Lecture 9
 Ice model and commuting transfer matrices

Ice model: configurations

The 'ice model' (is Oxygen, o is Hydrogen):

Ice model: configurations
The 'ice model' (is Oxygen, o is Hydrogen):

Each oxygen atom has two hydrogen atom next to it.

Ice model: configurations

The 'ice model' (is Oxygen, o is Hydrogen):

Each oxygen atom has two hydrogen atom next to it.

The 'ice model' (is Oxygen, o is Hydrogen):

Each oxygen atom has two hydrogen atom next to it. Small arrows on the right figure define the orientation of the lattice lines and vertices, which will be important later.

Ice model: Boltzmann weights

Six-vertex model: the Boltzmann weights are associated with vertices:

$$
Z=\sum_{\substack{\text { configu- vertices } \\ \text { rations }}} R_{\varepsilon_{1} \varepsilon_{2},}^{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}, \quad R_{\varepsilon_{1} \varepsilon_{2}}^{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}=\varepsilon_{2} \Vdash_{\downarrow}^{\varepsilon_{1}} \varepsilon_{2}^{\prime}, \quad \varepsilon_{1}^{\prime}+\varepsilon_{2}^{\prime}=\varepsilon_{1}+\varepsilon_{2}} \text { Ice condition }
$$

Six-vertex model: the Boltzmann weights are associated with vertices:

$$
Z=\sum_{\substack{\text { configu- vertices } \\ \text { rations }}} \prod_{\varepsilon_{1} \varepsilon_{2}}^{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}, \quad R_{\varepsilon_{1} \varepsilon_{2}}^{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}=\varepsilon_{2} \Vdash_{\varepsilon_{1}}^{\varepsilon_{1}^{\prime}} \varepsilon_{2}^{\prime}, \quad \varepsilon_{1}^{\prime}+\varepsilon_{2}^{\prime}=\varepsilon_{1}+\varepsilon_{2}
$$

We have six vertices

Six-vertex model: the Boltzmann weights are associated with vertices:

$$
Z=\sum_{\substack{\text { configu- vertices } \\ \text { rations }}} \prod_{\varepsilon_{1} \varepsilon_{2}}^{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}, \quad R_{\varepsilon_{1} \varepsilon_{2}}^{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}=\varepsilon_{2} \Vdash_{\varepsilon_{1}}^{\varepsilon_{1}^{\prime}} \varepsilon_{2}^{\prime}, \quad \varepsilon_{1}^{\prime}+\varepsilon_{2}^{\prime}=\varepsilon_{1}+\varepsilon_{2}
$$

We have six vertices

$$
\begin{aligned}
& R=\left(\begin{array}{cccc}
a & & & \\
& b & c & \\
& c^{\prime} & b^{\prime} & \\
& & & a^{\prime}
\end{array}\right) \text { in the basis }(++),(+-),(-+),(--) .
\end{aligned}
$$

The six-vertex model is solvable, if

$$
R_{-\varepsilon_{1}-\varepsilon_{2}}^{-\varepsilon_{1}^{\prime}-\varepsilon_{2}^{\prime}}=R_{\varepsilon_{1} \varepsilon_{2}}^{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}
$$

or

$$
a^{\prime}=a, \quad b^{\prime}=b \quad c^{\prime}=c .
$$

The six-vertex model is solvable, if

$$
R_{-\varepsilon_{1}-\varepsilon_{2}}^{-\varepsilon_{1}^{\prime}-\varepsilon_{2}^{\prime}}=R_{\varepsilon_{1} \varepsilon_{2}}^{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}
$$

or

$$
a^{\prime}=a, \quad b^{\prime}=b \quad c^{\prime}=c
$$

The transfer matrix

$$
\begin{equation*}
T_{\varepsilon_{1} \ldots \varepsilon_{N}}^{\varepsilon_{1}^{\prime} \ldots \varepsilon_{N}^{\prime}}=\sum_{\mu_{1} \ldots \mu_{N}} R_{\mu_{1} \varepsilon_{1}}^{\mu_{2} \varepsilon_{1}^{\prime}} R_{\mu_{2} \varepsilon_{2}}^{\mu_{3} \varepsilon_{2}^{\prime}} \ldots R_{\mu_{N} \varepsilon_{N}}^{\mu_{1} \varepsilon_{N}^{\prime}} \tag{1}
\end{equation*}
$$

The six-vertex model is solvable, if

$$
R_{-\varepsilon_{1}-\varepsilon_{2}}^{-\varepsilon_{1}^{\prime}-\varepsilon_{2}^{\prime}}=R_{\varepsilon_{1} \varepsilon_{2}}^{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}
$$

or

$$
a^{\prime}=a, \quad b^{\prime}=b \quad c^{\prime}=c
$$

The transfer matrix

$$
\begin{equation*}
T_{\varepsilon_{1} \ldots \varepsilon_{N}}^{\varepsilon_{1}^{\prime} \ldots \varepsilon_{N}^{\prime}}=\sum_{\mu_{1} \ldots \mu_{N}} R_{\mu_{1} \varepsilon_{1}}^{\mu_{2} \varepsilon_{1}^{\prime}} R_{\mu_{2} \varepsilon_{2}}^{\mu_{3} \varepsilon_{2}^{\prime}} \ldots R_{\mu_{N} \varepsilon_{N}}^{\mu_{1} \varepsilon_{N}^{\prime}} \tag{1}
\end{equation*}
$$

Let us consider the matrix R as an operator in the tensor product of two twodimensional spaces:

$$
R: \mathbb{C}^{2} \otimes \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \otimes \mathbb{C}^{2}, \quad v_{\varepsilon_{1}} \otimes v_{\varepsilon_{2}} \mapsto R_{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}^{\varepsilon_{1} \varepsilon_{2}} v_{\varepsilon_{1}^{\prime}} \otimes v_{\varepsilon_{2}^{\prime}}
$$

Here v_{ε} is the natural basis in $V=\mathbb{C}^{2}$.

