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Bethe equations

Recall the Bethe equations for the sd model:

eipaL = eiJS
n∏

i=1

vi + i/2

vi − i/2
, (1)

(
vi + i/2

vi − i/2

)N vi + iS + 1/g

vi − iS + 1/g
= −

n∏
j=1

vi − vj + i

vi − vj − i
,

(2)

a = 1, . . . , N,

i, j = 1, . . . , n,

while
g =

1

S + 1/2
tg J(S + 1/2). (3)

The energy of the system is

E =

N∑
a=1

pa. (4)

Now we will study these equations in the thermodynamic limit L → ∞, N → ∞.
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Logarithm of the Bethe equations

Take logarithm of the Bethe equations:

paL = 2πIa + JS −
n∑

i=1

(π + p(vi)), (5)

Np(vi) + δS(vi) = 2πJi +

n∑
j=1

Φ(vi − vj),

(6)

p(v) = 2 arctg 2v,

δS(v) = p((v + 1/g)/2S), Φ(v) = p(v/2),

(7)

Ia ∈ Z,

Ji ∈
{
Z, N − n ∈ 2Z,
Z+ 1/2. N − n ∈ 2Z+ 1.

(8)

Besides, all the numbers Ji should be pairwise distinct, and all the numbers Ia too.
The total energy:

E = Ech + Esp, (9)

Ech =
2π

L

N∑
a=1

Ia−
πN2

2L
,

(10)

Esp =
πN2

2L
+

NJS

L
−

N

L

n∑
i=1

(π + p(vi))
N∑

i,j=1

Φ(vi − vj) = 0

= −
2π

L

n∑
i=1

Ji +
π

L
N

(
N

2
− n

)
+

NJS

L
+

1

L

n∑
i=1

δS(vi),

(11)
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Charge energy for J = 0. Usual description

Let J = 0: the case of free electrons. We have two pictures:
1. Usual description:

paL = 2πIa Ia ∈ Z,

where pairs of Ia may coincide, but if Ia = Ib (a ̸= b), then ∀c ̸= a, b : Ic ̸= Ia.

To make the total energy finite, we need a cutoff at negative momenta: pa ≥ −ϵF .
The density of states in the momentum space is 2 L

2π
. Thus

N =
LϵF

π
. (12)

We will be interested in the thermodynamic limit

L → ∞, N → ∞,
N

L
=

ϵF

π
= const ,

The ground state is defined by −N
2

≤ Ia ≤ 0, and the energy is equal to

E0 = −
πN2

2L
= −

ϵFN

2
.
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Charge energy for J = 0. Bethe description

2. Bethe description:

paL = 2πIa −
n∑

i=1

(π + p(vi)), Ia ∈ Z,

where Ia are all different: Ia ̸= Ib if a ̸= b.

In the ground state the total spin is zero: n = N/2. From the XXZ model we
know that the total momentum in the spin space is equal to zero:

N/2∑
i=1

p(vi) = 0.

Hence
pa =

2π

L
Ia −

πN

2L
=

2π

L
Ia −

ϵF

2
.

The ground state energy is

E0 = −
ϵFN

2
+

N∑
a=1

Ia ⇒
N∑

a=1

Ia = 0.

All other energies must be larger. Therefore, we obtain the admissibility condition
for solutions to the Bethe Ansatz equations

Ia ≥ −N/2.
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Two descriptions: comparison
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I′a = Ia + L∆E/2π.
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− 1

I′a = Ia + L∆E/2π − 1 since ∆
∑

(−π − p(vi)) ≃ 2π
N

.
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×

I′a = Ia + L∆E/2π + 1? BUT: Calculation of state with n > N
2

(Sz
tot < 0) is

problematic within the Bethe Ansatz technique.
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States of nonzero spin

Assume J to be arbitrary. Return to the Bethe equations for vi:

Np(vi) + δS(vi) = 2πJi +
n∑

j=1

Φ(vi − vj), i = 1, . . . , n. (6)

Since p(v), δS(v) and Φ(v) are increasing odd functions and tend to π as v → ∞,
we have

Ji → ±
N + 2− n

2
as vi → ±∞.

