}=\frac{\sigma^{x}+i \sigma^{y}}{2}=\left(\begin{array}{ll}
0 & 1 \tag{4}\\
0 & 0
\end{array}\right), \quad \sigma^{-}=\frac{\sigma^{x}-i \sigma^{y}}{2}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

The matrices $\sigma^{ \pm}$behave like fermions

$$
\sigma^{+} \sigma^{-}+\sigma^{-} \sigma^{+}=1, \quad\left(\sigma^{+}\right)^{2}=\left(\sigma^{-}\right)^{2}=0
$$

The operator

$$
\sigma^{+} \sigma^{-}=\frac{\sigma^{z}+1}{2}
$$

behaves like the fermion number operator.

The matrices $\sigma^{ \pm}$behave like fermions

$$
\sigma^{+} \sigma^{-}+\sigma^{-} \sigma^{+}=1, \quad\left(\sigma^{+}\right)^{2}=\left(\sigma^{-}\right)^{2}=0
$$

The operator

$$
\sigma^{+} \sigma^{-}=\frac{\sigma^{z}+1}{2}
$$

behaves like the fermion number operator.
But the operators from different nodes commute: $\sigma_{m}^{i} \sigma_{n}^{j}=\sigma_{n}^{j} \sigma_{m}^{i}$. We cannot completely fermionize the model in this way.

The matrices $\sigma^{ \pm}$behave like fermions

$$
\sigma^{+} \sigma^{-}+\sigma^{-} \sigma^{+}=1, \quad\left(\sigma^{+}\right)^{2}=\left(\sigma^{-}\right)^{2}=0
$$

The operator

$$
\sigma^{+} \sigma^{-}=\frac{\sigma^{z}+1}{2}
$$

behaves like the fermion number operator.
But the operators from different nodes commute: $\sigma_{m}^{i} \sigma_{n}^{j}=\sigma_{n}^{j} \sigma_{m}^{i}$. We cannot completely fermionize the model in this way.
Introduce the non-local operators (Jordan-Wigner transformation)

$$
\begin{equation*}
a_{n}=\sigma_{n}^{-} \prod_{j=1}^{n-1}\left(-\sigma_{j}^{z}\right), \quad a_{n}^{+}=\sigma_{n}^{+} \prod_{j=1}^{n-1}\left(-\sigma_{j}^{z}\right) \tag{5}
\end{equation*}
$$

The matrices $\sigma^{ \pm}$behave like fermions

$$
\sigma^{+} \sigma^{-}+\sigma^{-} \sigma^{+}=1, \quad\left(\sigma^{+}\right)^{2}=\left(\sigma^{-}\right)^{2}=0
$$

The operator

$$
\sigma^{+} \sigma^{-}=\frac{\sigma^{z}+1}{2}
$$

behaves like the fermion number operator.
But the operators from different nodes commute: $\sigma_{m}^{i} \sigma_{n}^{j}=\sigma_{n}^{j} \sigma_{m}^{i}$. We cannot completely fermionize the model in this way.
Introduce the non-local operators (Jordan-Wigner transformation)

$$
\begin{equation*}
a_{n}=\sigma_{n}^{-} \prod_{j=1}^{n-1}\left(-\sigma_{j}^{z}\right), \quad a_{n}^{+}=\sigma_{n}^{+} \prod_{j=1}^{n-1}\left(-\sigma_{j}^{z}\right) \tag{5}
\end{equation*}
$$

Then

$$
a_{m}^{+} a_{n}+a_{n} a_{m}^{+}=\delta_{m n}, \quad a_{m} a_{n}+a_{n} a_{m}=a_{m}^{+} a_{n}^{+}+a_{n}^{+} a_{m}^{+}=0 .
$$

The matrices $\sigma^{ \pm}$behave like fermions

$$
\sigma^{+} \sigma^{-}+\sigma^{-} \sigma^{+}=1, \quad\left(\sigma^{+}\right)^{2}=\left(\sigma^{-}\right)^{2}=0
$$

The operator

$$
\sigma^{+} \sigma^{-}=\frac{\sigma^{z}+1}{2}
$$

behaves like the fermion number operator.
But the operators from different nodes commute: $\sigma_{m}^{i} \sigma_{n}^{j}=\sigma_{n}^{j} \sigma_{m}^{i}$. We cannot completely fermionize the model in this way.
Introduce the non-local operators (Jordan-Wigner transformation)

$$
\begin{equation*}
a_{n}=\sigma_{n}^{-} \prod_{j=1}^{n-1}\left(-\sigma_{j}^{z}\right), \quad a_{n}^{+}=\sigma_{n}^{+} \prod_{j=1}^{n-1}\left(-\sigma_{j}^{z}\right) \tag{5}
\end{equation*}
$$