The six-vertex model is solvable, if

$$
R_{-\varepsilon_{1}-\varepsilon_{2}}^{-\varepsilon_{1}^{\prime}-\varepsilon_{2}^{\prime}}=R_{\varepsilon_{1} \varepsilon_{2}}^{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}
$$

or

$$
a^{\prime}=a, \quad b^{\prime}=b \quad c^{\prime}=c
$$

The transfer matrix

$$
\begin{equation*}
T_{\varepsilon_{1} \ldots \varepsilon_{N}}^{\varepsilon_{1}^{\prime} \ldots \varepsilon_{N}^{\prime}}=\sum_{\mu_{1} \ldots \mu_{N}} R_{\mu_{1} \varepsilon_{1}}^{\mu_{2} \varepsilon_{1}^{\prime}} R_{\mu_{2} \varepsilon_{2}}^{\mu_{3} \varepsilon_{2}^{\prime}} \ldots R_{\mu_{N} \varepsilon_{N}}^{\mu_{1} \varepsilon_{N}^{\prime}} . \tag{1}
\end{equation*}
$$

Let us consider the matrix R as an operator in the tensor product of two twodimensional spaces:

$$
R: \mathbb{C}^{2} \otimes \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \otimes \mathbb{C}^{2}, \quad v_{\varepsilon_{1}} \otimes v_{\varepsilon_{2}} \mapsto R_{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}^{\varepsilon_{1} \varepsilon_{2}} v_{\varepsilon_{1}^{\prime}} \otimes v_{\varepsilon_{2}^{\prime}}
$$

Here v_{ε} is the natural basis in $V=\mathbb{C}^{2}$. Consider the tensor product
$V_{1} \otimes V_{2} \otimes \cdots \otimes V_{k}$ of identical spaces $V_{i} \simeq V$. Let $R_{i j}$ is the R matrix acting on $V_{i} \otimes V_{j}$.

The six-vertex model is solvable, if

$$
R_{-\varepsilon_{1}-\varepsilon_{2}}^{-\varepsilon_{1}^{\prime}-\varepsilon_{2}^{\prime}}=R_{\varepsilon_{1} \varepsilon_{2}}^{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}
$$

or

$$
a^{\prime}=a, \quad b^{\prime}=b \quad c^{\prime}=c
$$

The transfer matrix

$$
\begin{equation*}
T_{\varepsilon_{1} \ldots \varepsilon_{N}}^{\varepsilon_{1}^{\prime} \ldots \varepsilon_{N}^{\prime}}=\sum_{\mu_{1} \ldots \mu_{N}} R_{\mu_{1} \varepsilon_{1}}^{\mu_{2} \varepsilon_{1}^{\prime}} R_{\mu_{2} \varepsilon_{2}}^{\mu_{3} \varepsilon_{2}^{\prime}} \ldots R_{\mu_{N} \varepsilon_{N}}^{\mu_{1} \varepsilon_{N}^{\prime}} . \tag{1}
\end{equation*}
$$

Let us consider the matrix R as an operator in the tensor product of two twodimensional spaces:

$$
R: \mathbb{C}^{2} \otimes \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \otimes \mathbb{C}^{2}, \quad v_{\varepsilon_{1}} \otimes v_{\varepsilon_{2}} \mapsto R_{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}^{\varepsilon_{1} \varepsilon_{2}} v_{\varepsilon_{1}^{\prime}} \otimes v_{\varepsilon_{2}^{\prime}}
$$

Here v_{ε} is the natural basis in $V=\mathbb{C}^{2}$. Consider the tensor product
$V_{1} \otimes V_{2} \otimes \cdots \otimes V_{k}$ of identical spaces $V_{i} \simeq V$. Let $R_{i j}$ is the R matrix acting on $V_{i} \otimes V_{j}$.
Then the transfer matrix can be written as

$$
\begin{equation*}
T=\operatorname{tr}_{V_{0}}\left(R_{0 N} \ldots R_{02} R_{01}\right): V_{1} \otimes V_{2} \otimes \cdots \otimes V_{N} \rightarrow V_{1} \otimes V_{2} \otimes \cdots \otimes V_{N} \tag{2}
\end{equation*}
$$

The space $V_{1} \otimes \cdots \otimes V_{N}$ is called quantum space, while the space V_{0} is called auxiliary space.

The operator under the trace is

$$
\begin{equation*}
L=R_{0 N} \cdots R_{02} R_{01}: V_{0} \otimes V_{1} \otimes \cdots \otimes V_{N} \rightarrow V_{0} \otimes V_{1} \otimes \cdots \otimes V_{N} \tag{3}
\end{equation*}
$$

The operator under the trace is

$$
\begin{equation*}
L=R_{0 N} \ldots R_{02} R_{01}: V_{0} \otimes V_{1} \otimes \cdots \otimes V_{N} \rightarrow V_{0} \otimes V_{1} \otimes \cdots \otimes V_{N} \tag{3}
\end{equation*}
$$

We will consider it as an operator in the quantum space and a matrix in the auxiliary space

$$
L=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right), \quad A, B, C, D: V_{1} \otimes V_{2} \otimes \cdots \otimes V_{N} \rightarrow V_{1} \otimes V_{2} \otimes \cdots \otimes V_{N}
$$

The operator under the trace is

$$
\begin{equation*}
L=R_{0 N} \ldots R_{02} R_{01}: V_{0} \otimes V_{1} \otimes \cdots \otimes V_{N} \rightarrow V_{0} \otimes V_{1} \otimes \cdots \otimes V_{N} \tag{3}
\end{equation*}
$$

We will consider it as an operator in the quantum space and a matrix in the auxiliary space

$$
L=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right), \quad A, B, C, D: V_{1} \otimes V_{2} \otimes \cdots \otimes V_{N} \rightarrow V_{1} \otimes V_{2} \otimes \cdots \otimes V_{N}
$$

Then

$$
\begin{equation*}
T=\operatorname{tr}_{V_{0}} L=A+D \tag{4}
\end{equation*}
$$

Integrability demands the existence of extra commuting integrals of motion I_{n} :

$$
\left[T, I_{n}\right]=0, \quad\left[I_{m}, I_{n}\right]=0 .
$$

How to construct them?

Integrability demands the existence of extra commuting integrals of motion I_{n} :

$$
\left[T, I_{n}\right]=0, \quad\left[I_{m}, I_{n}\right]=0
$$

How to construct them?
Let use search for the operators $T^{\prime}=\operatorname{tr}_{V_{0}} L^{\prime}, L^{\prime}=R_{0 N}^{\prime} \ldots R_{02}^{\prime} R_{01}^{\prime}$ with some matrix R^{\prime}.

