
Lecture 12
Kondo problem: solving Bethe equations

In the last lecture the Bethe equations were obtained for the sd-model:

eipaL = eiJS
n∏

i=1

vi + i/2

vi − i/2
, (1)

(
vi + i/2

vi − i/2

)N vi + iS + g−1

vi − iS + g−1
= −

n∏
j=1

vi − vj + i

vi − vj − i
, (2)

a = 1, . . . , N, i, j = 1, . . . , n,

while
g =

1

S + 1/2
tg J(S + 1/2). (3)

The energy of the system is1

E =
N∑
a=1

pa. (4)

Take the logarithm of the Bethe equations:

paL = 2πIa + JS −
n∑

i=1

(π + p(vi)), (5)

Np(vi) + δS(vi) = 2πJi +

n∑
j=1

Φ(vi − vj), (6)

p(v) = 2 arctg 2v, δS(v) = p((v + g−1)/2S), Φ(v) = p(v/2), (7)

Ia ∈ Z, Ji ∈ Z+
N − n

2
. (8)

Besides, all the numbers Ji should be pairwise distinct, and all the numbers Ia too.
The total energy of the system (4) is split into two contributions:

E = Ech + Esp, (9)

Ech =
2π

L

N∑
a=1

Ia −
πN2

2L
, (10)

Esp =
πN2

2L
+

NJS

L
− N

L

n∑
i=1

(π + p(vi))

= −2π

L

n∑
i=1

Ji +
π

L
N

(
N

2
− n

)
+

NJS

L
+

1

L

n∑
i=1

δS(vi), (11)

The term −πN2/2L is added to the charge energy, so that for J = 0, n = N/2 the ratio Esp/Ech vanishes
in the thermodynamic limit.

First, we find the ground state. In order for the energy minimization procedure to be correctly defined,
the cutoff −ϵF for negative momenta should be introduced. Namely, it should be required that in the N -
particle ground state all levels of negative momentum (energy) in the interval [−ϵF , 0] should be filled. Since
the density of states in pa is equal to 2 L

2π , we have

N =
LϵF
π

. (12)

1We have assumed vF = 1. In order to restore the physical definitions of variables, one should everywhere replace E → E/vF ,
J → J/vF .
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Therefore, the thermodynamic limit is defined as

L → ∞, N → ∞,
N

L
=

ϵF
π

= const ,

The Fermi level ϵF should be considered as a model parameter.
The numbers Ia must satisfy the condition

Ia ≳ −ϵFL

2π
= −N

2
.

In the ground state Ia run through values from about −N/2 to N/2 and, therefore,
∑

a Ia ≪ N2. Therefore,
in the thermodynamic limit the charge energy is

Ech = −πN2

2L
= −L

ϵF
2

2π
. (13)

Find a allowed domain for the numbers Ji. For vi → +∞ from (6) we have Ji → (N + 2− n)/2, and for
vi → −∞ we have Ji → −(N + 2− n)/2. Therefore

−N + 1− n

2
≤ Ji ≤

N + 1− n

2
. (14)

To find the minimum by the spin states of the electrons, suppose that the constant J is small enough, so
that the last two terms in (11) can be neglected. The first term in Esp decreases with increasing Ji, so we
can assume that the ground state corresponds to the full filling of (half)integers by sufficiently large values
of Ji. Therefore, there is some value of Jmin such that in the ground state the roots correspond to all

Jmin ≤ Ji ≤
N + 1− n

2
. (15)

In the variables vi this corresponds to the interval

−b ≤ v < +∞ (16)

Assuming

Ji =
N − n

2
+ 1− i,

we obtain
Jmin =

N − 3n

2
+ 1 (17)

and
n∑

i=1

Ji = n

(
N + 1

2
− n

)
. (18)

Note that from (17) and (15) it follows that

n ≤ N + 1

2
⇔ Sz ≥ S − 1

2
, (19)

where Sz = N/2 + S − n is the projection of the total spin of the system.
Let us calculate the magnetization and spin energy of the system in the leading order in N−1. In this

approximation we may neglect the contribution of the impurity, and we obtain

M ≡ Sz

N
≃ 1

2
− n

N
, (20)

and

Esp ≈ 2ϵF
(Sz)2

N
= 2NϵFM

2. (21)
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From this it is easy to obtain a relation between Sz and the magnetic field H. Indeed, by minimizing the
function Eel

sp(H) = Eel
sp −HSz with respect to Sz we find

H =
4ϵF
N

Sz. (22)

This is simply the contribution of s-electrons to the Pauli paramagnetism. This formula is exact in the zeroth
order in 1/N and can be used later to calculate the relationship between H and b. To obtain (22) we did
not need to explicitly solve the Bethe equations (29). However, they will certainly have to be solved if we
want to establish a connection between b and n.

