
Lecture 9
Ice model and commuting transfer matrices

Consider another model of the classical statistical mechanics — the six-vertex model or the ice model.
Let “spins” ε = ± live on the edges of the square lattice, while the interaction takes place at the vertices.
Namely, to each configuration of spins around the top

ε2 ε4

ε1

ε3

let us put in correspondence a Boltzmann weight Rε3ε4
ε1ε2 . Here the arrows indicate the orientation of the

lattice.
A configuration C is the set of values of spins on all edges of the lattice. The weight of a configuration

W (C) is the product of the Boltzmann weights at all vertices of the lattice. The ground configuration is the
configuration of the greatest weight. The partition function is the sum of the weights over all configurations
Z =

∑
C W (C). The six-vertex model is the model, in which weights are not equal to zero only under the

condition
ε1 + ε2 = ε3 + ε4, (1)

and the weights are invariant with respect to the inversion of all spins:

R−ε3 −ε4
−ε1 −ε2 = Rε3ε4

ε1ε2 . (2)

So, around each vertex any of the following six configurations is allowed

a = + +

+

+

= − −

−

−

b = − −

+

+

= + +

−

−

c = − +

+

−

= + −

−

+

In this case, the matrix R can be written as

R =


a

b c
c b

a

 . (3)

Consider a lattice model of size M ×N with the cyclic boundary conditions and introduce a column transfer
matrix

T
ε′1...ε

′
N

ε1...εN =
∑

µ1...µN

R
µ2ε′1
µ1ε1R

µ3ε′2
µ2ε2 . . . R

µ1ε′N
µNεN . (4)

It is convenient to consider the matrix R as an operator on the tensor product of two two-dimensional spaces:

R : C2 ⊗C2 → C2 ⊗C2, vε1 ⊗ vε2 7→ Rε1ε2
ε′1ε

′
2
vε′1 ⊗ vε′2 .
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Here vε is the natural basis in the space V = C2. If there is a product of identical spaces, say, V1⊗V2⊗. . .⊗Vk,
then by Rij we will denote the operator acting on the product Vi ⊗ Vj as R, and on all other Vl as the unit
operator. Then the transfer matrix can be written compactly in the form

T = trV0(R0N . . . R02R01). (5)

The operator under the trace sign deserves a separate notation

L = R0N . . . R02R01 =

(
A B
C D

)
(6)

and is called the monodromy operator. Evidently

T = A+D. (7)

The space V1 ⊗ . . . ⊗ VN is called the quantum space, and the space V0 is called the auxiliary space. The
operator L is usually considered as an operator in a quantum space and as a matrix in an auxiliary space.
The matrix elements A, . . . ,D act as operators in the quantum space.

The solution to the problem of calculating the partition function of the six-vertex model reduces to the
problem of finding the eigenvalues of the transfer matrix. When could this type of problem be solvable for
sure? This is essentially a question of the quantum integrability of a model. We do not know exactly what
quantum integrability is, but in classical mechanics a model is integrable when it has a sufficient number of
integrals of motion in involution. Therefore, we would like to have a sufficient number of operators commuting
with the transfer matrix and with each other. Suppose that such integrals again have the form of a transfer
matrix T ′ with some other matrix R′ of the form (3). So, let there be operators T and T ′ of the form (5) with
the R-matrices of the form (3). When do they commute? A sufficient (although not necessary) condition
can be formulated as follows. The operators T and T ′ are commuting when there is an invertible matrix R′′

of the form (3) such that
R′′

12R
′
13R23 = R23R

′
13R

′′
12. (8)

Graphically, it looks like this:

R R′

R′′

=

RR′

R′′
(8′)

This relation is called the Yang–Baxter equation.
The commutativity of the transfer matrices T and T ′ subject to the condition (8) is easily proved graph-

ically (cyclic conditions on vertical lines are implied):

T ′T =

L L′

=

R′′−1

R′′

L L′

=

R′′−1

R′′

=

R′′−1

R′′
=

L′ L

R′′−1

R′′

=

R′′

R′′−1

L′ L

=

L′ L

= TT ′.