Then

$$
a_{m}^{+} a_{n}+a_{n} a_{m}^{+}=\delta_{m n}, \quad a_{m} a_{n}+a_{n} a_{m}=a_{m}^{+} a_{n}^{+}+a_{n}^{+} a_{m}^{+}=0 .
$$

It is invertible

$$
\begin{equation*}
\sigma_{n}^{z}=2 a_{n}^{+} a_{n}-1, \quad \sigma_{n}^{+}=a_{n}^{+} \exp \left(i \pi \sum_{j=1}^{n-1} a_{j}^{+} a_{j}\right), \quad \sigma_{n}^{-}=a_{n} \exp \left(-i \pi \sum_{j=1}^{n-1} a_{j}^{+} a_{j}\right) \tag{6}
\end{equation*}
$$

The price payed for the transformation is a small change of the boundary condition:

$$
\begin{equation*}
a_{N+1}=a_{1}(-1)^{M}, \quad M=\sum_{k=1}^{N} a_{k}^{+} a_{k}=S^{z}+\frac{N}{2}, \tag{7}
\end{equation*}
$$

which depends on the total number of fermion particles.

The price payed for the transformation is a small change of the boundary condition:

$$
\begin{equation*}
a_{N+1}=a_{1}(-1)^{M}, \quad M=\sum_{k=1}^{N} a_{k}^{+} a_{k}=S^{z}+\frac{N}{2} \tag{7}
\end{equation*}
$$

which depends on the total number of fermion particles. The Hamiltonian:

$$
\begin{align*}
H_{X Y Z}= & -\sum_{n=1}^{N}\left(\frac{1+\Gamma}{2}\left(a_{n+1}^{+} a_{n}+a_{n}^{+} a_{n+1}\right)+\frac{1-\Gamma}{2}\left(a_{n}^{+} a_{n+1}^{+}-a_{n} a_{n+1}\right)\right. \\
& \left.+2 \Delta\left(a_{n}^{+} a_{n} a_{n+1}^{+} a_{n+1}-a_{n}^{+} a_{n}\right)\right) \tag{8}
\end{align*}
$$

When is this Hamiltonian solvable?

The price payed for the transformation is a small change of the boundary condition:

$$
\begin{equation*}
a_{N+1}=a_{1}(-1)^{M}, \quad M=\sum_{k=1}^{N} a_{k}^{+} a_{k}=S^{z}+\frac{N}{2} \tag{7}
\end{equation*}
$$

which depends on the total number of fermion particles. The Hamiltonian:

$$
\begin{align*}
H_{X Y Z}= & -\sum_{n=1}^{N}\left(\frac{1+\Gamma}{2}\left(a_{n+1}^{+} a_{n}+a_{n}^{+} a_{n+1}\right)+\frac{1-\Gamma}{2}\left(a_{n}^{+} a_{n+1}^{+}-a_{n} a_{n+1}\right)\right. \\
& \left.+2 \Delta\left(a_{n}^{+} a_{n} a_{n+1}^{+} a_{n+1}-a_{n}^{+} a_{n}\right)\right) \tag{8}
\end{align*}
$$

When is this Hamiltonian solvable? Evidently, for $\Delta=0$.

XY model. Bogoliubov transform: XX case

Set $\Delta=0$. Let us pass to the momentum space

$$
a_{n}=\frac{1}{N^{1 / 2}} \sum_{-\pi<k \leq \pi} a_{k} e^{i k n}, \quad \frac{k N}{2 \pi} \in \begin{cases}\mathbb{Z}, & M \text { even } ; \tag{9}\\ \mathbb{Z}+\frac{1}{2}, & M \text { odd }\end{cases}
$$

XY model. Bogoliubov transform: XX case

Set $\Delta=0$. Let us pass to the momentum space

$$
a_{n}=\frac{1}{N^{1 / 2}} \sum_{-\pi<k \leq \pi} a_{k} e^{i k n}, \quad \frac{k N}{2 \pi} \in \begin{cases}\mathbb{Z}, & M \text { even } ; \tag{9}\\ \mathbb{Z}+\frac{1}{2}, & M \text { odd }\end{cases}
$$

The Hamiltonian is

$$
\begin{equation*}
H_{X Y}=-\sum_{-\pi<k \leq \pi}\left((1+\Gamma) \cos k \cdot a_{k}^{+} a_{k}+i \frac{1-\Gamma}{2} \sin k \cdot\left(a_{k}^{+} a_{-k}^{+}+a_{k} a_{-k}\right)\right) \tag{10}
\end{equation*}
$$

Set $\Delta=0$. Let us pass to the momentum space

$$
a_{n}=\frac{1}{N^{1 / 2}} \sum_{-\pi<k \leq \pi} a_{k} e^{i k n}, \quad \frac{k N}{2 \pi} \in \begin{cases}\mathbb{Z}, & M \text { even } ; \tag{9}\\ \mathbb{Z}+\frac{1}{2}, & M \text { odd }\end{cases}
$$

