
Lecture 11
Kondo problem: derivation of the Bethe Ansatz

Beginning in the 1930s, a minimum was observed in the temperature dependence of the resistivity of
some seemingly pure metals (gold, silver, copper) at low temperatures. Later it turned out that the anomaly
is caused by the presence of a low concentration of impurity atoms of transition metals (Mn, Fe, Cr, Co,
Ce, Y). Jun Kondo (1964) explained this phenomenon by electron scattering on impurities described by the
interaction (sd model)

V = J
∑
i

σSiδ(r −Ri) (1)

In the Born approximation, the scattering amplitude on a single impurity is proportional to

J(σS)σ′σ.

Since J is several times less than ϵF /n (n is the electron density), this amplitude is small. However, the
first correction to the Born amplitude contains logarithmic terms and the sum of the terms of the first and
second orders in J is[1]

J(σS)σ′σ

(
1 + Jρ(ϵF ) log

ϵF
max(|ϵp − ϵF |, T )

)
, (2)

where ρ(ϵ) is the density of states. This correction grows as T → 0 and for electron energies close to ϵF ,
and the perturbation theory eventually becomes unusable. The characteristic temperature, at which the
perturbation theory is unusable, called the Kondo temperature, is equal to

TK ∼ ϵF e
−1/Jρ(ϵF ). (3)

This temperature is the only characteristic scale in the Kondo effect.
Let us give a brief derivation of the expression (2). Double scattering can occur in two ways. First, an

electron in the state pσ can pass first to the state p′′σ′′, and then to the final state p′σ′. The amplitude of
this process is proportional to

J2
∑
σ′′

∫
d3p′′

(2π)3
(σS)σ′σ′′(σS)σ′′σ(1− f(p′′))

ϵp − ϵp′′
,

where f(p) is the distribution function. Indices associated with the state of the impurity are omitted. Second,
at first the electron from the filled state p′′σ′′ passes into the state p′σ′, and only then the electron from
the state pσ passes into the state p′′σ′′. The amplitude of this transition is proportional (with the same
proportionality coefficient) to

−J2
∑
σ′′

∫
d3p′′

(2π)3
(σS)σ′′σ(σS)σ′σ′′f(p′′)

ϵp′′ − ϵp′
.

The minus sign is related to the antisymmetry of the wave functions of electrons. If there were no spin
factors, the contributions that contain f(p′′) would be canceled, and there would be no logarithmically large
factor. But for spin factors we have:

σiSiσjSj = S(S + 1)− σS,

σiSjσjSi = S(S + 1) + σS.

We obtain the integral

J2

∫
d3p′′

(2π)3

(
S(S + 1)δσ′σ

ϵp − ϵp′′
+

2f(p′′)− 1

ϵp − ϵp′′
(σS)σ′σ

)
.

The first term has no singularity at ϵp′′ = µ and produces a finite contribution near the Fermi surface. The
second term produces a contribution that logarithmically diverges at zero temperature. It gives (2).

The resistivity in the first order is

ρ = ρv + ρ
(0)
J

(
1 + 2Jρ(ϵF ) log

ϵF
T

)
.
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In the case of ferromagnetic interaction (J < 0), the contribution of magnetic impurities decreases with
decreasing temperature, while in the case of antiferromagnetic interaction (J > 0) it increases.

It turns out that one can sum up the logarithmic terms in all orders of the perturbation theory (Abrikosov,
1965; Suhl, 1965):

ρ = ρv +
ρ
(0)
J(

1− Jρ(ϵF ) log
ϵF
T

)2 .
However, for T ∼ TK this expression has a singularity, so it is impossible to restrict oneself to the logarithmic
corrections only.

Anomalies were also observed in the thermodynamic characteristics of metals with magnetic impurities,
for example, in the heat capacity C and the magnetic susceptibility χ. At high temperatures, the impurity
contribution to these quantities is described with good accuracy by the inverse powers of the logarithm:

ρimp(T ) ≃
const

log2 T
TK

,

Cimp(T ) ≃
const

log2 T
TK

,

χimp(T ) ≃
const

T log T
TK

, T ≫ TK .

As T → 0 a different behavior is observed:

ρimp(T ) = ρimp(0)

(
1− κR

(
T

TK

)2

+ . . .

)
,

Cimp(T ) = γ
T

TK

(
1− κC

(
T

TK

)2

+ . . .