In the form of formulas, the proof is written as follows. From the Yang–Baxter equation it follows that

R′′
12L

′
1L2 = L2L

′
1R

′′
12,

where the operators L′
1 and L2 act on the same quantum space, but have different auxiliary spaces V1 and V2.

Then
T ′T = trV1⊗V2(L

′
1L2) = trV1⊗V2((R

′′
12)

−1R′′
12L

′
1L2) = trV1⊗V2((R

′′
12)

−1L2L
′
1R

′′
12)

= trV1⊗V2(R
′′
12(R

′′
12)

−1L2L
′
1) = trV1⊗V2(L2L

′
1) = TT ′.
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Now it is necessary to solve the Yang–Baxter equation. We will not derive the solution sequentially, but
only give the answer. It is clear that the normalization of the R-matrices is not important, therefore the
R-matrices can be parameterized by two variables. Denote them by λ and u. Since solutions of the Yang–
Baxter equations are defined up to a common factor, assume a(λ, u) = 1. It is convenient to introduce the
trigonometric parameterization

b(λ, u) =
sinu

sin(λ− u)
,

c(λ, u) =
sinλ

sin(λ− u)
,

(9)

if c < a+ b, a < b+ c, b < a+ c, and

b(λ, u) =
shu

sh(λ− u)
,

c(λ, u) =
shλ

sh(λ− u)
,

(10)

if c > a+ b. The cases a > b+ c and b > a+ c are not interesting (see later).
In the parameterization (9) or (10) the solution of the Yang–Baxter equation has the form

R = R(λ, u2 − u3),

R′ = R(λ, u1 − u3),

R′′ = R(λ, u1 − u2).

(11)

The parameter λ should be the same for all three matrices, and in the future we will omit it. The parameter
u for all three matrices is different, although its values are related by a relation. It is important that for any
two matrices R and R′ with the same value of λ there exists a matrix R′′ (with the same, again, the value
λ). This means that there is a whole family of commuting transfer matrices T (u) with an arbitrary u and
fixed λ:

[T (u), T (u′)] = 0 ∀u, u′. (12)

The variable u is called the spectral parameter.
Note that the parameter ui is conveniently assigned to the ith line, and the R-matrix can be written as

R(u− v)ε3ε4ε1ε2 = ε2
v ε4

ε1

u

ε3

The Yang–Baxter relation

R12(u1 − u2)R13(u1 − u3)R23(u2 − u3) = R23(u2 − u3)R13(u1 − u3)R12(u1 − u2) (13)

can be then depicted as

u1u2

u3

=

u1u2

u3
(13′)

In this form, the Yang–Baxter equation arose in field theory as a condition for the factorization of multi-
particle scattering into two-particle ones. We also note that the R-matrices (9) and (10) satisfy the crossing
symmetry and unitarity relations in the form

b(u)R(λ− u)ε3ε4ε1ε2 = R(u)ε2 −ε3
ε4 −ε1 , R12(u)R21(−u) = 1, R(0) = P = . (14)
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From the last equation it follows that the operator T (0) is nothing but the shift operator:

T (0) =

u

u

u

u

= (15)

The existence of a continuum family of integrals of motion does not mean, of course, that there really
are infinitely many of them. In fact, some of them are dependent, so their number is finite, but sufficient for
the integrability. You can get rid of the continuum parameter by taking into account the analyticity of the
transfer matrix as a function of u and by considering the generating function

T−1(0)T (u) = 1−
∞∑
n=1

Hnu
n

n!
. (16)

Hamiltonians Hn commute with T (u) and mutually commute:

[T (u), Hn] = [Hm, Hn] = 0 ∀m,n. (17)

They form a family of local integrals of motion. Locality means that Hn can be represented as
∑N

i=1 In,i,
where In,i only depends on a finite number of nodes i, i+ 1, . . . , i+ n. In fact, only the first N − 1 integrals
Hn and the operator T (0) are independent. The operator H1 can be very easily found. Indeed, consider the
product

Ř(u) = R(u)P =


a(u)

c(u) b(u)
b(u) c(u)

a(u)

 = 1 +
u

sinλ


0

cosλ 1
1 cosλ

0

+O(u2)

= 1− u

sinλ

(
h− cosλ

2

)
+O(u2),

where
h = −1

2
(σx ⊗ σx + σy ⊗ σy − cosλ σz ⊗ σz).