The Hamiltonian is

$$
\begin{equation*}
H_{X Y}=-\sum_{-\pi<k \leq \pi}\left((1+\Gamma) \cos k \cdot a_{k}^{+} a_{k}+i \frac{1-\Gamma}{2} \sin k \cdot\left(a_{k}^{+} a_{-k}^{+}+a_{k} a_{-k}\right)\right) \tag{10}
\end{equation*}
$$

Let $\Gamma=1$: XX model. Then the spectrum $\epsilon_{k}^{(0)}=-2 \cos k$ divides in two regions:

- for $|k|>k_{F}=\frac{\pi}{2}$ we have $\epsilon_{k}^{(0)}>0$;
- for $|k|<k_{F}=\frac{\pi}{2}$ we have $\epsilon_{k}^{(0)}<0$.

The last region must be filled up in the ground state ('Dirac sea').

Set $\Delta=0$. Let us pass to the momentum space

$$
a_{n}=\frac{1}{N^{1 / 2}} \sum_{-\pi<k \leq \pi} a_{k} e^{i k n}, \quad \frac{k N}{2 \pi} \in \begin{cases}\mathbb{Z}, & M \text { even } ; \tag{9}\\ \mathbb{Z}+\frac{1}{2}, & M \text { odd }\end{cases}
$$

The Hamiltonian is

$$
\begin{equation*}
H_{X Y}=-\sum_{-\pi<k \leq \pi}\left((1+\Gamma) \cos k \cdot a_{k}^{+} a_{k}+i \frac{1-\Gamma}{2} \sin k \cdot\left(a_{k}^{+} a_{-k}^{+}+a_{k} a_{-k}\right)\right) \tag{10}
\end{equation*}
$$

Let $\Gamma=1$: XX model. Then the spectrum $\epsilon_{k}^{(0)}=-2 \cos k$ divides in two regions:

- for $|k|>k_{F}=\frac{\pi}{2}$ we have $\epsilon_{k}^{(0)}>0$;
- for $|k|<k_{F}=\frac{\pi}{2}$ we have $\epsilon_{k}^{(0)}<0$.

The last region must be filled up in the ground state ('Dirac sea').
Since the space of states is finite-dimensional, we may redefine the oscillators:

$$
\begin{equation*}
b_{k}=a_{k-\pi}, \quad b_{k}^{+}=a_{k-\pi}^{+}, \quad b_{k}^{\prime}=i a_{k}^{+}, \quad b_{k}^{\prime+}=-i a_{k}, \quad-\frac{\pi}{2}<k \leq \frac{\pi}{2}, \tag{11}
\end{equation*}
$$

This is the simplest Bogoliubov transform.

Set $\Delta=0$. Let us pass to the momentum space

$$
a_{n}=\frac{1}{N^{1 / 2}} \sum_{-\pi<k \leq \pi} a_{k} e^{i k n}, \quad \frac{k N}{2 \pi} \in \begin{cases}\mathbb{Z}, & M \text { even } ; \tag{9}\\ \mathbb{Z}+\frac{1}{2}, & M \text { odd }\end{cases}
$$

The Hamiltonian is

$$
\begin{equation*}
H_{X Y}=-\sum_{-\pi<k \leq \pi}\left((1+\Gamma) \cos k \cdot a_{k}^{+} a_{k}+i \frac{1-\Gamma}{2} \sin k \cdot\left(a_{k}^{+} a_{-k}^{+}+a_{k} a_{-k}\right)\right) \tag{10}
\end{equation*}
$$

Let $\Gamma=1$: XX model. Then the spectrum $\epsilon_{k}^{(0)}=-2 \cos k$ divides in two regions:

- for $|k|>k_{F}=\frac{\pi}{2}$ we have $\epsilon_{k}^{(0)}>0$;
- for $|k|<k_{F}=\frac{\pi}{2}$ we have $\epsilon_{k}^{(0)}<0$.

The last region must be filled up in the ground state ('Dirac sea').
Since the space of states is finite-dimensional, we may redefine the oscillators:

$$
\begin{equation*}
b_{k}=a_{k-\pi}, \quad b_{k}^{+}=a_{k-\pi}^{+}, \quad b_{k}^{\prime}=i a_{k}^{+}, \quad b_{k}^{\prime+}=-i a_{k}, \quad-\frac{\pi}{2}<k \leq \frac{\pi}{2} \tag{11}
\end{equation*}
$$

This is the simplest Bogoliubov transform. Then

$$
H_{X X}=\sum_{-\pi / 2<k \leq \pi / 2} \epsilon_{k}\left(b_{k}^{+} b_{k}+b_{k}^{\prime+} b_{k}^{\prime}\right), \quad \epsilon_{k}=\cos k \geq 0 .
$$

But there are particles b_{k} and antiparticles b_{k}^{\prime}.