By taking the difference of two equations (6) with consequent values of i and dividing it by vi−1 − vi, in
the thermodynamic limit we obtain the integral equation

ρ(v) = a1(v) +
1

N
a2S(v + g−1)−

∫ ∞

−b

dv′

2π
a2(v − v′)ρ(v′), −b ≤ v < ∞. (23)

Here ρ(v) = 2π
N

dJ
dv , and

at(v) =
t

v2 + t2/4
. (24)

Wherein
n = N

∫ ∞

−b

dv

2π
ρ(v). (25)

This means that the total spin is

Sz =
N

2
+ S −N

∫ ∞

−b

dv

2π
ρ(v). (26)

The spin energy is equal to

Esp =
NϵF
2

+
ϵFJS

π
− NϵF

π

∫ ∞

−b

dv

2π
ρ(v)(π + p(v)). (27)

Expand the density in powers of 1/N up to the first order

ρ(v) = ρ0(v) +
ρ1(v)

N
. (28)

The equation for ρ0

ρ0(v) = a1(v)−
∫ ∞

−b

dv′

2π
a2(v − v′)ρ0(v

′), −b ≤ v < ∞, (29)

coincides with the integral equation for the XXX model. By subtracting (29) from (23) we obtain

ρ1(v) = a2S(v + g−1)−
∫ ∞

−b

dv′

2π
a2(v − v′)ρ1(v

′), −b ≤ v < ∞. (30)

The magnetization splits into the electronic and the impurity parts:

Sz = NMel +Mim, Mel =
1

2
−
∫ ∞

−b

dv

2π
ρ0(v), Mim = S −

∫ ∞

−b

dv

2π
ρ1(v). (31)

The spin energy splits into two parts

Esp = Eel
sp + Eim, (32)

Eel
sp = ϵF

(
N

2
− n

)
− 2ϵF

∫ ∞

−b

dv

2π
J0(v)ρ0(v), (33)

Eim =
ϵFJS

π
− ϵF

π

∫ ∞

−b

dv

2π
ρ1(v)(π + p(v)). (34)

The electronic part of the energy is not difficult to calculate without solving the integral equation and it
coincides with the result (21). To take into account the impurity we have to solve the integral equations.
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Let us start with the case b = ∞. The integral equations (29) and (30) in this case can be solved by the
Fourier method. It is easy to check that

ãt(k) =

∫ ∞

−∞

dv

2π
at(v)e

ikv = e−t|k|/2. (35)

From this we have

ρ̃0(k) = e−|k|/2 − e−|k|ρ̃0(k), ρ̃1(k) = e−S|k|−ik/g − e−|k|ρ̃1(k).

Therefore,

ρ̃0(k) =
1

2 ch k
2

, ρ̃1(k) =
e−(S−1/2)|k|−ik/g

2 ch k
2

. (36)

The point k = 0 is of particular interest:

ρ̃0(0) =

∫
dv

2π
ρ0(v) =

1

2
, ρ̃1(0) =

∫
dv

2π
ρ1(v) =

1

2
. (37)

From this we obtain

Mel = 0, (38a)
Mim = S − 1/2. (38b)

The first formula (38a) means that the case b = −∞ corresponds to the case of zero electron magnetic
moment, i.e. of zero external magnetic field. More precisely, this corresponds to the limit H → 0+, since
a finite magnetic field corresponds to finite b. The formula (38b) means that in a weak magnetic field the
chain acquires the angular momentum Sz = S − 1/2 in consistency with (19), that is, the spin of the chain
is S − 1/2. This means that the impurity spin is partially screened by electrons and the ground state is 2S-
fold degenerate. Note that the solution (38) exactly corresponds to the maximal value of n defined in (19).
Thus this result could be obtained without solving the integral equations.

Consider now the case
1 ≪ b < ∞. (39)

The condition b ≫ 1 corresponds to the physically meaningful regime of the not too strong magnetic field
H ≪ ϵF . Integral equations with one finite limit are solved by the Wiener–Hopf method. Let us briefly
outline this method.

Consider the equation

f(x) +

∫ ∞

0

dx′

2π
K(x− x′)f(x′) = g(x), x > 0. (40)

The given function g(x) can be arbitrarily continued to the negative x region and the equation can be
extended to the entire axis. Moreover, the values of f(x) for x < 0 are not significant, and the solution f(x)
for x > 0 if independent of this continuation.