Integrability demands the existence of extra commuting integrals of motion I_{n} :

$$
\left[T, I_{n}\right]=0, \quad\left[I_{m}, I_{n}\right]=0
$$

How to construct them?
Let use search for the operators $T^{\prime}=\operatorname{tr}_{V_{0}} L^{\prime}, L^{\prime}=R_{0 N}^{\prime} \ldots R_{02}^{\prime} R_{01}^{\prime}$ with some matrix R^{\prime}.

Theorem

If there exist nondegenerate matrices $R^{\prime}, R^{\prime \prime}$ such that

$$
\begin{equation*}
R_{12}^{\prime \prime} R_{13}^{\prime} R_{23}=R_{23} R_{13}^{\prime} R_{12}^{\prime \prime} \tag{5}
\end{equation*}
$$

or, graphically

then

$$
\begin{equation*}
\left[T, T^{\prime}\right]=0 \tag{6}
\end{equation*}
$$

Commuting transfer matrices: a proof

A graphical proof:
$T^{\prime} T=$

Commuting transfer matrices: a proof

A graphical proof:
$T^{\prime} T=$

A more conventional proof is based on the relation

$$
R_{12}^{\prime \prime} L_{1}^{\prime} L_{2}=L_{2} L_{1}^{\prime} R_{12}^{\prime \prime}
$$

which is proved by induction.

Commuting transfer matrices: a proof

A graphical proof:
$T^{\prime} T=$

A more conventional proof is based on the relation

$$
R_{12}^{\prime \prime} L_{1}^{\prime} L_{2}=L_{2} L_{1}^{\prime} R_{12}^{\prime \prime}
$$

which is proved by induction. Then

$$
\begin{aligned}
T^{\prime} T & =\operatorname{tr}_{V_{1} \otimes V_{2}}\left(L_{1}^{\prime} L_{2}\right)=\operatorname{tr}_{V_{1} \otimes V_{2}}\left(\left(R_{12}^{\prime \prime}\right)^{-1} R_{12}^{\prime \prime} L_{1}^{\prime} L_{2}\right)=\operatorname{tr}_{V_{1} \otimes V_{2}}\left(\left(R_{12}^{\prime \prime}\right)^{-1} L_{2} L_{1}^{\prime} R_{12}^{\prime \prime}\right) \\
& =\operatorname{tr}_{V_{1} \otimes V_{2}}\left(R_{12}^{\prime \prime}\left(R_{12}^{\prime \prime}\right)^{-1} L_{2} L_{1}^{\prime}\right)=\operatorname{tr}_{V_{1} \otimes V_{2}}\left(L_{2} L_{1}^{\prime}\right)=T T^{\prime} .
\end{aligned}
$$

Yang-Baxter equation: solution for the six-vertex model

The solution can be found in the form

$$
\begin{align*}
R & =R\left(\lambda, u_{2}-u_{3}\right), \\
R^{\prime} & =R\left(\lambda, u_{1}-u_{3}\right), \tag{8}\\
R^{\prime \prime} & =R\left(\lambda, u_{1}-u_{2}\right)
\end{align*}
$$

with a given matrix-valued function $R(\lambda, u)$.

Yang-Baxter equation: solution for the six-vertex model

The solution can be found in the form

$$
\begin{align*}
R & =R\left(\lambda, u_{2}-u_{3}\right) \\
R^{\prime} & =R\left(\lambda, u_{1}-u_{3}\right) \tag{8}\\
R^{\prime \prime} & =R\left(\lambda, u_{1}-u_{2}\right)
\end{align*}
$$

with a given matrix-valued function $R(\lambda, u)$. Since the common factor of a, b, c is arbitrary, assume $a=1$. Trigonometric solution(s):

$$
\begin{aligned}
& b(u)=\frac{\sin u}{\sin (\lambda-u)}, \\
& b(u)=\frac{\operatorname{sh} u}{\operatorname{sh}(\lambda-u)}, \\
& c(u)=\frac{\sin \lambda}{\sin (\lambda-u)} \\
& c(u)=\frac{\operatorname{sh} \lambda}{\operatorname{sh}(\lambda-u)} \\
& (a<b+c, b<a+c, c<a+b) ; \\
& (c>a+b) \text {. }
\end{aligned}
$$

Yang-Baxter equation: solution for the six-vertex model

The solution can be found in the form

$$
\begin{align*}
R & =R\left(\lambda, u_{2}-u_{3}\right), \\
R^{\prime} & =R\left(\lambda, u_{1}-u_{3}\right), \tag{8}\\
R^{\prime \prime} & =R\left(\lambda, u_{1}-u_{2}\right)
\end{align*}
$$

with a given matrix-valued function $R(\lambda, u)$. Since the common factor of a, b, c is arbitrary, assume $a=1$. Trigonometric solution(s):

$$
\begin{array}{rlrl}
b(u) & =\frac{\sin u}{\sin (\lambda-u)}, & b(u) & =\frac{\operatorname{sh} u}{\operatorname{sh}(\lambda-u)}, \\
c(u) & =\frac{\sin \lambda}{\sin (\lambda-u)} & c(u) & =\frac{\operatorname{sh} \lambda}{\operatorname{sh}(\lambda-u)} \\
(a<b+c, b<a+c, c<a+b) ; & (c>a+b) .
\end{array}
$$

The cases $a>b+c$ and $b>a+c$ and not interesting from the thermodynamic point of view and will be discussed later.