XY model. Bogoliubov transform: general case

Now return to generic Γ. Consider the Bogoliubov transform

$$
\begin{gather*}
a_{k-\pi}=\alpha_{k} b_{k}+\beta_{k} b_{-k}^{+}, \quad a_{k-\pi}^{+}=\beta_{k}^{\prime *} b_{-k}+\alpha_{k}^{\prime *} b_{k}^{+} \\
a_{k}=\alpha_{k}^{\prime} b_{k}^{\prime}+\beta_{k}^{\prime} b_{-k}^{+}, \quad a_{k}^{+}=\beta_{k}^{\prime *} b_{-k}^{\prime}+\alpha_{k}^{\prime *} b_{k}^{\prime+} \tag{12}
\end{gather*}
$$

where

$$
\begin{array}{ll}
\left|\alpha_{k}\right|^{2}+\left|\beta_{k}\right|^{2}=1, & \alpha_{k} \beta_{-k}+\alpha_{-k} \beta_{k}=0, \\
\left|\alpha_{k}^{\prime}\right|^{2}+\left|\beta_{k}^{\prime}\right|^{2}=1, & \alpha_{k}^{\prime} \beta_{-k}^{\prime}+\alpha_{-k}^{\prime} \beta_{k}^{\prime}=0 .
\end{array}
$$

Now return to generic Γ. Consider the Bogoliubov transform

$$
\begin{gather*}
a_{k-\pi}=\alpha_{k} b_{k}+\beta_{k} b_{-k}^{+}, \quad a_{k-\pi}^{+}=\beta_{k}^{\prime *} b_{-k}+\alpha_{k}^{\prime *} b_{k}^{+} \\
a_{k}=\alpha_{k}^{\prime} b_{k}^{\prime}+\beta_{k}^{\prime} b_{-k}^{\prime+}, \quad a_{k}^{+}=\beta_{k}^{\prime *} b_{-k}^{\prime}+\alpha_{k}^{\prime *} b_{k}^{\prime+} \tag{12}
\end{gather*}
$$

where

$$
\begin{array}{ll}
\left|\alpha_{k}\right|^{2}+\left|\beta_{k}\right|^{2}=1, & \alpha_{k} \beta_{-k}+\alpha_{-k} \beta_{k}=0, \\
\left|\alpha_{k}^{\prime}\right|^{2}+\left|\beta_{k}^{\prime}\right|^{2}=1, & \alpha_{k}^{\prime} \beta_{-k}^{\prime}+\alpha_{-k}^{\prime} \beta_{k}^{\prime}=0 .
\end{array}
$$

Now we should adjust the coefficients α_{k}, \ldots to eliminate terms of the form $b b$, $b^{+} b^{+}, b^{\prime} b^{\prime}, b^{++} b^{\prime+}$ in the Hamiltonian. We obtain

$$
\begin{array}{ll}
\alpha_{k}=\cos \frac{\kappa}{2}, & \beta_{k}=i \sin \frac{\kappa}{2}, \tag{13}\\
\alpha_{k}^{\prime}=-\sin \frac{\kappa}{2}, & \beta_{k}^{\prime}=i \cos \frac{\kappa}{2},
\end{array} \quad \operatorname{tg} \kappa=\frac{1-\Gamma}{1+\Gamma} \operatorname{tg} k .
$$

Now return to generic Γ. Consider the Bogoliubov transform

$$
\begin{align*}
& a_{k-\pi}=\alpha_{k} b_{k}+\beta_{k} b_{-k}^{+}, \quad a_{k-\pi}^{+}=\beta_{k}^{\prime *} b_{-k}+\alpha_{k}^{\prime *} b_{k}^{+}, \\
& a_{k}=\alpha_{k}^{\prime} b_{k}^{\prime}+\beta_{k}^{\prime} b_{-k}^{\prime+}, \quad a_{k}^{+}=\beta_{k}^{\prime *} b_{-k}^{\prime}+\alpha_{k}^{\prime *} b_{k}^{\prime+}, \tag{12}
\end{align*}
$$

where

$$
\begin{array}{ll}
\left|\alpha_{k}\right|^{2}+\left|\beta_{k}\right|^{2}=1, & \alpha_{k} \beta_{-k}+\alpha_{-k} \beta_{k}=0, \\
\left|\alpha_{k}^{\prime}\right|^{2}+\left|\beta_{k}^{\prime}\right|^{2}=1, & \alpha_{k}^{\prime} \beta_{-k}^{\prime}+\alpha_{-k}^{\prime} \beta_{k}^{\prime}=0 .
\end{array}
$$

