
Lecture 9
Ice model and commuting transfer matrices
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Ice model: configurations

The ‘ice model’ ( is Oxygen, is Hydrogen):
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Each oxygen atom has two hydrogen atom next to it. Small arrows on the right
figure define the orientation of the lattice lines and vertices, which will be
important later.
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Ice model: Boltzmann weights
Six-vertex model: the Boltzmann weights are associated with vertices:

Z =
∑

configu-
rations

∏
vertices

R
ε′1ε

′
2

ε1ε2 , R
ε′1ε

′
2

ε1ε2 = ε2 ε′2

ε1

ε′1

, ε′1 + ε′2 = ε1 + ε2

Ice condition

.

We have six vertices

R++
++ = a = = = + +

+

+

, R−−
−− = a′ = = = − −

−

−

R+−
+− = b = = = − −

+

+

, R−+
−+ = b′ = = = + +

−

−

R−+
+− = c = = = − +

+

−

, R+−
−+ = c′ = = = + −

−

+

R =


a

b c
c′ b′

a′

 in the basis (++), (+−), (−+), (−−).
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Six-vertex models: solvable case
The six-vertex model is solvable, if

R
−ε′1 −ε′2
−ε1 −ε2

= R
ε′1ε

′
2

ε1ε2

or
a′ = a, b′ = b c′ = c.

The transfer matrix

T
ε′1...ε

′
N

ε1...εN =
∑

µ1...µN

R
µ2ε

′
1

µ1ε1R
µ3ε

′
2

µ2ε2 . . . R
µ1ε

′
N

µNεN . (1)

Let us consider the matrix R as an operator in the tensor product of two two-
dimensional spaces:

R : C2 ⊗ C2 → C2 ⊗ C2, vε1 ⊗ vε2 7→ Rε1ε2
ε′1ε

′
2
vε′1

⊗ vε′2
.

Here vε is the natural basis in V = C2. Consider the tensor product
V1 ⊗ V2 ⊗ · · · ⊗ Vk of identical spaces Vi ≃ V . Let Rij is the R matrix acting on
Vi ⊗ Vj .
Then the transfer matrix can be written as

T = trV0 (R0N . . . R02R01) : V1 ⊗ V2 ⊗ · · · ⊗ VN → V1 ⊗ V2 ⊗ · · · ⊗ VN . (2)

The space V1 ⊗ · · · ⊗ VN is called quantum space, while the space V0 is called
auxiliary space.
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Six-vertex models: L operator

The operator under the trace is

L = R0N . . . R02R01 : V0 ⊗ V1 ⊗ · · · ⊗ VN → V0 ⊗ V1 ⊗ · · · ⊗ VN . (3)

We will consider it as an operator in the quantum space and a matrix in the
auxiliary space

L =

(
A B
C D

)
, A,B,C,D : V1 ⊗ V2 ⊗ · · · ⊗ VN → V1 ⊗ V2 ⊗ · · · ⊗ VN .

Then
T = trV0 L = A+D. (4)
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Commuting transfer matrices and Yang–Baxter equation

Integrability demands the existence of extra commuting integrals of motion In:

[T, In] = 0, [Im, In] = 0.

How to construct them?

Let use search for the operators T ′ = trV0 L′, L′ = R′
0N . . . R′

02R
′
01 with some

matrix R′.

Theorem

If there exist nondegenerate matrices R′, R′′ such that

R′′
12R

′
13R23 = R23R

′
13R

′′
12, (5)

or, graphically

R R′

R′′

=

RR′

R′′

(5′)

then
[T, T ′] = 0 (6)
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Commuting transfer matrices: a proof
A graphical proof:

T ′T =

L L′

=

R′′−1

R′′

L L′

=

R′′−1

R′′

=

R′′−1

R′′
=

L′ L

R′′−1

R′′

=

R′′

R′′−1

L′ L

=

L′ L

= TT ′. (7)

A more conventional proof is based on the relation

R′′
12L

′
1L2 = L2L

′
1R

′′
12,

which is proved by induction. Then

T ′T = trV1⊗V2
(L′

1L2) = trV1⊗V2
((R′′

12)
−1R′′

12L
′
1L2) = trV1⊗V2

((R′′
12)

−1L2L
′
1R

′′
12)

= trV1⊗V2 (R
′′
12(R

′′
12)

−1L2L
′
1) = trV1⊗V2 (L2L

′
1) = TT ′.
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Yang–Baxter equation: solution for the six-vertex model
The solution can be found in the form

R = R(λ, u2 − u3),

R′ = R(λ, u1 − u3),

R′′ = R(λ, u1 − u2)

(8)

with a given matrix-valued function R(λ, u).

