
Lecture 8
Heisenberg spin chain and its scaling limit
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Heisenberg spin chain
Consider a chain of N spins S = 1/2, that is, the space

HN = C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
N

, (1)

The Hamiltonian

HXYZ = −
1

2

N∑
n=1

(
Jxσ

x
nσ

x
n+1 + Jyσ

y
nσ

y
n+1 + Jzσ

z
nσ

z
n+1

)
(2)

with the periodic boundary condition σiN+1 = σi1.
XYZ chain: generic Ji;
XXZ chain: |Jx| = |Jy |;
XXX chain: |Jx| = |Jy | = |Jz |;
XY chain: Jz = 0. Today we will mostly consider this case.

Let Jx = 1, Jy = Γ, Jz = ∆ with |Γ| ≤ 1. Then

HXYZ = −
1

2

N∑
n=1

(
(1 + Γ)(σ+

n σ
−
n+1 + σ−n σ

+
n+1) + (1− Γ)(σ+

n σ
+
n+1 + σ−n σ

−
n+1)

+ ∆σznσ
z
n+1

)
, (3)

where

σ+ =
σx + iσy

2
=

(
0 1
0 0

)
, σ− =

σx − iσy

2
=

(
0 0
1 0

)
(4)
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Jordan–Wigner transformation

The matrices σ± behave like fermions

σ+σ− + σ−σ+ = 1, (σ+)2 = (σ−)2 = 0.

The operator

σ+σ− =
σz + 1

2

behaves like the fermion number operator.

But the operators from different nodes commute: σimσ
j
n = σjnσ

i
m. We cannot

completely fermionize the model in this way.
Introduce the non-local operators (Jordan–Wigner transformation)

an = σ−n

n−1∏
j=1

(−σzj ), a+
n = σ+

n

n−1∏
j=1

(−σzj ). (5)

Then

a+
man + ana

+
m = δmn, aman + anam = a+

ma
+
n + a+

n a
+
m = 0.

It is invertible

σzn = 2a+
n an−1, σ+

n = a+
n exp

(
iπ

n−1∑
j=1

a+
j aj

)
, σ−n = an exp

(
−iπ

n−1∑
j=1

a+
j aj

)
.

(6)
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Jordan–Wigner transformation 2

The price payed for the transformation is a small change of the boundary
condition:

aN+1 = a1(−1)M , M =
N∑
k=1

a+
k ak = Sz +

N

2
, (7)

which depends on the total number of fermion particles.

The Hamiltonian:

HXYZ = −
N∑
n=1

(
1 + Γ

2
(a+
n+1an + a+

n an+1) +
1− Γ

2
(a+
n a

+
n+1 − anan+1)

+ 2∆(a+
n ana

+
n+1an+1 − a+

n an)

)
. (8)

When is this Hamiltonian solvable? Evidently, for ∆ = 0.
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XY model. Bogoliubov transform: XX case
Set ∆ = 0. Let us pass to the momentum space

an =
1

N1/2

∑
−π<k≤π

ake
ikn,

kN

2π
∈
{
Z, M even;
Z + 1

2
, M odd.

(9)

The Hamiltonian is

HXY = −
∑

−π<k≤π

(
(1 + Γ) cos k · a+

k ak + i
1− Γ

2
sin k · (a+

k a
+
−k + aka−k)

)
.

(10)
Let Γ = 1: XX model. Then the spectrum ε

(0)
k = −2 cos k divides in two regions:

for |k| > kF = π
2
we have ε(0)

k > 0;

for |k| < kF = π
2
we have ε(0)

k < 0.
The last region must be filled up in the ground state (‘Dirac sea’).
Since the space of states is finite-dimensional, we may redefine the oscillators:

bk = ak−π , b+k = a+
k−π , b′k = ia+

k , b′+k = −iak, −
π

2
< k ≤

π

2
, (11)

This is the simplest Bogoliubov transform. Then

HXX =
∑

−π/2<k≤π/2
εk(b+k bk + b′+k b′k), εk = cos k ≥ 0.

But there are particles bk and antiparticles b′k.
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XY model. Bogoliubov transform: general case

Now return to generic Γ. Consider the Bogoliubov transform

ak−π = αkbk + βkb
+
−k, a+

k−π = β′∗k b−k + α′∗k b
+
k ,

ak = α′kb
′
k + β′kb

′+
−k, a+

k = β′∗k b
′
−k + α′∗k b

′+
k ,

(12)

where
|αk|2 + |βk|2 = 1, αkβ−k + α−kβk = 0,

|α′k|
2 + |β′k|

2 = 1, α′kβ
′
−k + α′−kβ

′
k = 0.