Now we should adjust the coefficients α_{k}, \ldots to eliminate terms of the form $b b$, $b^{+} b^{+}, b^{\prime} b^{\prime}, b^{+} b^{\prime+}$ in the Hamiltonian. We obtain

$$
\begin{array}{ll}
\alpha_{k}=\cos \frac{\kappa}{2}, & \beta_{k}=i \sin \frac{\kappa}{2}, \tag{13}\\
\alpha_{k}^{\prime}=-\sin \frac{\kappa}{2}, & \beta_{k}^{\prime}=i \cos \frac{\kappa}{2},
\end{array} \quad \operatorname{tg} \kappa=\frac{1-\Gamma}{1+\Gamma} \operatorname{tg} k .
$$

The Hamiltonian takes the form

$$
\begin{equation*}
H_{X Y}=\sum_{-\pi / 2<k \leq \pi / 2} \epsilon_{k}\left(b_{k}^{+} b_{k}+b_{k}^{\prime+} b_{k}^{\prime}\right), \quad \epsilon_{k}=\sqrt{(1+\Gamma)^{2} \cos ^{2} k+(1-\Gamma)^{2} \sin ^{2} k} . \tag{14}
\end{equation*}
$$

$$
\epsilon_{k}=\sqrt{(1+\Gamma)^{2} \cos ^{2} k+(1-\Gamma)^{2} \sin ^{2} k}
$$

$$
\epsilon_{k}=\sqrt{(1+\Gamma)^{2} \cos ^{2} k+(1-\Gamma)^{2} \sin ^{2} k}
$$

$$
\epsilon_{k}=\sqrt{(1+\Gamma)^{2} \cos ^{2} k+(1-\Gamma)^{2} \sin ^{2} k}
$$

$$
\epsilon_{k}=\sqrt{(1+\Gamma)^{2} \cos ^{2} k+(1-\Gamma)^{2} \sin ^{2} k}
$$

$$
\epsilon_{k}=\sqrt{(1+\Gamma)^{2} \cos ^{2} k+(1-\Gamma)^{2} \sin ^{2} k}
$$

$$
\epsilon_{k}=\sqrt{(1+\Gamma)^{2} \cos ^{2} k+(1-\Gamma)^{2} \sin ^{2} k}
$$

The minimum of ϵ_{k} is equal to

- $1-\Gamma$ and achieved at $k=\frac{\pi}{2}$ for $\Gamma>0$;
- $1+\Gamma$ and achieved at $k=0$ for $\Gamma<0$.

$$
\epsilon_{k}=\sqrt{(1+\Gamma)^{2} \cos ^{2} k+(1-\Gamma)^{2} \sin ^{2} k}
$$

The minimum of ϵ_{k} is equal to

- $1-\Gamma$ and achieved at $k=\frac{\pi}{2}$ for $\Gamma>0$;
- $1+\Gamma$ and achieved at $k=0$ for $\Gamma<0$.

Hence, the spectrum has a mass gap of $2 \min (1+\Gamma, 1-\Gamma)$. In the limits $\Gamma \rightarrow \pm 1$ the gap disappears and the system admits scaling limit. Without loss of generality we will consider the limit $\Gamma \rightarrow 1$.

Let $1-\Gamma \ll 1$. Consider low-lying excitations. Let

$$
p a= \begin{cases}\frac{\pi}{2}-k, & k>0 \\ -\frac{\pi}{2}-k, & k<0 .\end{cases}
$$

Take the limit $a \rightarrow 0$ with finite p.

Let $1-\Gamma \ll 1$. Consider low-lying excitations. Let

$$
p a= \begin{cases}\frac{\pi}{2}-k, & k>0 \\ -\frac{\pi}{2}-k, & k<0 .\end{cases}
$$

Take the limit $a \rightarrow 0$ with finite p.
Then

$$
\begin{equation*}
\epsilon(p)=2 a \sqrt{m^{2}+p^{2}}, \quad m=\frac{1-\Gamma}{2 a} . \tag{15}
\end{equation*}
$$

Up to a factor $2 a$ this is the spectrum of a free relativistic particle. So define

$$
H_{F F}=\frac{1}{2 a} H_{X Y} .
$$

Let $1-\Gamma \ll 1$. Consider low-lying excitations. Let

$$
p a= \begin{cases}\frac{\pi}{2}-k, & k>0 \\ -\frac{\pi}{2}-k, & k<0 .\end{cases}
$$

Take the limit $a \rightarrow 0$ with finite p.
Then

$$
\begin{equation*}
\epsilon(p)=2 a \sqrt{m^{2}+p^{2}}, \quad m=\frac{1-\Gamma}{2 a} . \tag{15}
\end{equation*}
$$