)
,

χimp(T ) = χ0

(
1− κχ

(
T

TK

)2

+ . . .

)
,

where κR, κC , κχ are quantities of order one.
The solution to this problem for T ≲ TK seems rather hopeless. Nevertheless, to a certain approximation,

this problem reduces to a problem that can be exactly solved by using the Bethe Ansatz (Wiegmann 1980;
Andrei, 1980). There are good reviews[2, 3] on this subject.

Let us write down the Hamiltonian of the sd model in the form

H = H0 + Jσ(0)S, H0 =
∑
pσ

ϵpc
+
pσcpσ, σ(0) =

∑
p′σ′,pσ

c+p′σ′σσ′σcpσ. (4)

It is assumed here that there is only one impurity in the system that interacts isotropically with free electrons.
In addition, there is no potential impurity scattering. We will also assume that ϵp does not depend on the
direction of the momentum, and the spectrum near the Fermi-sphere has the form

ϵp = ϵF + vF (p− pF ). (5)

Now we decompose the creation-annihilation operators into spherical functions:

c+pσ =
∑
lm

Ylm(p/p)c+plmσ. (6)

Due to the orthogonality of spherical harmonics, the interaction Hamiltonian only contains the components
with l = m = 0:

H =
∑
plmσ

ϵpc
+
plmσcplmσ + J

∑
p′σ′,pσ

c+p′00σ′cp00σσσ′σS. (7)

Electrons with l > 0 do not interact with electrons with l = 0 and with each other, and their contribution
is trivial. The nontrivial part of the problem is to study the contribution of electrons with l = 0 to the
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Hamiltonian. We will count the electron energy from the Fermi energy, and the quasimomentum from pF .
Besides, for simplicity we assume vF = 1. We obtain

H =
∑
pσ

pc+pσcpσ + J
∑

p′pσ′σ

c+p′σ′cpσσσ′σS, (8)

where cpσ = cpF+p,00σ, and the summation is taken over all real p. This Hamiltonian is one-dimensional.
Moreover, in essence, this is the Hamiltonian defined on the entire material axis x, rather than on the semi-
axis x < 0 only, since the reflected and incident waves do not interact with each other. In this case, however,
waves in the system can only move in one (positive) direction. The cyclic boundary condition on the segment
[−R,R) will correspond to the condition for a wave that is reflected on a sphere of radius R in the physical
space. In the coordinate representation the Hamiltonian has the form

H =

∫
dx (−ic+(x)∂xc(x) + Jc+(x)(σS)c(x)δ(x)), c(x) =

(
c+(x)
c−(x)

)
=

∑
p

eipx
(
cp+
cp−

)
. (9)

The Hamiltonian H preserves the number of particles in the system and the total spin. The state |ΨN ⟩ of
the system with a fixed number of particles N can be presented as

|ΨN ⟩ =
∫

dx1 . . . dxN
∑

σ1...σN ,s

Ψσ1...σN ,s(x1, . . . , xN )c+σ1
(x1) . . . c

+
σN

(xN )(S−)S−s|Ω⟩, (10)

where s = −S,−S + 1 . . . , S is the value of the z-component of the spin S, and |Ω⟩ is the pseudovacuum
state satisfying the conditions

cσ(x)|Ω⟩ = S+|Ω⟩ = 0. (11)

The Hamiltonian (9) acts on the state |ΨN ⟩ as follows:

ĤΨσ1...σN ,s = −i

N∑
j=1

∂xjΨ
σ1...σN ,s + J

N∑
j=1

∑
σ′
j ,s

′

δ(xj)σσjσ′
j
Sss′Ψ

σ1...σ′
j ...σN ,s′ (12)

We first consider a one-particle state. We will look for a solution in the form

Ψσ,s
p (x) =

{
Aσ,s

p eipx, x < 0,

Bσ,s
p eipx, x > 0.

(13)

Substituting (13) into (12), we obtain

Aσ,s
p =

∑
σ′,s′

Rσs
σ′s′B

σ′,s′ , R = eiJσS . (14)

Now, it would seem, it is possible to elementarily construct a wave function of an arbitrary state as the
antisymmetrized product of wave functions of the form (13). This, however, is not the case. The fact is that
the model has an additional dynamic variable s. Consider, for example, the region x1, x2 < 0. Suppose that
in this region the wave function is continuous. We extend the wave function to the region x1 < 0 < x2. The
2 particle was scattered by impurities; therefore, the wave function in this region will differ in the scattering
factor R20. Continuing into the region 0 < x1 < x2, we obtain the factor R20R10. Similarly, continuing first
into the region x2 < 0 < x1, and then into the region 0 < x2 < x1, we obtain the factor R10R20. But

R20R10 ̸= R10R20.