Yang-Baxter equation: solution for the six-vertex model

The solution can be found in the form

$$
\begin{align*}
R & =R\left(\lambda, u_{2}-u_{3}\right) \\
R^{\prime} & =R\left(\lambda, u_{1}-u_{3}\right) \tag{8}\\
R^{\prime \prime} & =R\left(\lambda, u_{1}-u_{2}\right)
\end{align*}
$$

with a given matrix-valued function $R(\lambda, u)$. Since the common factor of a, b, c is arbitrary, assume $a=1$. Trigonometric solution(s):

$$
\begin{array}{rlrl}
b(u) & =\frac{\sin u}{\sin (\lambda-u)}, & b(u) & =\frac{\operatorname{sh} u}{\operatorname{sh}(\lambda-u)}, \\
c(u) & =\frac{\sin \lambda}{\sin (\lambda-u)} & c(u) & =\frac{\operatorname{sh} \lambda}{\operatorname{sh}(\lambda-u)} \\
(a<b+c, b<a+c, c<a+b) ; & (c>a+b) .
\end{array}
$$

The cases $a>b+c$ and $b>a+c$ and not interesting from the thermodynamic point of view and will be discussed later. The parameter λ is the same for $R, R^{\prime}, R^{\prime \prime}$ and can be expressed as

$$
\left.\begin{array}{c}
-\cos \lambda \tag{9}\\
-\operatorname{ch} \lambda
\end{array}\right\}=\Delta \equiv \frac{a^{2}+b^{2}-c^{2}}{2 a b}
$$

Yang-Baxter equation: solution for the six-vertex model

The solution can be found in the form

$$
\begin{align*}
R & =R\left(\lambda, u_{2}-u_{3}\right) \\
R^{\prime} & =R\left(\lambda, u_{1}-u_{3}\right) \tag{8}\\
R^{\prime \prime} & =R\left(\lambda, u_{1}-u_{2}\right)
\end{align*}
$$

with a given matrix-valued function $R(\lambda, u)$. Since the common factor of a, b, c is arbitrary, assume $a=1$. Trigonometric solution(s):

$$
\begin{array}{rlrl}
b(u) & =\frac{\sin u}{\sin (\lambda-u)}, & b(u) & =\frac{\operatorname{sh} u}{\operatorname{sh}(\lambda-u)}, \\
c(u) & =\frac{\sin \lambda}{\sin (\lambda-u)} & c(u) & =\frac{\operatorname{sh} \lambda}{\operatorname{sh}(\lambda-u)} \\
(a<b+c, b<a+c, c<a+b) ; & (c>a+b) .
\end{array}
$$

The cases $a>b+c$ and $b>a+c$ and not interesting from the thermodynamic point of view and will be discussed later. The parameter λ is the same for $R, R^{\prime}, R^{\prime \prime}$ and can be expressed as

$$
\left.\begin{array}{c}
-\cos \lambda \tag{9}\\
-\operatorname{ch} \lambda
\end{array}\right\}=\Delta \equiv \frac{a^{2}+b^{2}-c^{2}}{2 a b}
$$

Thus we will omit the parameter λ from now on:

$$
R(u) \equiv R(\lambda, u), a(u) \equiv a(\lambda, u) \text { etc. }
$$

Yang-Baxter equation: spectral parameter

The spectral parameters can be associated to lines:

Yang-Baxter equation: spectral parameter

The spectral parameters can be associated to lines:

This R matrix is the solution to the Yang-Baxter equation in the form

$$
\begin{align*}
R_{12}\left(\lambda, u_{1}-u_{2}\right) R_{13}(\lambda, & \left.u_{1}-u_{3}\right) R_{23}\left(\lambda, u_{2}-u_{3}\right) \\
& =R_{23}\left(\lambda, u_{2}-u_{3}\right) R_{13}\left(\lambda, u_{1}-u_{3}\right) R_{12}\left(\lambda, u_{1}-u_{2}\right) \tag{10}
\end{align*}
$$

Graphically:

Yang-Baxter equation: spectral parameter

The spectral parameters can be associated to lines:

This R matrix is the solution to the Yang-Baxter equation in the form

$$
\begin{align*}
R_{12}\left(\lambda, u_{1}-u_{2}\right) R_{13}(\lambda, & \left.u_{1}-u_{3}\right) R_{23}\left(\lambda, u_{2}-u_{3}\right) \\
& =R_{23}\left(\lambda, u_{2}-u_{3}\right) R_{13}\left(\lambda, u_{1}-u_{3}\right) R_{12}\left(\lambda, u_{1}-u_{2}\right) \tag{10}
\end{align*}
$$

Graphically:

Besides, the R matrix satisfy the relations

$$
\begin{equation*}
b(u) R(\lambda-u)_{\varepsilon_{1} \varepsilon_{2}}^{\varepsilon_{3} \varepsilon_{4}}=R(u)_{\varepsilon_{4}-\varepsilon_{1}}^{\varepsilon_{2}-\varepsilon_{3}}, \quad R_{12}(u) R_{21}(-u)=1, \quad R(0)=P=\int . \tag{11}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left[T(u), T\left(u^{\prime}\right)\right]=0 \quad \forall u, u^{\prime} \tag{12}
\end{equation*}
$$

But not all the integrals of motion $T(u)$ are independent.

We have

$$
\begin{equation*}
\left[T(u), T\left(u^{\prime}\right)\right]=0 \quad \forall u, u^{\prime} \tag{12}
\end{equation*}
$$

But not all the integrals of motion $T(u)$ are independent. First of all, $T(0)$ is nothing but the shift operator:

We have

$$
\begin{equation*}
\left[T(u), T\left(u^{\prime}\right)\right]=0 \quad \forall u, u^{\prime} \tag{12}
\end{equation*}
$$

But not all the integrals of motion $T(u)$ are independent.
First of all, $T(0)$ is nothing but the shift operator:

Then decompose the product $T^{-1}(0) T(u)$ in u :

$$
\begin{equation*}
T^{-1}(0) T(u)=1-\sum_{n=1}^{\infty} \frac{H_{n} u^{n}}{n!} \tag{14}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left[T(u), T\left(u^{\prime}\right)\right]=0 \quad \forall u, u^{\prime} \tag{12}
\end{equation*}
$$

But not all the integrals of motion $T(u)$ are independent.
First of all, $T(0)$ is nothing but the shift operator:

Then decompose the product $T^{-1}(0) T(u)$ in u :

$$
\begin{equation*}
T^{-1}(0) T(u)=1-\sum_{n=1}^{\infty} \frac{H_{n} u^{n}}{n!} \tag{14}
\end{equation*}
$$

Hamiltonians H_{n} commute with $T(u)$ and mutually commute:

$$
\begin{equation*}
\left[T(0), H_{n}\right]=\left[H_{m}, H_{n}\right]=0 \quad \forall m, n . \tag{15}
\end{equation*}
$$

The set $T(0), H_{1}, \ldots, H_{N-1}$ form a set of independent integrals of motion.