Up to a factor $2 a$ this is the spectrum of a free relativistic particle. So define

$$
H_{F F}=\frac{1}{2 a} H_{X Y} .
$$

The parameter of the Bogoliubov transform

$$
\operatorname{ctg} \kappa=\frac{|p|}{m},
$$

Consider the case $m=0$ ($\Gamma=1$ or XX model). The Bogoliubov transform becomes trivial

$$
\begin{align*}
a_{\pi / 2-p a} & =i b_{-\pi / 2+p a}^{\prime+}, & a_{\pi / 2+p a} & =b_{-\pi / 2+p a} \\
a_{-\pi / 2+p a} & =i b_{\pi / 2-p a}^{\prime+}, & a_{-\pi / 2-p a} & =b_{\pi / 2-p a} \tag{16}
\end{align*}
$$

Consider the case $m=0$ ($\Gamma=1$ or XX model). The Bogoliubov transform becomes trivial

$$
\begin{align*}
a_{\pi / 2-p a} & =i b_{-\pi / 2+p a}^{\prime+}, & a_{\pi / 2+p a} & =b_{-\pi / 2+p a} \\
a_{-\pi / 2+p a} & =i b_{\pi / 2-p a}^{\prime+}, & a_{-\pi / 2-p a} & =b_{\pi / 2-p a} \tag{16}
\end{align*}
$$

Introduce the operators

$$
\begin{equation*}
\psi_{ \pm}(x)=\int_{-\infty}^{\infty} \frac{d p}{2 \pi} a_{ \pm}(p) e^{i p x} \quad a_{ \pm}(p)=(N a)^{1 / 2} a_{ \pm \pi / 2+p a} \tag{17}
\end{equation*}
$$

Consider the case $m=0$ ($\Gamma=1$ or XX model). The Bogoliubov transform becomes trivial

$$
\begin{align*}
a_{\pi / 2-p a} & =i b_{-\pi / 2+p a}^{\prime+}, & a_{\pi / 2+p a} & =b_{-\pi / 2+p a} \\
a_{-\pi / 2+p a} & =i b_{\pi / 2-p a}^{\prime+}, & a_{-\pi / 2-p a} & =b_{\pi / 2-p a} \tag{16}
\end{align*}
$$

Introduce the operators

$$
\begin{equation*}
\psi_{ \pm}(x)=\int_{-\infty}^{\infty} \frac{d p}{2 \pi} a_{ \pm}(p) e^{i p x} \quad a_{ \pm}(p)=(N a)^{1 / 2} a_{ \pm \pi / 2+p a} \tag{17}
\end{equation*}
$$

It is easy to check that

$$
\psi(x)=\binom{\psi_{-}(x)}{-i \psi_{+}(x)}
$$

satisfies the massless Dirac equation: $\hat{\partial} \psi=0$ and satisfies the correct anticommutation equations.

Consider the case $m=0$ ($\Gamma=1$ or XX model). The Bogoliubov transform becomes trivial

$$
\begin{align*}
a_{\pi / 2-p a} & =i b_{-\pi / 2+p a}^{\prime+}, & a_{\pi / 2+p a} & =b_{-\pi / 2+p a} \\
a_{-\pi / 2+p a} & =i b_{\pi / 2-p a}^{++}, & a_{-\pi / 2-p a} & =b_{\pi / 2-p a} \tag{16}
\end{align*}
$$

Introduce the operators

$$
\begin{equation*}
\psi_{ \pm}(x)=\int_{-\infty}^{\infty} \frac{d p}{2 \pi} a_{ \pm}(p) e^{i p x} \quad a_{ \pm}(p)=(N a)^{1 / 2} a_{ \pm \pi / 2+p a} \tag{17}
\end{equation*}
$$

It is easy to check that

$$
\psi(x)=\binom{\psi_{-}(x)}{-i \psi_{+}(x)}
$$

satisfies the massless Dirac equation: $\hat{\partial} \psi=0$ and satisfies the correct anticommutation equations.
The initial fermions a_{n} are expressed in terms of them as

$$
a_{n}=a^{1 / 2}\left(i^{n} \psi_{+}(a n)+i^{-n} \psi_{-}(a n)\right) .
$$

Now turn on $\Delta \neq 0$, but we will think that $|\Delta| \ll 1$.

Now turn on $\Delta \neq 0$, but we will think that $|\Delta| \ll 1$.
Define

$$
\begin{equation*}
H_{\Delta} \equiv \frac{1}{2 a}\left(H_{X X Z}+\Delta N / 2-2 \Delta M\right)=H_{F F}-\frac{\Delta}{N a} \sum_{q} \rho_{q} \rho_{-q} \cos q \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{q}=\sum_{k} a_{k+q}^{+} a_{k^{\prime}}=\sum_{n} a_{n}^{+} a_{n} e^{i q n}, \quad M=\rho_{0} . \tag{19}
\end{equation*}
$$

In the XXZ model the value of M is conserved.