Hence
−
N + 1− n

2
≤ Ji ≤

N + 1− n

2
. (13)

The minimum of energy corresponds to larger vis and, hence, to larger Jis.
Therefore, for the ground state in the spin space Jis densely fill the region

Jmin ≤ Ji ≤
N + 1− n

2
. (14)

with a certain Jmin This corresponds to the region

−b ≤ vi < ∞

with a certain value b.
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Pauli paramagnetism

It is easy to find the energy of these states in the case J = 0. Indeed, evidently

N + 2− n

2
− Jmin = n

Hence
Jmin =

N + 2− 3n

2
.

Now let us calculate the spin energy. Since δS(v) = π, we have

Eel
sp = −

2π

L

n−1∑
i=0

(Jmin + i) + ϵF

(
N

2
− n+

n

N

)
=

2ϵF

N

(
N

2
− n

)2

=
2ϵF

N
(Sz

el)
2.

The superscript el means that later we will separate this contribution as the
energy of the electron subsystem.
If we define external magnetic field H as Eel

sp(H) = Eel
sp − Sz

elH, and minimize this
energy in Sz

el, we obtain the Pauli paramagnetism of the s electrons:

H =
4ϵF

N
Sz = 4ϵFMel, (15)

where Mel is the magnetization, i.e. spin per electron. This formula will make it
possible to express impurity energy and magnetization in terms of external
magnetic field.
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Bethe equations in the thermodynamic limit

Let us write down the Bethe equations for the ground state in the spin space in
the thermodynamic limit:

ρ(v) = a1(v) +
1

N
a2S(v + 1/g)−

∫ ∞

−b

dv′

2π
a2(v − v′)ρ(v′), −b ≤ v < ∞, (16)

where
ρ(v) =

2π

N

dJ

dv
, at(v) =

t

v2 + t2/4
. (17)

We have
Sz =

N

2
+ S − n =

N

2
+ S −N

∫ ∞

−b

dv

2π
ρ(v). (18)

and
Esp =

NϵF

2
+

ϵF JS

π
−

NϵF

π

∫ ∞

−b

dv

2π
ρ(v)(π + p(v)). (19)
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Splitting the integral equation

Since the integral equation is linear, its solution can be exactly split into the sum

ρ(v) = ρ0(v) +
ρ1(v)

N
, (20)

where

ρ0(v) = a1(v)−
∫ ∞

−b

dv′

2π
a2(v − v′)ρ0(v

′), −b ≤ v < ∞, (21)

and

ρ1(v) = a2S(v + 1/g)−
∫ ∞

−b

dv′

2π
a2(v − v′)ρ1(v

′), −b ≤ v < ∞. (22)

Hence, ρ0(v) is the density of state for spins of free electrons, while ρ1(v) describes
the impurity. The magnetization and the energy split as well:

Sz = NMel +Mim, Mel =
1

2
−
∫ ∞

−b

dv

2π
ρ0(v), Mim = S −

∫ ∞

−b

dv

2π
ρ1(v). (23)

and

Esp = Eel
sp + Eim, (24)

Eel
sp =

ϵFN

2
−

ϵF

π

∫ ∞

−b

dv

2π
ρ0(v)(π + p(v)) = 2ϵFNM2

el,

(25)

Eim =
ϵF JS

π
−

ϵF

π

∫ ∞

−b

dv

2π
ρ1(v)(π + p(v)).

(26)
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The b = ∞ case

In the b = ∞ case we may use the Fourier transform. Since

ãt(k) =

∫ ∞

−∞

dv

2π
at(v)e

ikv = e−t|k|/2, (27)

we have

ρ̃0(k) = e−|k|/2 − e−|k|ρ̃0(k), ρ̃1(k) = e−S|k|−ik/g − e−|k|ρ̃1(k).