We have

$$
\begin{equation*}
\left[T(u), T\left(u^{\prime}\right)\right]=0 \quad \forall u, u^{\prime} . \tag{12}
\end{equation*}
$$

But not all the integrals of motion $T(u)$ are independent.
First of all, $T(0)$ is nothing but the shift operator:

Then decompose the product $T^{-1}(0) T(u)$ in u :

$$
\begin{equation*}
T^{-1}(0) T(u)=1-\sum_{n=1}^{\infty} \frac{H_{n} u^{n}}{n!} \tag{14}
\end{equation*}
$$

Hamiltonians H_{n} commute with $T(u)$ and mutually commute:

$$
\begin{equation*}
\left[T(0), H_{n}\right]=\left[H_{m}, H_{n}\right]=0 \quad \forall m, n . \tag{15}
\end{equation*}
$$

The set $T(0), H_{1}, \ldots, H_{N-1}$ form a set of independent integrals of motion.
Operators H_{n} are local in the sense that each of them is a sum of term, which involves a finite number $(n+1)$ of neighboring nodes.

Let us find the Hamiltonian H_{1} explicitly:
$-H_{1}=T^{-1}(0) T^{\prime}(0)=$

$=\sum_{n=1}^{N} \check{R}_{n, n+1}^{\prime}(0)$,

Let us find the Hamiltonian H_{1} explicitly:

$$
-H_{1}=T^{-1}(0) T^{\prime}(0)=
$$

$$
=\sum_{n=1}^{N} \check{R}_{n, n+1}^{\prime}(0)
$$

where

$$
\begin{aligned}
\check{R}(u) & =P R(u)=\left(\begin{array}{cccc}
a(u) & & & \\
& c(u) & b(u) & \\
& b(u) & c(u) & \\
& & a(u)
\end{array}\right)=1+\frac{u}{\sin \lambda}\left(\begin{array}{cccc}
0 & & & \\
& \cos \lambda & 1 & \\
& 1 & \cos \lambda & \\
& & & 0
\end{array}\right)+O\left(u^{2}\right) \\
& =1-\frac{u}{\sin \lambda}\left(h-\frac{\cos \lambda}{2}\right)+O\left(u^{2}\right),
\end{aligned}
$$

Here

$$
h=-\frac{1}{2}\left(\sigma^{x} \otimes \sigma^{x}+\sigma^{y} \otimes \sigma^{y}-\cos \lambda \sigma^{z} \otimes \sigma^{z}\right)
$$

Hence

$$
H_{1} \sin \lambda=H_{\mathrm{XXZ}}+\frac{N \Delta}{2}
$$

where H_{XXZ} is the Hamiltonian of the XXZ Heisenberg chain:

$$
\begin{equation*}
H_{\mathrm{XXZ}}=-\frac{1}{2} \sum_{n=1}^{N}\left(\sigma_{n}^{x} \sigma_{n+1}^{x}+\sigma_{n}^{y} \sigma_{n+1}^{y}+\Delta \sigma_{n}^{z} \sigma_{n+1}^{z}\right) \tag{16}
\end{equation*}
$$

with Δ given by (9):

$$
\Delta=\frac{a^{2}+b^{2}-c^{2}}{2 a b}=\left\{\begin{array}{l}
-\cos \lambda \\
-\operatorname{ch} \lambda
\end{array} .\right.
$$

Due to the ice condition the z component of total spin

$$
S^{z}=\frac{1}{2} \sum_{i=1}^{N} \sigma_{n}^{z}
$$

is a conserved charge:

$$
\begin{equation*}
\left[T(u), S^{z}\right]=\left[H_{\mathrm{XXZ}}, S^{z}\right]=0 . \tag{17}
\end{equation*}
$$

Thus the space of states is split into the sum over eigenvalues of S^{z}.

Due to the ice condition the z component of total spin

$$
S^{z}=\frac{1}{2} \sum_{i=1}^{N} \sigma_{n}^{z}
$$

is a conserved charge:

$$
\begin{equation*}
\left[T(u), S^{z}\right]=\left[H_{\mathrm{XXZ}}, S^{z}\right]=0 . \tag{17}
\end{equation*}
$$

Thus the space of states is split into the sum over eigenvalues of S^{z}.
Define the pseudovacuums

$$
\begin{equation*}
\left|\Omega_{ \pm}\right\rangle=\underbrace{v_{ \pm} \otimes v_{ \pm} \otimes \ldots \otimes v_{ \pm}}_{N} . \tag{18}
\end{equation*}
$$

Due to the ice condition the z component of total spin

$$
S^{z}=\frac{1}{2} \sum_{i=1}^{N} \sigma_{n}^{z}
$$

is a conserved charge:

$$
\begin{equation*}
\left[T(u), S^{z}\right]=\left[H_{\mathrm{XXZ}}, S^{z}\right]=0 . \tag{17}
\end{equation*}
$$

Thus the space of states is split into the sum over eigenvalues of S^{z}.
Define the pseudovacuums

$$
\begin{equation*}
\left|\Omega_{ \pm}\right\rangle=\underbrace{v_{ \pm} \otimes v_{ \pm} \otimes \ldots \otimes v_{ \pm}}_{N} \tag{18}
\end{equation*}
$$

States of fixed spin $S^{z}=N / 2-k$ are linear combinations of the states

$$
\begin{equation*}
\left|n_{1}, \ldots, n_{k}\right\rangle=\sigma_{n_{1}}^{-} \ldots \sigma_{n_{k}}^{-}\left|\Omega_{+}\right\rangle, \quad \sigma^{ \pm}=\frac{\sigma^{x} \pm i \sigma^{y}}{2} \tag{19}
\end{equation*}
$$

States of fixed spin $S^{z}=N / 2-k$ are linear combinations of the states

$$
\begin{equation*}
\left|n_{1}, \ldots, n_{k}\right\rangle=\sigma_{n_{1}}^{-} \ldots \sigma_{n_{k}}^{-}\left|\Omega_{+}\right\rangle, \quad \sigma^{ \pm}=\frac{\sigma^{x} \pm i \sigma^{y}}{2} \tag{19}
\end{equation*}
$$

Consider $k=1$. The state

$$
\begin{equation*}
\left|\Psi_{1}(z)\right\rangle=\sum_{n} z^{n}|n\rangle . \tag{20}
\end{equation*}
$$