Now turn on $\Delta \neq 0$, but we will think that $|\Delta| \ll 1$.
Define

$$
\begin{equation*}
H_{\Delta} \equiv \frac{1}{2 a}\left(H_{X X Z}+\Delta N / 2-2 \Delta M\right)=H_{F F}-\frac{\Delta}{N a} \sum_{q} \rho_{q} \rho_{-q} \cos q \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{q}=\sum_{k} a_{k+q}^{+} a_{k^{\prime}}=\sum_{n} a_{n}^{+} a_{n} e^{i q n}, \quad M=\rho_{0} . \tag{19}
\end{equation*}
$$

In the XXZ model the value of M is conserved. It can be shown that in the scaling limit

$$
\begin{equation*}
H_{\Delta}=H_{F F}-\Delta \int d x\left(\left(\psi_{+}^{+} \psi_{+}\right)^{2}+\left(\psi_{-}^{+} \psi_{-}\right)^{2}+4 \psi_{+}^{+} \psi_{+} \psi_{-}^{+} \psi_{-}\right) \tag{20}
\end{equation*}
$$

Now turn on $\Delta \neq 0$, but we will think that $|\Delta| \ll 1$.
Define

$$
\begin{equation*}
H_{\Delta} \equiv \frac{1}{2 a}\left(H_{X X Z}+\Delta N / 2-2 \Delta M\right)=H_{F F}-\frac{\Delta}{N a} \sum_{q} \rho_{q} \rho_{-q} \cos q, \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{q}=\sum_{k} a_{k+q}^{+} a_{k^{\prime}}=\sum_{n} a_{n}^{+} a_{n} e^{i q n}, \quad M=\rho_{0} . \tag{19}
\end{equation*}
$$

In the XXZ model the value of M is conserved. It can be shown that in the scaling limit

$$
\begin{equation*}
H_{\Delta}=H_{F F}-\Delta \int d x\left(\left(\psi_{+}^{+} \psi_{+}\right)^{2}+\left(\psi_{-}^{+} \psi_{-}\right)^{2}+4 \psi_{+}^{+} \psi_{+} \psi_{-}^{+} \psi_{-}\right) \tag{20}
\end{equation*}
$$

The contributions $\left(\psi_{\alpha}^{+} \psi_{\alpha}\right)^{2} \sim\left(\partial_{x} \varphi\right)^{2}$ renormalize the space coordinate x. But the contribution $-4 \Delta \int d^{2} x \psi_{+}^{+} \psi_{+} \psi_{-}^{+} \psi_{-}$is of the Thirring model type. Therefore

$$
\begin{equation*}
g=-2 \Delta \quad(\Delta \ll 1) \tag{21}
\end{equation*}
$$

Now turn on $\Delta \neq 0$, but we will think that $|\Delta| \ll 1$.
Define

$$
\begin{equation*}
H_{\Delta} \equiv \frac{1}{2 a}\left(H_{X X Z}+\Delta N / 2-2 \Delta M\right)=H_{F F}-\frac{\Delta}{N a} \sum_{q} \rho_{q} \rho_{-q} \cos q \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{q}=\sum_{k} a_{k+q}^{+} a_{k^{\prime}}=\sum_{n} a_{n}^{+} a_{n} e^{i q n}, \quad M=\rho_{0} . \tag{19}
\end{equation*}
$$

In the XXZ model the value of M is conserved. It can be shown that in the scaling limit

$$
\begin{equation*}
H_{\Delta}=H_{F F}-\Delta \int d x\left(\left(\psi_{+}^{+} \psi_{+}\right)^{2}+\left(\psi_{-}^{+} \psi_{-}\right)^{2}+4 \psi_{+}^{+} \psi_{+} \psi_{-}^{+} \psi_{-}\right) \tag{20}
\end{equation*}
$$

The contributions $\left(\psi_{\alpha}^{+} \psi_{\alpha}\right)^{2} \sim\left(\partial_{x} \varphi\right)^{2}$ renormalize the space coordinate x. But the contribution $-4 \Delta \int d^{2} x \psi_{+}^{+} \psi_{+} \psi_{-}^{+} \psi_{-}$is of the Thirring model type. Therefore

$$
\begin{equation*}
g=-2 \Delta \quad(\Delta \ll 1) \tag{21}
\end{equation*}
$$

The exact relation for finite Δ is known from an exact solution of the XYZ model:

$$
\begin{equation*}
\beta^{2}=\frac{2 \mu}{\pi}, \quad \frac{g}{\pi}=\frac{\pi / 2-\mu}{\mu}, \quad \Delta=-\cos \mu \tag{22}
\end{equation*}
$$

XYZ model and sine-Gordon model

The XXZ model				
	bcaling limit massless Thirring models	correspondence \longleftrightarrowfree massless boson		

The XXZ model				
	scaling limit massless Thirring models	boson-fermion correspondence		free massless
:---				
boson				

Conjecture:
$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { The XYZ } \\ \text { model }\end{array} \\ & \begin{array}{l}\text { massive } \\ \text { Thirring models }\end{array} & \begin{array}{l}\text { boson-fermion } \\ \text { correspondence }\end{array} \\ \longleftrightarrow\end{array} \begin{array}{l}\text { sine-Gordon } \\ \text { model }\end{array}\right]$