It follows that on the line x1 = x2 in the region x1, x2 > 0 the wave function has a discontinuity.
We will consider solutions with discontinuities at x1 = x2 both in the region x1, x2 > 0 and in the region

x1, x2 < 0. Let us see which discontinuities are compatible with the Schrödinger equation. Let, for example,
x1, x2 < 0. According to the Schrödinger equation, we have

(∂x1 + ∂x2)Ψ
σ1σ2,s(x1, x2) = (finite for x1 = x2 expression).
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This condition admits arbitrary discontinuity of the wave function at x1 = x2. Indeed,

∂x1Ψ(x1, x2) = δ(x1 − x2)(Ψ(x1 + 0, x2)−Ψ(x1 − 0, x2)) + . . . ,

∂x2Ψ(x1, x2) = δ(x1 − x2)(Ψ(x1, x2 + 0)−Ψ(x1, x2 − 0)) + . . .

= −δ(x1 − x2)(Ψ(x1 + 0, x2)−Ψ(x1 − 0, x2)) + . . . .

Thus you can choose any gap.
We will seek a solution to the Schrödinger equation in the form of Bethe Ansatz in the variables (σ1, x1),

. . . , (σN , xN ), (s, 0), and the scattering matrix coefficients for the particle j ̸= 0 with a particle 0 (the
impurity) will be given by the matrix R, and the scattering of two electrons j, j′ ̸= 0 will be given by some
matrix S, which we will find from the associativity conditions (the Young–Baxter equations):

S12R10R20 = R20R10S12. (15)

An obvious solution to this equation is the permutation matrix

S12 = P12, P
σ′
1σ

′
2

σ1σ2 = δ
σ′
1

σ2δ
σ′
2

σ1 . (16)

If the particles are denoted by solid lines, and the impurity by a dotted one, then graphically it looks like
this:
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In this notation, the proof of (15) for S = P looks evident:
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Now impose the cyclic boundary condition

Ψ(x1, . . . , xj , . . . , xN ) = Ψ(x1, . . . , xj + L, . . . , xN ). (17)

Introduce the operator
Tj = Pjj−1 . . . Pj1Rj0PjN . . . Pjj+1. (18)

From the cyclic boundary condition (17) it follows that

eipjLΨ = TjΨ. (19)

This means that the solution to the problem is reduced to the simultaneous diagonalization of the operators
Tj . It is easy to see that the operators Tj coincide. Indeed, they can be written out as

Tj = T = tr1̃(P1̃N . . . P1̃1R1̃0), (20)

where 1̃ is the subscript for the auxiliary space. The additional operator P1̃j turns the product of operators
into a trace.

How to diagonalize the transfer matrix T? To do this, you must reuse the Bethe Ansatz (the secondary
Bethe Ansatz ), and it is more convenient to use an algebraic Ansatz. But for this purpose it is necessary to
build a family of commuting transfer matrices.

Let us construct one-parameter families of R-matrices R(u), S(u) that satisfy the following conditions.
1. The matrices R(u) and S(u) satisfy the Yang–Baxter equation:

S12(u1 − u2)R10(u1 − u0)R20(u2 − u0) = R20(u2 − u0)R10(u1 − u0)S12(u1 − u2), (21a)
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S12(u1 − u2)S13(u1 − u3)S23(u2 − u3) = S23(u2 − u3)S13(u1 − u3)S12(u1 − u2). (21b)

2. At special points, the matrices S(u) and R(u) coincide with S and R:

S(0) = P, R(1) = R = eiJσS . (22)

3. R-matrices satisfy the unitarity condition:

S12(u)S21(−u) = 1, R10(u)R10(−u) = 1. (23)

The solution can be represented as

S12(u) = w0(u) + w(u)σ1σ2,

R10 = w′
0(u) + 2w′(u)σ1S0.