In the first order in u it is precisely these terms that will contribute to H1. It is not very difficult to gather
them (for example, in the index notation), and obtain

H1 sinλ = HXXZ +
N∆

2
,

where HXXZ is the Hamiltonian of the XXZ Heisenberg model:

HXXZ = −1

2

N∑
n=1

(σx
nσ

x
n+1 + σy

nσ
y
n+1 +∆σz

nσ
z
n+1), (18)

with

∆ = − cosλ =
a2 + b2 − c2

2ab
(19)

(the last equality is true for any u). In the case c > a+ b we have

∆ = − chλ. (19′)

Thus, to find the eigenstates of the six-vertex model, it is enough to find the eigenstates of the XXZ
Heisenberg model. In fact, both tasks are of equal complexity. But the XXZ model contains an important
hint on how to solve this problem. First of all, introduce the operator of the total spin:

Sz =
1

2

N∑
n=1

σz
n.
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It follows from the ice condition that our operators commute with it:1

[T (u), Sz] = [HXXZ, S
z] = 0. (20)

It follows that the eigenstates have a certain projection of the total spin Sz. The simplest of these states are
easily constructed: these are pseudo-vacuums

|Ω±⟩ = v± ⊗ v± ⊗ . . .⊗ v±︸ ︷︷ ︸
N

, (21)

in which all spins are directed up or all down. Evidently,

Sz|Ω±⟩ = ±N

2
|Ω±⟩, T (u)|Ω±⟩ = (aN (u) + bN (u))|Ω±⟩, HXXZ |Ω±⟩ = −N∆

2
|Ω±⟩.

The problem is that these states are ground ones only in the case of ∆ > 1. In this case, a > b + c (or
b > a+ c) and the ground configurations of the six-vertex model are configurations, in which all spins have
the same sign (or all on the vertical edges have the same sign, and on the horizontal edges the other). It is
easy to see that in order to flip one spin, in this case it is also necessary to flip ∼ N spins, so that in the
thermodynamic limit the probability of flipping the spin is exactly zero. One sais that the system has frozen
ground configurations. We will be interested in the case ∆ < 1.

States of fixed spin Sz = N/2− k can be represented as linear combinations of the states

|n1, . . . , nk⟩ = σ−
n1

. . . σ−
nk
|Ω+⟩, σ± =

1

2
(σx ± iσy), (22)

with all nj being different. Since the Hamiltonian HXXZ only flips adjacent spins, the eigenstates of the
Hamiltonian will look like plane waves when |ni − nj | > 1 (∀i, j).

We start with the case k = 1. In this case, we consider the state

|Ψ1(z)⟩ =
∑
n

zn|n⟩. (23)

It is easy to verify that

HXXZ |Ψ1(z)⟩ =
(
−N∆

2
+ ϵ(z)

)
|Ψ1(z)⟩, ϵ(z) = 2∆− z − z−1. (24)

Evidently, |z| = 1, so that −2 < z + z−1 < 2. Thus, for ∆ > 1, all single-particle excitations have positive
energy ϵ(z), so that |Ω±⟩ is a true doubly degenerate vacuum of the system. In the case of −1 < ∆ < 1 some
of the excited states are of positive energy and some are of negative energy. For ∆ < −1, all excitations have
negative energy. In the last two cases, the ground state is a state with Sz = 0 or with Sz = ±1/2.