XYZ model and sine-Gordon model: symmetries

Symmetry of the free massless boson:

$$
\varphi \rightarrow \varphi+\alpha, \quad \alpha \in \mathbb{R}
$$

XYZ model and sine-Gordon model: symmetries

Symmetry of the free massless boson:

$$
\varphi \rightarrow \varphi+\alpha, \quad \alpha \in \mathbb{R}
$$

It is broken by the $\cos \beta \varphi$ interaction:

$$
\begin{equation*}
\alpha=\frac{2 \pi n}{\beta}, \quad n \in \mathbb{Z} \tag{23}
\end{equation*}
$$

XYZ model and sine-Gordon model: symmetries

Symmetry of the free massless boson:

$$
\varphi \rightarrow \varphi+\alpha, \quad \alpha \in \mathbb{R}
$$

It is broken by the $\cos \beta \varphi$ interaction:

$$
\begin{equation*}
\alpha=\frac{2 \pi n}{\beta}, \quad n \in \mathbb{Z} \tag{23}
\end{equation*}
$$

Symmetry of the XXZ model:

$$
\sigma^{ \pm} \rightarrow e^{ \pm i \lambda} \sigma^{ \pm}, \quad \sigma^{z} \rightarrow \sigma^{z}, \quad \lambda \in \mathbb{R}
$$

Symmetry of the free massless boson:

$$
\varphi \rightarrow \varphi+\alpha, \quad \alpha \in \mathbb{R}
$$

It is broken by the $\cos \beta \varphi$ interaction:

$$
\begin{equation*}
\alpha=\frac{2 \pi n}{\beta}, \quad n \in \mathbb{Z} \tag{23}
\end{equation*}
$$

Symmetry of the XXZ model:

$$
\sigma^{ \pm} \rightarrow e^{ \pm i \lambda} \sigma^{ \pm}, \quad \sigma^{z} \rightarrow \sigma^{z}, \quad \lambda \in \mathbb{R}
$$

For $\Gamma<1$ there is a term

$$
\sum_{n}\left(\sigma_{n}^{+} \sigma_{n+1}^{+}+\sigma_{n}^{-} \sigma_{n+1}^{-}\right)
$$

which breaks the symmetry to

$$
\begin{equation*}
\lambda=\pi n, \quad n \in \mathbb{Z} \tag{24}
\end{equation*}
$$

Symmetry of the free massless boson:

$$
\varphi \rightarrow \varphi+\alpha, \quad \alpha \in \mathbb{R}
$$

It is broken by the $\cos \beta \varphi$ interaction:

$$
\begin{equation*}
\alpha=\frac{2 \pi n}{\beta}, \quad n \in \mathbb{Z} \tag{23}
\end{equation*}
$$

Symmetry of the XXZ model:

$$
\sigma^{ \pm} \rightarrow e^{ \pm i \lambda} \sigma^{ \pm}, \quad \sigma^{z} \rightarrow \sigma^{z}, \quad \lambda \in \mathbb{R}
$$

For $\Gamma<1$ there is a term

$$
\sum_{n}\left(\sigma_{n}^{+} \sigma_{n+1}^{+}+\sigma_{n}^{-} \sigma_{n+1}^{-}\right)
$$

which breaks the symmetry to

$$
\begin{equation*}
\lambda=\pi n, \quad n \in \mathbb{Z} \tag{24}
\end{equation*}
$$

Identification:

$$
\begin{equation*}
\alpha=\frac{2 \lambda}{\beta} \tag{25}
\end{equation*}
$$

Therefore

$$
\sigma_{n}^{ \pm} \sigma_{n+1}^{ \pm} \sim a^{\beta^{2}} e^{ \pm i \beta \phi}
$$

Therefore

$$
\sigma_{n}^{ \pm} \sigma_{n+1}^{ \pm} \sim a^{\beta^{2}} e^{ \pm i \beta \phi}
$$

It can be conjectured that

$$
\sigma_{n}^{ \pm} \sim a^{\beta^{2} / 4} e^{ \pm i \frac{\beta}{2} \phi}
$$

Therefore

$$
\sigma_{n}^{ \pm} \sigma_{n+1}^{ \pm} \sim a^{\beta^{2}} e^{ \pm i \beta \phi}
$$

It can be conjectured that

$$
\sigma_{n}^{ \pm} \sim a^{\beta^{2} / 4} e^{ \pm i \frac{\beta}{2} \phi}
$$

What is σ^{z} ? A more accurate study gives

$$
\sigma_{n}^{z}=c_{1} a \partial_{t} \phi+c_{2}(-1)^{n} a^{1 / \beta^{2}} \sin \frac{i \tilde{\phi}}{\beta}
$$