The solution is

ρ̃0(k) =
1

2 ch k
2

, ρ̃1(k) =
e−(S−1/2)k−ik/g

2 ch k
2

. (28)

The point k = 0 is of particular interest:

ρ̃0(0) =

∫
dv

2π
ρ0(v) =

1

2
, ρ̃1(0) =

∫
dv

2π
ρ1(v) =

1

2
. (29)

From this we obtain

Mel = 1/2− ρ̃0(0) = 0, (30a)
Mim = S − ρ̃1(0) = S − 1/2. (30b)

The limit b → ∞ corresponds to H → +0. Therefore the total spin of the system
is S − 1/2 and, hence, the ground state is 2S-fold degenerate.
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Wiener–Hopf method

For finite b both the equations for ρ0(v) and ρ1(v) have the form

f(x) +

∫ ∞

0

dx′

2π
K(x− x′)f(x′) = g(x), x > 0. (31)

These equations are solved by the Wiener–Hopf method. Arbitrarily continue the
function g(x) to negative values of x. This continues the solution f(x) to
negative x. Then perform the Fourier transform. Let

f̃+(k) =

∫ ∞

0

dx

2π
eikxf(x), f̃−(k) =

∫ 0

−∞

dx

2π
eikxf(x). (32)

The function f̃+(k) (f̃−(k)) has no singularities in the upper (lower) half-plane.
Here and below, such a property will be assumed for all functions with the ±
subscripts. We have

(1 + K̃(k))f̃+(k) + f̃−(k) = g̃(k). (33)

Represent the kernel K̃(k) in the form

1 + K̃(k) =
K̃+(k)

K̃−(k)
. (34)

Besides, we set
K̃−(k)g(k) = q̃+(k) + q̃−(k). (35)

Multiplying (33) by K̃−(k), we obtain

K̃+(k)f̃+(k) + K̃−(k)f̃−(k) = q̃+(k) + q̃−(k). (36)
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K̃−(k)
. (34)

Besides, we set
K̃−(k)g(k) = q̃+(k) + q̃−(k). (35)

Multiplying (33) by K̃−(k), we obtain

K̃+(k)f̃+(k) + K̃−(k)f̃−(k) = q̃+(k) + q̃−(k). (36)
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Wiener–Hopf method

Thus
K̃+(k)f̃+(k)− q̃+(k) = q̃−(k)− K̃−(k)f̃−(k).

The left-hand side has no singularities in the upper half-plane, and the right-hand
side in the lower one. Thus, both sides of this equation have no singularities.
Under some additional restrictions on the growth of the functions (which must be
checked separately in each case), it follows that

K̃+(k)f̃+(k) = q̃+(k), K̃−(k)f̃−(k) = q̃−(k). (37)

Finally,

f(x) =

∫ ∞

−∞
dk

q̃+(k)

K̃+(k)
e−ikx, x > 0. (38)
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Wiener–Hopf method. Application to b < ∞

Let
fi(x) = ρi(x− b).

Then

K̃(k) = e−|k|, g̃0(k) = eikb−|k|/2, g̃1(k) = eikb−ik/g−S|k|. (39)

We use a trick to obtain a few simple results. Rewrite equation (33) in the form

f̃i+(k) +
f̃i−(k)

1 + K̃(k)
=

g̃i(k)

1 + K̃(k)
. (40)

Perform the inverse Fourier transform:

fi(x) +

∫ 0

−∞

dx′

2π
R(x− x′)fi(x

′) = hi(x), (41)

where

R(x) =

∫ ∞

−∞
dk e−ikx

(
1

1 + K̃(k)
− 1

)
= −

∫ ∞

−∞
dk

e−ikx

1 + e|k|
,

h0(x) =
π

chπ(x− b)
, h1(x) =

∫ ∞

−∞
dk e−ik(x−b+1/g) e

−(2S−1)|k|/2

2 ch k
2

.

(42)
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Application to b < ∞

If b ≫ 1, for small enough x we may approximate

h0(x) ≃ 2πeπ(x−b). (43)

It works, if we want to calculate f̃0−(k). Thus we have f̃0−(k) ∼ e−πb.

Take into account that K̃(0) = g̃i(0) = 1. Therefore

2f̃i+(0) + f̃i−(0) = 1

and hence

H

4ϵF
= Mel =

1

2
−
∫ ∞

−b

dv

2π
ρ0(v) =

1

2
− f̃0+(0) =

1

2
f̃−(0) ∼ e−πb.