Let us now consider a two-particle state, k = 2. We will look for it in the form

|Ψ2(z1, z2)⟩ =
∑

n1<n2

(A12z
n1
1 zn2

2 +A21z
n1
2 zn2

1 )|n1, n2⟩. (25)

The action of the Hamiltonian on the terms of the sum with n2 > n1 + 1 does not differ from the action on
the single-particle states (23), and the action on the terms with n2 = n1 + 1 can be considered as matching
conditions. The later have the form

A21

A12
= S(z1, z2) ≡ −1 + z1z2 − 2∆z2

1 + z1z2 − 2∆z1
. (26)

It is evident that
HXXZ |Ψ2(z1, z2)⟩ =

(
−N∆

2
+ ϵ(z1) + ϵ(z2)

)
|Ψ2(z1, z2)⟩,

i.e. the excitation energies sum up. In addition, it can be seen that the Ansatz for the wave function (25)
does not contain reflected waves. We assume that this property is preserved in the general case:

1However, they does not commute with Sx, Sy!
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Assumption. The plane waves in the basis (22) are scattered under the action of HXXZ without reflec-
tions.

This means that wave functions should be sought in the form

|Ψk(z1, . . . , zk)⟩ =
∑

n1<...<nk

∑
σ∈Sk

Aσ1...σk

k∏
j=1

z
nj
σj |n1, . . . , nk⟩. (27)

This form of wave function is called the (coordinate) Bethe Ansatz. It can be shown that the action of the
Hamiltonian HXXZ does not give rise to new matching conditions, so that the amplitude ratios are given by
the same function (26):

A...ji.../A...ij... = S(zi, zj). (28)

With this condition

HXXZ |Ψk(z1, . . . , zk)⟩ =

(
−N∆

2
+

k∑
i=1

ϵ(zi)

)
|Ψk(z1, . . . , zk)⟩, (29)

i.e. the excitation energies are still additive. Next, the periodicity condition should be imposed

zNi
∏

j, j ̸=i

S(zi, zj) = 1, (30)

which gives a system of equations for the zi “momenta” called the system of the Bethe equations. Solving
this system and substituting solutions into (29), one can find all eigenvalues of the Hamiltonian. In the next
lecture, we will obtain this system in a slightly different way.

Problems

1. Consider the asymmetric six-vertex model, i.e. the model with the R matrix

R =


a1

b1 c1
c2 b2

a2

 .

Show that in the case of the cyclic boundary conditions the model can be reduced the the symmetric model
with a =

√
a1a2, b =

√
b1b2, c =

√
c1c2 in the ‘horizontal’ external field Eh and the ‘vertical’ one Ev, which

produce an extra factor eEhε for each horizontal edge and eEvε for each vertical edge. Express these fields
in terms of ai, bi. Show that these fields can be reduced to boundary conditions, though depending on the
sizes of the lattice. Find the corresponding transfer matrices and demonstrate that they commute.

2. Demonstrate that in the conditions of the previous problem with Ev = 0 the limit u → 0, Eh → 0 so
that Eh/u = const provides the XXZ model in the external magnetic field. Explain, why the eigenvalues
of its Hamiltonian are given by the same Bethe wave functions (27), which satisfy the same Bethe equations
(30).

3. Define the “normalized” R-matrix R̃(u) = κ−1(u)R(u) by the conditions:

R̃(λ− u)ε3ε4ε1ε2 = R̃(u)ε2 −ε3
ε4 −ε1 , R̃12(u)R̃21(−u) = 1.

It is evident that the analytic function κ(u) satisfies the conditions

κ(λ− u)b(u) = κ(u), κ(u)κ(−u) = 1.

Find a solution to these equations for ∆ < −1, which is a function of the variable z = eu and does not
have poles and zeros in the region −λ < Reu < λ. It is convenient to express the solution in terms of the
functions of the form

(z; p)∞ =
∞∏
n=0

(1− zpn).
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4. Prove the relation (26).
5∗. Consider the corner transfer matrix, which is the partition function of a very big (nearly infinite)

quadrant:

A(u)
ε′1ε

′
2...

ε1ε2... =

ε′1

ε′2

ε′3

ε′4

ε1ε2ε3ε4

Each intersection contains the matrix R(u). Show that A(0) = 1. Find the corner Hamiltonian HC = A′(u).
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