Since the common factor of a, b, c is
arbitrary, assume a = 1. Trigonometric solution(s):

b(u) =
sinu

sin(λ− u)
, b(u) =

shu

sh(λ− u)
,

c(u) =
sinλ

sin(λ− u)
c(u) =

shλ

sh(λ− u)

(a < b+ c, b < a+ c, c < a+ b); (c > a+ b).

The cases a > b+ c and b > a+ c and not interesting from the thermodynamic
point of view and will be discussed later. The parameter λ is the same for
R,R′, R′′ and can be expressed as

− cosλ
− chλ

}
= ∆ ≡

a2 + b2 − c2

2ab
. (9)

Thus we will omit the parameter λ from now on:

R(u) ≡ R(λ, u), a(u) ≡ a(λ, u) etc.
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Yang–Baxter equation: spectral parameter
The spectral parameters can be associated to lines:

R(λ, u− v)ε3ε4ε1ε2
= ε2

v
ε4

ε1

u

ε3

This R matrix is the solution to the Yang–Baxter equation in the form

R12(λ, u1 − u2)R13(λ, u1 − u3)R23(λ, u2 − u3)

= R23(λ, u2 − u3)R13(λ, u1 − u3)R12(λ, u1 − u2). (10)

Graphically:

u1u2

u3

=

u1u2

u3

(10′)

Besides, the R matrix satisfy the relations
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= R(u)ε2 −ε3

ε4 −ε1
, R12(u)R21(−u) = 1, R(0) = P = .

(11)
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Integrals of motion
We have

[T (u), T (u′)] = 0 ∀u, u′. (12)
But not all the integrals of motion T (u) are independent.

First of all, T (0) is nothing but the shift operator:

T (0) =

u

u

u

u

= (13)

Then decompose the product T−1(0)T (u) in u:

T−1(0)T (u) = 1−
∞∑

n=1

Hnun

n!
. (14)

Hamiltonians Hn commute with T (u) and mutually commute:

[T (0), Hn] = [Hm, Hn] = 0 ∀m,n. (15)

The set T (0), H1, . . . , HN−1 form a set of independent integrals of motion.
Operators Hn are local in the sense that each of them is a sum of term, which
involves a finite number (n+ 1) of neighboring nodes.
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Six-vertex model and XXZ Heisenberg chain
Let us find the Hamiltonian H1 explicitly:

−H1 = T−1(0)T ′(0) =

d

du

∣∣∣∣
u=0

0

0

0

0

u

=
d

du

∣∣∣∣
u=0

N∑
n=1

VN

Vn+2

Vn+1

Vn

V1

=
d

du

∣∣∣∣
u=0

N∑
n=1

VN

...
Vn+2

Vn+1

Vn u

...
V1

=
N∑

n=1

Ř′
n,n+1(0),

where

Ř(u) = PR(u) =

a(u)
c(u) b(u)
b(u) c(u)

a(u)

 = 1 +
u

sinλ

0
cosλ 1
1 cosλ

0

+O(u2)

= 1−
u

sinλ

(
h−

cosλ

2

)
+O(u2),
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Six-vertex model and XXZ Heisenberg chain

Here
h = −

1

2
(σx ⊗ σx + σy ⊗ σy − cosλ σz ⊗ σz).

Hence
H1 sinλ = HXXZ +

N∆

2
,

where HXXZ is the Hamiltonian of the XXZ Heisenberg chain:

HXXZ = −
1

2

N∑
n=1

(σx
nσ

x
n+1 + σy

nσ
y
n+1 +∆σz

nσ
z
n+1) (16)

with ∆ given by (9):

∆ =
a2 + b2 − c2

2ab
=

{
− cosλ

− chλ
.
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XXZ Heisenberg chain: pseudovacuums

Due to the ice condition the z component of total spin

Sz =
1

2

N∑
i=1

σz
n

is a conserved charge:
[T (u), Sz ] = [HXXZ, S

z ] = 0. (17)

Thus the space of states is split into the sum over eigenvalues of Sz .