More precisely (and it needs accurate solution of the integral equation)

H

2ϵF
= e−πb

(
2

πe

)1/2

. (44)

For very large b and for the impurity spin S = 1/2 we may also write

h1(x) ≃ 2πeπ(x−b)+π/g . (45)

Hence f̃1−(k)

f̃0−(k)
= eπ/g , and we have a precise result for the susceptibility:

χim =
Mim

H
=

1

4ϵF

Mim

Mel
=

eπ/g

4ϵF
, if S = 1/2. (46)
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Magnetization for finite H

An accurate calculation by the Wiener–Hopf method gives the formula

Mim(H) = S −
1

2
+

+
i

4π3/2

∫ ∞

−∞
dω

(
H

TH

)−2iω Γ(iω + 1/2)

ω + i0

(
−iω + 0

e

)−2iSω ( iω + 0

e

)i(2S−1)ω

,

(47)

where

TH =

(
2π

e

)1/2 2ϵF

π
e−π/g ∼ TK . (48)

It provide the asymptotics

Mim(H) = S

(
1−

1

log(H/TK)2
−

log log(H/TK)2

log2(H/TK)2
+ · · ·

)
, H ≫ TK ,

and

Mim(H) = (S − 1/2)

(
1 +

1

log(TK/H)2
−

log log(TK/H)2

log2(TK/H)2
+ · · ·

)
, H ≪ TK , S > 1/2;

Mim(H) =
2

√
π

∞∑
n=0

(
n+ 1

2

e

)n+ 1
2 (−1)n

n!(n+ 1
2
)

(
H

TH

)2n+1

, S = 1/2.
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, H ≪ TK , S > 1/2;

Mim(H) =
2

√
π

∞∑
n=0

(
n+ 1

2

e

)n+ 1
2 (−1)n

n!(n+ 1
2
)

(
H

TH

)2n+1

, S = 1/2.
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TH
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ω + i0
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−iω + 0

e

)−2iSω ( iω + 0

e

)i(2S−1)ω
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(47)
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String solutions

The Bethe equations admit complex roots. For large values of N these roots form
the so called strings:

vpj,k = vpj +
i

2
(p+ 1− 2k) +O(e−constN ), k = 1, 2, . . . , p. (49)

Real roots can be considered as 1-strings.

As we already discussed at a seminar,
the difference between roots in a string corresponds to a zero in the r.h.s. of the
Bethe equation. The Bethe equations of the centers of strings are obtained by
multiplying Bethe equations for all roots that enter the string. For the Kondo
problem we have

eipaL = eiJS
∞∏
p=1

np∏
j=1

ep(v
p
j ), (50)

(ep(v
p
j ))

Nep,S(v
p
j + 1/g) =

∞∏
p′=1

nm∏
j′=1

Epp′ (v
p
j − vp

′

j′ ), (51)

where

ep(v) = −eiPp(v) =
v + ip/2

v − ip/2
, ep,S(v) = −ei∆p,S(v) =

p∏
k=1

v + i
2
(p+ 1− 2k) + iS

v + i
2
(p+ 1− 2k)− iS

,

Epp′ (v) = e
iΦpp′ (v) = e|p−p′|(v)e

2
|p−p′|+2(v) . . . e

2
p+p′−2(v)ep+p′ (v).
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Finite temperatures

Bethe equations may be applied to finite temperatures. To do it, we need to
introduce two types of densities: density of states ρp(v) (p means the type of a
string) and density of particles ρ•p(v). The Bethe equations make it possible to
express ρp(v) in term of ρ•p(v). It is convenient to use also the density of holes
ρ◦p(v) = ρp(v)− ρ•p(v).

Introduce the entropy of a set of states described by these densities:

S = log
∏
p,v

(Nρp(v)
dv
2π

)!

(Nρ•p(v)
dv
2π

)!(Nρ◦p(v)
dv
2π

)!

= N

∞∑
p=1

∫
dv

2π
(ρp(v) log ρp(v)− ρ•p(v) log ρ

•
p(v)− ρ◦p(v) log ρ

◦
p(v)). (52)

Then we have to minimize the free energy

F [ρ•] = E − TS −HSz .

This minimization leads to a set of nonlinear equations (the Yang–Yang
equations) of the form

ϵp(v) +
∑
p′

∫
dv′

2π
Φpp′ (v− v′) log(1+ e

−ϵp′ (v
′)
) =

1

T

(
Pp(v) +

1

N
∆p,S(v) + pH

)
,

where ρ•p(v)

ρp(v)
=

1

eϵp(v) + 1
.

All thermodynamic quantities are expressed in terms of the pseudoenergies ϵp(v).
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