Now we should adjust the coefficients αk, . . . to eliminate terms of the form bb,
b+b+, b′b′, b′+b′+ in the Hamiltonian. We obtain

αk = cos
κ

2
, βk = i sin

κ

2
,

α′k = − sin
κ

2
, β′k = i cos

κ

2
,

tg κ =
1− Γ

1 + Γ
tg k. (13)

The Hamiltonian takes the form

HXY =
∑

−π/2<k≤π/2
εk(b+k bk + b′+k b′k), εk =

√
(1 + Γ)2 cos2 k + (1− Γ)2 sin2 k.

(14)
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XY model. Spectrum

εk =

√
(1 + Γ)2 cos2 k + (1− Γ)2 sin2 k

−π
2

k π
2

0

εk

1 + Γ

1− Γ

1 − Γ = .3
1 − Γ = .2
1 − Γ = .1
1 − Γ = 0

The minimum of εk is equal to
1− Γ and achieved at k = π

2
for Γ > 0;

1 + Γ and achieved at k = 0 for Γ < 0.
Hence, the spectrum has a mass gap of 2 min(1 + Γ, 1− Γ). In the limits Γ→ ±1
the gap disappears and the system admits scaling limit. Without loss of generality
we will consider the limit Γ→ 1.
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XY model. Scaling limit

Let 1− Γ� 1. Consider low-lying excitations. Let

pa =

{
π
2
− k, k > 0;

−π
2
− k, k < 0.

Take the limit a→ 0 with finite p.

Then
ε(p) = 2a

√
m2 + p2, m =

1− Γ

2a
. (15)

Up to a factor 2a this is the spectrum of a free relativistic particle. So define

HFF =
1

2a
HXY .

The parameter of the Bogoliubov transform

ctg κ =
|p|
m
,
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Scaling XX model

Consider the case m = 0 (Γ = 1 or XX model). The Bogoliubov transform
becomes trivial

aπ/2−pa = ib′+−π/2+pa
, aπ/2+pa = b−π/2+pa,

a−π/2+pa = ib′+
π/2−pa, a−π/2−pa = bπ/2−pa.

(16)

Introduce the operators

ψ±(x) =

∫ ∞
−∞

dp

2π
a±(p)eipx a±(p) = (Na)1/2a±π/2+pa, (17)

It is easy to check that

ψ(x) =

(
ψ−(x)
−iψ+(x)

)
satisfies the massless Dirac equation: ∂̂ψ = 0 and satisfies the correct
anticommutation equations.
The initial fermions an are expressed in terms of them as

an = a1/2(inψ+(an) + i−nψ−(an)).
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Scaling XXZ model

Now turn on ∆ 6= 0, but we will think that |∆| � 1.

Define

H∆ ≡
1

2a
(HXXZ + ∆N/2− 2∆M) = HFF −

∆

Na

∑
q

ρqρ−q cos q, (18)

where
ρq =

∑
k

a+
k+qak′ =

∑
n

a+
n ane

iqn, M = ρ0. (19)

In the XXZ model the value of M is conserved. It can be shown that in the
scaling limit

H∆ = HFF −∆

∫
dx ((ψ+

+ψ+)2 + (ψ+
−ψ−)2 + 4ψ+

+ψ+ψ
+
−ψ−). (20)

The contributions (ψ+
αψα)2 ∼ (∂xϕ)2 renormalize the space coordinate x. But the

contribution −4∆
∫
d2xψ+

+ψ+ψ
+
−ψ− is of the Thirring model type. Therefore

g = −2∆ (∆� 1). (21)

The exact relation for finite ∆ is known from an exact solution of the XYZ model:

β2 =
2µ

π
,

g

π
=
π/2− µ

µ
, ∆ = − cosµ. (22)
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XYZ model and sine-Gordon model

The XXZ
model

scaling limit
−−−−−−−−−−→ massless

Thirring models

boson-fermion
correspondence
←−−−−−−−−−−−→ free massless

boson

Conjecture:

The XYZ
model

scaling limit
−−−−−−−−−−→ massive

Thirring models

boson-fermion
correspondence
←−−−−−−−−−−−→ sine-Gordon

model
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XYZ model and sine-Gordon model: symmetries

Symmetry of the free massless boson:

ϕ→ ϕ+ α, α ∈ R.

It is broken by the cosβϕ interaction:

α =
2πn

β
, n ∈ Z. (23)

Symmetry of the XXZ model:

σ± → e±iλσ±, σz → σz , λ ∈ R.

For Γ < 1 there is a term ∑
n

(σ+
n σ

+
n+1 + σ−n σ

−
n+1),

which breaks the symmetry to

λ = πn, n ∈ Z. (24)

Identification:
α =

2λ

β
(25)
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XYZ model and sine-Gordon model: identification of operators

Therefore
σ±n σ

±
n+1 ∼ a

β2
e±iβφ.

It can be conjectured that
σ±n ∼ aβ

2/4e±i
β
2
φ.

What is σz? A more accurate study gives

σzn = c1a∂tφ+ c2(−1)na1/β2
sin

iφ̃

β
.
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Seminar
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