Define the pseudovacuums

|Ω±⟩ = v± ⊗ v± ⊗ . . .⊗ v±︸ ︷︷ ︸
N

. (18)

+ +

+ +

+ +

+ +

±

±

T (u)|Ω+⟩
Evidently,

Sz |Ω±⟩ = ±
N

2
|Ω±⟩, T (u)|Ω±⟩ = (aN (u) + bN (u))|Ω±⟩,

HXXZ |Ω±⟩ = −
N∆

2
|Ω±⟩.
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XXZ Heisenberg chain: pseudoparticles

States of fixed spin Sz = N/2− k are linear combinations of the states

|n1, . . . , nk⟩ = σ−
n1

. . . σ−
nk

|Ω+⟩, σ± =
σx ± iσy

2
. (19)

Consider k = 1. The state
|Ψ1(z)⟩ =

∑
n

zn|n⟩. (20)

is an eigenvector of the Hamiltonian,

HXXZ |Ψ1(z)⟩ =
(
−
N∆

2
+ ϵ(z)

)
|Ψ1(z)⟩, ϵ(z) = 2∆− z − z−1, (21)

if zN = 1. Three regimes:
∆ > 1: ϵ(z) > 0 ∀z. The states |Ω±⟩ are ground states. The excitation are
physical excitations (magnons).
∆ < −1: ϵ(z) < 0 ∀z. The states |Ω±⟩ are states of the highest energy. The
ground state corresponds to Sz = 0 or ± 1

2
, and excited states separated by an

energy gap.
−1 < ∆ < 1: ϵ(z) does not have definite sign. The ground state corresponds
to Sz = 0 or ± 1

2
. No energy gap.
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Six-vertex model: three regimes
1. Ferroelectric regime: ∆ > 0. Let a > b+ c. Ground configurations:
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On a large lattice any excitations have vanishing weight. ⇒ Frozen order.
2. Antiferroelectric regime: ∆ < −1, c > a+ b.
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The excitations have finite weight. ⇒ Nontrivial thermodynamics.
3. Disordered regime: |∆| < 1. No ground configurations. It turns out that this
regime is always critical.
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The excitations have finite weight. ⇒ Nontrivial thermodynamics.
3. Disordered regime: |∆| < 1. No ground configurations. It turns out that this
regime is always critical.
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Heisenberg chain: two-particle states

Consider the case k = 2. Let us search for an eigenstate in the form

|Ψ2(z1, z2)⟩ =
∑

n1<n2

(A12z
n1
1 zn2

2 +A21z
n1
2 zn2

1 )|n1, n2⟩. (22)

The action of the Hamiltonian moves ni by ±1. Thus, the action on the
contributions with n2 − n1 > 1 does not differ from the action on the one-particle
state. Hence, if the state is an eigenstate, we have

HXXZ |Ψ2(z1, z2)⟩ =
(
−
N∆

2
+ ϵ(z1) + ϵ(z2)

)
|Ψ2(z1, z2)⟩.

When is it the case? First, check the action on the terms with n2 − n1 = 1. We
obtain

A21

A12
= S(z1, z2) ≡ −

1 + z1z2 − 2∆z2

1 + z1z2 − 2∆z1
. (23)

Second, we have to impose the periodicity condition:

zN1 S(z1, z2) = 1, zN2 S(z2, z1) = 1. (24)
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Heisenberg chain: Bethe Ansatz

Consider general k. The Bethe Ansatz is

|Ψk(z1, . . . , zk)⟩ =
∑

n1<...<nk

∑
σ∈Sk

Aσ1...σk

k∏
j=1

z
nj
σj

|n1, . . . , nk⟩.

It is an eigenvector of the Hamiltonian, if (1)

A...ji.../A...ij... = S(zi, zj) (25)

and (2) the Bethe equations

zNi
∏

j, j ̸=i

S(zi, zj) = 1 (26)

are satisfied. The eigenvalue is given by

HXXZ |Ψk(z1, . . . , zk)⟩ =
(
−
N∆

2
+

k∑
i=1

ϵ(zi)

)
|Ψk(z1, . . . , zk)⟩, (27)

Next time we rederive the Bethe equations in a different way and solve them for
the ground state. We also will find the corresponding eigenvalue of the transfer
matrix.
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