States of fixed spin $S^{z}=N / 2-k$ are linear combinations of the states

$$
\begin{equation*}
\left|n_{1}, \ldots, n_{k}\right\rangle=\sigma_{n_{1}}^{-} \ldots \sigma_{n_{k}}^{-}\left|\Omega_{+}\right\rangle, \quad \sigma^{ \pm}=\frac{\sigma^{x} \pm i \sigma^{y}}{2} \tag{19}
\end{equation*}
$$

Consider $k=1$. The state

$$
\begin{equation*}
\left|\Psi_{1}(z)\right\rangle=\sum_{n} z^{n}|n\rangle . \tag{20}
\end{equation*}
$$

is an eigenvector of the Hamiltonian,

$$
\begin{equation*}
H_{X X Z}\left|\Psi_{1}(z)\right\rangle=\left(-\frac{N \Delta}{2}+\epsilon(z)\right)\left|\Psi_{1}(z)\right\rangle, \quad \epsilon(z)=2 \Delta-z-z^{-1} \tag{21}
\end{equation*}
$$

if $z^{N}=1$.

States of fixed spin $S^{z}=N / 2-k$ are linear combinations of the states

$$
\begin{equation*}
\left|n_{1}, \ldots, n_{k}\right\rangle=\sigma_{n_{1}}^{-} \ldots \sigma_{n_{k}}^{-}\left|\Omega_{+}\right\rangle, \quad \sigma^{ \pm}=\frac{\sigma^{x} \pm i \sigma^{y}}{2} \tag{19}
\end{equation*}
$$

Consider $k=1$. The state

$$
\begin{equation*}
\left|\Psi_{1}(z)\right\rangle=\sum_{n} z^{n}|n\rangle . \tag{20}
\end{equation*}
$$

is an eigenvector of the Hamiltonian,

$$
\begin{equation*}
H_{X X Z}\left|\Psi_{1}(z)\right\rangle=\left(-\frac{N \Delta}{2}+\epsilon(z)\right)\left|\Psi_{1}(z)\right\rangle, \quad \epsilon(z)=2 \Delta-z-z^{-1} \tag{21}
\end{equation*}
$$

if $z^{N}=1$. Three regimes:

- $\Delta>1: \epsilon(z)>0 \forall z$. The states $\left|\Omega_{ \pm}\right\rangle$are ground states. The excitation are physical excitations (magnons).

States of fixed spin $S^{z}=N / 2-k$ are linear combinations of the states

$$
\begin{equation*}
\left|n_{1}, \ldots, n_{k}\right\rangle=\sigma_{n_{1}}^{-} \ldots \sigma_{n_{k}}^{-}\left|\Omega_{+}\right\rangle, \quad \sigma^{ \pm}=\frac{\sigma^{x} \pm i \sigma^{y}}{2} \tag{19}
\end{equation*}
$$

Consider $k=1$. The state

$$
\begin{equation*}
\left|\Psi_{1}(z)\right\rangle=\sum_{n} z^{n}|n\rangle . \tag{20}
\end{equation*}
$$

is an eigenvector of the Hamiltonian,

$$
\begin{equation*}
H_{X X Z}\left|\Psi_{1}(z)\right\rangle=\left(-\frac{N \Delta}{2}+\epsilon(z)\right)\left|\Psi_{1}(z)\right\rangle, \quad \epsilon(z)=2 \Delta-z-z^{-1} \tag{21}
\end{equation*}
$$

if $z^{N}=1$. Three regimes:

- $\Delta>1: \epsilon(z)>0 \forall z$. The states $\left|\Omega_{ \pm}\right\rangle$are ground states. The excitation are physical excitations (magnons).
- $\Delta<-1$: $\epsilon(z)<0 \forall z$. The states $\left|\Omega_{ \pm}\right\rangle$are states of the highest energy. The ground state corresponds to $S^{z}=0$ or $\pm \frac{1}{2}$, and excited states separated by an energy gap.

States of fixed spin $S^{z}=N / 2-k$ are linear combinations of the states

$$
\begin{equation*}
\left|n_{1}, \ldots, n_{k}\right\rangle=\sigma_{n_{1}}^{-} \ldots \sigma_{n_{k}}^{-}\left|\Omega_{+}\right\rangle, \quad \sigma^{ \pm}=\frac{\sigma^{x} \pm i \sigma^{y}}{2} \tag{19}
\end{equation*}
$$

Consider $k=1$. The state

$$
\begin{equation*}
\left|\Psi_{1}(z)\right\rangle=\sum_{n} z^{n}|n\rangle . \tag{20}
\end{equation*}
$$

is an eigenvector of the Hamiltonian,

$$
\begin{equation*}
H_{X X Z}\left|\Psi_{1}(z)\right\rangle=\left(-\frac{N \Delta}{2}+\epsilon(z)\right)\left|\Psi_{1}(z)\right\rangle, \quad \epsilon(z)=2 \Delta-z-z^{-1} \tag{21}
\end{equation*}
$$

if $z^{N}=1$. Three regimes:

- $\Delta>1: \epsilon(z)>0 \forall z$. The states $\left|\Omega_{ \pm}\right\rangle$are ground states. The excitation are physical excitations (magnons).
- $\Delta<-1$: $\epsilon(z)<0 \forall z$. The states $\left|\Omega_{ \pm}\right\rangle$are states of the highest energy. The ground state corresponds to $S^{z}=0$ or $\pm \frac{1}{2}$, and excited states separated by an energy gap.
- $-1<\Delta<1$: $\epsilon(z)$ does not have definite sign. The ground state corresponds to $S^{z}=0$ or $\pm \frac{1}{2}$. No energy gap.