(24)

It is convenient to introduce the notation

a = w0 + w, b = w0 − w, c = 2w,

a′ = w′
0 + w′, b′ = w′

0 − w′, c′ = 2w′.
(25)

In this case, the matrix S(u) has the same form as the R-matrix of the XXZ model:

S(u) =


a(u)

b(u) c(u)
c(u) b(u)

a(u)

 .

By solving the Young–Baxter equation, we find

b(u)

a(u)
=

b′(u)

a′(u)
=

u

u+ ig
,

c(u)

a(u)
=

c′(u)

a′(u)
=

ig

u+ ig
,

(26)

i.e. S(u) coincides (up to a change in the scale of the spectral parameter and some simple matrix transfor-
mation that changes signs) with the R-matrix of the XXX model.

The unitarity condition requires that

a(u)a(−u) = 1, a′(u)a′(−u) =
g2 + u2

g2(S + 1/2)2 + u2
. (27)

Finally, the condition (22) gives

a(0) = 1, a′(1) =
1 + ig

2
(eiJS + e−iJ(S+1)) (28)

and
g =

1

S + 1/2
tg J(S + 1/2). (29)

Otherwise, a(u), a′(u) are arbitrary functions.
Further, the one-parameter family of transfer matrices has the form

T (u) = tr1̃ L1̃(u), L1̃(u) = S1̃N (u) . . . S1̃1(u)R1̃0(u+ 1), (30)

and
T (0) = T, [T (u), T (v)] = 0. (31)

L-operators satisfy the relations

S1̃2̃(u1 − u2)L1̃(u1)L2̃(u2) = L2̃(u2)L1̃(u1)S1̃2̃(u1 − u2). (32)
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As in the case of the XXZ model, the L-operator can be presented as

L(u) =

(
A(u) B(u)
C(u) D(u)

)
, (33)

while A(u), . . . , D(u) satisfy the relations of the same form as in the case of the XXZ model, but with
different a(u), b(u), c(u). It follows that the solution will be substantially the same.

Namely, the pseudo-vacuum |ΩN ⟩, corresponding to all electron spins looking up (σj = +), and s = +S,
is defined by the condition

C(u)|ΩN ⟩ = 0. (34)

The Bethe Ansatz has the form

|u1, . . . , un⟩ = B(u1) . . . B(un)|ΩN ⟩, Sz = N/2 + S − n, (35)

with
A(u)|ΩN ⟩ = ΛA(u)|ΩN ⟩, ΛA(u) = ((S + 1/2)a′(u+ 1)− (S − 1/2)b′(u+ 1))aN (u),

D(u)|ΩN ⟩ = ΛD(u)|ΩN ⟩, ΛD(u) = ((S + 1/2)b′(u+ 1)− (S − 1/2)a′(u+ 1))bN (u).
(36)

The Bethe equations are written in the standard form

ΛD(ui)

ΛA(ui)
=

n∏
j=1
j ̸=i

a(uj − ui)b(ui − uj)

b(uj − ui)a(ui − uj)
, (37)

while the eigenvalues are expressed in terms of the roots of the Bethe equations as

Λ(u;u1, . . . , uN ) = ΛA(u)
n∏

i=1

a(ui − u)

b(ui − u)
+ ΛD(u)

n∏
i=1

a(u− ui)

b(u− ui)
. (38)

Equation (19) takes the form
eipjL = Λ(0;u1, . . . , uN ). (39)

By substituting explicit formulas for a(u) and b(u) into (37) and (38), (39), and replacing

uj = g(vj − i/2),

we obtain the Bethe equations in the form(
vi + i/2

vi − i/2

)N vi + iS + g−1

vi − iS + g−1
= −

n∏
j=1

vi − vj + i

vi − vj − i
, (40)

and

eipjL = eiJS
n∏

i=1

vi + i/2

vi − i/2
. (41)

This reduces the solution of the Kondo problem to the joint solution of the equations (40) and (41).
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Problems

1. Derive (14).
2. Show that the transfer matrices T (u) defined by (30) indeed form a family of commuting transfer

matrices.
3. Show that the matrices S(u), R(u) defined in (24)—(26) satisfy the Yang–Baxter equations (21).
4. Derive the relations (27)—(29).
5∗. Construct solutions to the equations (21) with a trigonometric dependence on the spectral parameter

u. Show that such solutions correspond to the Kondo problem with anisotropic interaction between the
electrons and the impurity.
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