States of fixed spin $S^{z}=N / 2-k$ are linear combinations of the states

$$
\begin{equation*}
\left|n_{1}, \ldots, n_{k}\right\rangle=\sigma_{n_{1}}^{-} \ldots \sigma_{n_{k}}^{-}\left|\Omega_{+}\right\rangle, \quad \sigma^{ \pm}=\frac{\sigma^{x} \pm i \sigma^{y}}{2} \tag{19}
\end{equation*}
$$

Consider $k=1$. The state

$$
\begin{equation*}
\left|\Psi_{1}(z)\right\rangle=\sum_{n} z^{n}|n\rangle . \tag{20}
\end{equation*}
$$

is an eigenvector of the Hamiltonian,

$$
\begin{equation*}
H_{X X Z}\left|\Psi_{1}(z)\right\rangle=\left(-\frac{N \Delta}{2}+\epsilon(z)\right)\left|\Psi_{1}(z)\right\rangle, \quad \epsilon(z)=2 \Delta-z-z^{-1} \tag{21}
\end{equation*}
$$

if $z^{N}=1$. Three regimes:

- $\Delta>1: \epsilon(z)>0 \forall z$. The states $\left|\Omega_{ \pm}\right\rangle$are ground states. The excitation are physical excitations (magnons).
- $\Delta<-1$: $\epsilon(z)<0 \forall z$. The states $\left|\Omega_{ \pm}\right\rangle$are states of the highest energy. The ground state corresponds to $S^{z}=0$ or $\pm \frac{1}{2}$, and excited states separated by an energy gap.
- $-1<\Delta<1$: $\epsilon(z)$ does not have definite sign. The ground state corresponds to $S^{z}=0$ or $\pm \frac{1}{2}$. No energy gap.

1. Ferroelectric regime: $\Delta>0$. Let $a>b+c$. Ground configurations:

2. Ferroelectric regime: $\Delta>0$. Let $a>b+c$. Excitations?

3. Ferroelectric regime: $\Delta>0$. Let $a>b+c$. Excitations:

4. Ferroelectric regime: $\Delta>0$. Let $a>b+c$. Excitations:

On a large lattice any excitations have vanishing weight. \Rightarrow Frozen order.

1. Ferroelectric regime: $\Delta>0$. Let $a>b+c$. Excitations:

On a large lattice any excitations have vanishing weight. \Rightarrow Frozen order.
2. Antiferroelectric regime: $\Delta<-1, c>a+b$. Ground configurations:

1. Ferroelectric regime: $\Delta>0$. Let $a>b+c$. Excitations:

On a large lattice any excitations have vanishing weight. \Rightarrow Frozen order.
2. Antiferroelectric regime: $\Delta<-1, c>a+b$. Excitations?

1. Ferroelectric regime: $\Delta>0$. Let $a>b+c$. Excitations:

On a large lattice any excitations have vanishing weight. \Rightarrow Frozen order.
2. Antiferroelectric regime: $\Delta<-1, c>a+b$. Excitations:

1. Ferroelectric regime: $\Delta>0$. Let $a>b+c$. Excitations:

On a large lattice any excitations have vanishing weight. \Rightarrow Frozen order.
2. Antiferroelectric regime: $\Delta<-1, c>a+b$. Excitations:

The excitations have finite weight. \Rightarrow Nontrivial thermodynamics.

1. Ferroelectric regime: $\Delta>0$. Let $a>b+c$. Excitations:

On a large lattice any excitations have vanishing weight. \Rightarrow Frozen order.
2. Antiferroelectric regime: $\Delta<-1, c>a+b$. Excitations:

The excitations have finite weight. \Rightarrow Nontrivial thermodynamics.
3. Disordered regime: $|\Delta|<1$. No ground configurations. It turns out that this regime is always critical.

Consider the case $k=2$. Let us search for an eigenstate in the form

$$
\begin{equation*}
\left|\Psi_{2}\left(z_{1}, z_{2}\right)\right\rangle=\sum_{n_{1}<n_{2}}\left(A_{12} z_{1}^{n_{1}} z_{2}^{n_{2}}+A_{21} z_{2}^{n_{1}} z_{1}^{n_{2}}\right)\left|n_{1}, n_{2}\right\rangle \tag{22}
\end{equation*}
$$

Consider the case $k=2$. Let us search for an eigenstate in the form

$$
\begin{equation*}
\left|\Psi_{2}\left(z_{1}, z_{2}\right)\right\rangle=\sum_{n_{1}<n_{2}}\left(A_{12} z_{1}^{n_{1}} z_{2}^{n_{2}}+A_{21} z_{2}^{n_{1}} z_{1}^{n_{2}}\right)\left|n_{1}, n_{2}\right\rangle \tag{22}
\end{equation*}
$$

The action of the Hamiltonian moves n_{i} by ± 1. Thus, the action on the contributions with $n_{2}-n_{1}>1$ does not differ from the action on the one-particle state. Hence, if the state is an eigenstate, we have

$$
H_{X X Z}\left|\Psi_{2}\left(z_{1}, z_{2}\right)\right\rangle=\left(-\frac{N \Delta}{2}+\epsilon\left(z_{1}\right)+\epsilon\left(z_{2}\right)\right)\left|\Psi_{2}\left(z_{1}, z_{2}\right)\right\rangle
$$

Consider the case $k=2$. Let us search for an eigenstate in the form

$$
\begin{equation*}
\left|\Psi_{2}\left(z_{1}, z_{2}\right)\right\rangle=\sum_{n_{1}<n_{2}}\left(A_{12} z_{1}^{n_{1}} z_{2}^{n_{2}}+A_{21} z_{2}^{n_{1}} z_{1}^{n_{2}}\right)\left|n_{1}, n_{2}\right\rangle \tag{22}
\end{equation*}
$$

The action of the Hamiltonian moves n_{i} by ± 1. Thus, the action on the contributions with $n_{2}-n_{1}>1$ does not differ from the action on the one-particle state. Hence, if the state is an eigenstate, we have

$$
H_{X X Z}\left|\Psi_{2}\left(z_{1}, z_{2}\right)\right\rangle=\left(-\frac{N \Delta}{2}+\epsilon\left(z_{1}\right)+\epsilon\left(z_{2}\right)\right)\left|\Psi_{2}\left(z_{1}, z_{2}\right)\right\rangle
$$

When is it the case? First, check the action on the terms with $n_{2}-n_{1}=1$. We obtain

$$
\begin{equation*}
\frac{A_{21}}{A_{12}}=S\left(z_{1}, z_{2}\right) \equiv-\frac{1+z_{1} z_{2}-2 \Delta z_{2}}{1+z_{1} z_{2}-2 \Delta z_{1}} . \tag{23}
\end{equation*}
$$

Consider the case $k=2$. Let us search for an eigenstate in the form

$$
\begin{equation*}
\left|\Psi_{2}\left(z_{1}, z_{2}\right)\right\rangle=\sum_{n_{1}<n_{2}}\left(A_{12} z_{1}^{n_{1}} z_{2}^{n_{2}}+A_{21} z_{2}^{n_{1}} z_{1}^{n_{2}}\right)\left|n_{1}, n_{2}\right\rangle \tag{22}
\end{equation*}
$$

The action of the Hamiltonian moves n_{i} by ± 1. Thus, the action on the contributions with $n_{2}-n_{1}>1$ does not differ from the action on the one-particle state. Hence, if the state is an eigenstate, we have

$$
H_{X X Z}\left|\Psi_{2}\left(z_{1}, z_{2}\right)\right\rangle=\left(-\frac{N \Delta}{2}+\epsilon\left(z_{1}\right)+\epsilon\left(z_{2}\right)\right)\left|\Psi_{2}\left(z_{1}, z_{2}\right)\right\rangle
$$

When is it the case? First, check the action on the terms with $n_{2}-n_{1}=1$. We obtain

$$
\begin{equation*}
\frac{A_{21}}{A_{12}}=S\left(z_{1}, z_{2}\right) \equiv-\frac{1+z_{1} z_{2}-2 \Delta z_{2}}{1+z_{1} z_{2}-2 \Delta z_{1}} . \tag{23}
\end{equation*}
$$

Second, we have to impose the periodicity condition:

$$
\begin{equation*}
z_{1}^{N} S\left(z_{1}, z_{2}\right)=1, \quad z_{2}^{N} S\left(z_{2}, z_{1}\right)=1 \tag{24}
\end{equation*}
$$

Consider general k. The Bethe Ansatz is

Consider general k. The Bethe Ansatz is

$$
\left|\Psi_{k}\left(z_{1}, \ldots, z_{k}\right)\right\rangle=\sum_{n_{1}<\ldots<n_{k}} \sum_{\sigma \in S_{k}} A_{\sigma_{1} \ldots \sigma_{k}} \prod_{j=1}^{k} z_{\sigma_{j}}^{n_{j}}\left|n_{1}, \ldots, n_{k}\right\rangle
$$

It is an eigenvector of the Hamiltonian, if (1)

$$
\begin{equation*}
A_{\ldots j i \ldots} / A_{\ldots i j \ldots}=S\left(z_{i}, z_{j}\right) \tag{25}
\end{equation*}
$$

Consider general k. The Bethe Ansatz is

$$
\left|\Psi_{k}\left(z_{1}, \ldots, z_{k}\right)\right\rangle=\sum_{n_{1}<\ldots<n_{k}} \sum_{\sigma \in S_{k}} A_{\sigma_{1} \ldots \sigma_{k}} \prod_{j=1}^{k} z_{\sigma_{j}}^{n_{j}}\left|n_{1}, \ldots, n_{k}\right\rangle
$$

It is an eigenvector of the Hamiltonian, if (1)

$$
\begin{equation*}
A_{\ldots j i \ldots} / A_{\ldots i j \ldots}=S\left(z_{i}, z_{j}\right) \tag{25}
\end{equation*}
$$

and (2) the Bethe equations

$$
\begin{equation*}
z_{i}^{N} \prod_{j, j \neq i} S\left(z_{i}, z_{j}\right)=1 \tag{26}
\end{equation*}
$$

are satisfied.

Consider general k. The Bethe Ansatz is

$$
\left|\Psi_{k}\left(z_{1}, \ldots, z_{k}\right)\right\rangle=\sum_{n_{1}<\ldots<n_{k}} \sum_{\sigma \in S_{k}} A_{\sigma_{1} \ldots \sigma_{k}} \prod_{j=1}^{k} z_{\sigma_{j}}^{n_{j}}\left|n_{1}, \ldots, n_{k}\right\rangle
$$

It is an eigenvector of the Hamiltonian, if (1)

$$
\begin{equation*}
A_{\ldots j i \ldots} / A_{\ldots i j \ldots}=S\left(z_{i}, z_{j}\right) \tag{25}
\end{equation*}
$$

and (2) the Bethe equations

$$
\begin{equation*}
z_{i}^{N} \prod_{j, j \neq i} S\left(z_{i}, z_{j}\right)=1 \tag{26}
\end{equation*}
$$

are satisfied. The eigenvalue is given by

$$
\begin{equation*}
H_{X X Z}\left|\Psi_{k}\left(z_{1}, \ldots, z_{k}\right)\right\rangle=\left(-\frac{N \Delta}{2}+\sum_{i=1}^{k} \epsilon\left(z_{i}\right)\right)\left|\Psi_{k}\left(z_{1}, \ldots, z_{k}\right)\right\rangle, \tag{27}
\end{equation*}
$$

Consider general k. The Bethe Ansatz is

$$
\left|\Psi_{k}\left(z_{1}, \ldots, z_{k}\right)\right\rangle=\sum_{n_{1}<\ldots<n_{k}} \sum_{\sigma \in S_{k}} A_{\sigma_{1} \ldots \sigma_{k}} \prod_{j=1}^{k} z_{\sigma_{j}}^{n_{j}}\left|n_{1}, \ldots, n_{k}\right\rangle .
$$

It is an eigenvector of the Hamiltonian, if (1)

$$
\begin{equation*}
A_{\ldots j i \ldots} / A_{\ldots i j \ldots}=S\left(z_{i}, z_{j}\right) \tag{25}
\end{equation*}
$$

and (2) the Bethe equations

$$
\begin{equation*}
z_{i}^{N} \prod_{j, j \neq i} S\left(z_{i}, z_{j}\right)=1 \tag{26}
\end{equation*}
$$

are satisfied. The eigenvalue is given by

$$
\begin{equation*}
H_{X X Z}\left|\Psi_{k}\left(z_{1}, \ldots, z_{k}\right)\right\rangle=\left(-\frac{N \Delta}{2}+\sum_{i=1}^{k} \epsilon\left(z_{i}\right)\right)\left|\Psi_{k}\left(z_{1}, \ldots, z_{k}\right)\right\rangle, \tag{27}
\end{equation*}
$$

Next time we rederive the Bethe equations in a different way and solve them for the ground state. We also will find the corresponding eigenvalue of the transfer matrix.