Make the Fourier transform:

f̃+(k) =

∫ ∞

0

dx

2π
eikxf(x), f̃−(k) =

∫ 0

−∞

dx

2π
eikxf(x). (41)

The function f̃+(k) (f̃−(k)) has no singularities in the upper (lower) half-plane. Here and below, such a
property will be assumed for all functions with the ± subscripts.

The equation (40) takes the form

(1 + K̃(k))f̃+(k) + f̃−(k) = g̃(k). (42)

Represent the kernel K̃(k) in the form

1 + K̃(k) =
K̃+(k)

K̃−(k)
. (43)
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Besides, we set
K̃−(k)g̃(k) ≡ q̃(k) = q̃+(k) + q̃−(k). (44)

For a “good” enough function q̃(k) the functions q̃±(k) are explicitly found in the form

q̃±(k) = ±
∫ ∞

−∞

dk′

2πi

q̃(k′)

k′ − k ∓ i0
. (45)

Multiplying (42) by K̃−(k), we obtain

K̃+(k)f̃+(k) + K̃−(k)f̃−(k) = q̃+(k) + q̃−(k). (46)

Let us transfer all functions that do not have singularities in the upper half-plane to the left side:

K̃+(k)f̃+(k)− q̃+(k) = q̃−(k)− K̃−(k)f̃−(k).

The left-hand side has no singularities in the upper half-plane, and the right-hand side in the lower one.
Thus, both sides of this equation have no singularities. Under some additional restrictions on the growth of
the functions (which must be checked separately in each case), it follows that

K̃+(k)f̃+(k) = q̃+(k), K̃−(k)f̃−(k) = q̃−(k). (47)

Finally,

f(x) =

∫ ∞

−∞
dk

q̃+(k)

K̃+(k)
e−ikx, x > 0. (48)

The construction of functions analytic in the upper or lower half-plane is a kind of art, but for reasonable
functions expressed in terms of elementary functions, this is a quite solvable problem (which reduces, more
or less, to counting poles and zeros).

In the problem that we are considering, it is better to solve the equation lightly indirectly, since this will
allow us to simplify the problem for b ≫ 1, which corresponds to the physical condition H ≪ ϵF . Let

fi(x) = ρi(x− b).

Then
K̃(k) = e−|k|, g̃0(k) = eikb−|k|/2, g̃1(k) = eikb−ik/g−S|k|. (49)

Rewrite equation (42) in the form

f̃i+(k) +
f̃i−(k)

1 + K̃(k)
=

g̃i(k)

1 + K̃(k)
, (50)

and then perform the inverse Fourier transform:

fi(x) +

∫ 0

−∞

dx′

2π
R(x− x′)fi(x

′) = hi(x), (51)

where

R(x) =

∫ ∞

−∞
dk e−ikx

(
1

1 + K̃(k)
− 1

)
= −

∫ ∞

−∞
dk

e−ikx

1 + e|k|
,

h0(x) =
π

chπ(x− b)
, h1(x) =

∫ ∞

−∞
dk e−ik(x−b+g−1) e

−(2S−1)|k|/2

2 ch k
2

.

(52)

For b ≫ 1 to calculate f0(x) for x < 0 we may use the approximation

h0(x) ≃ 2πeπ(x−b). (53)

Thus, f̃0−(k) ∼ e−πb. Since K̃(0) = g̃i(0) = 1, we gave

2f̃i+(0) + f̃i−(0) = 1
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From this we obtain

H

4ϵF
= Mel =

1

2
−
∫ ∞

−b

dv

2π
ρ0(v) =

1

2
− f̃0+(0) =

1

2
f̃0−(0) ∼ e−πb.

The exact answer requires a careful solution of the equation by the Wiener–Hopf method and gives

H

2ϵF
= e−πb

(
2

πe

)1/2

. (54)

Let us obtain one more simple result for S = 1/2. Consider the limit of small fields H when b is large,
but still not equal to infinity. Then, in addition to (53) we have

h1(x) ≃ 2πeπ(x−b)+π/g. (55)

From this we immediately obtain
f̃1−(k)

f̃0−(k)
= eπ/g.

Hence for the impurity contribution to the magnetic susceptibility we have

χim =
Mim

H
=

eπ/g

4ϵF
, if S = 1/2. (56)

I will not give explicit formulas for solving the equations (29), (30) by the Wiener-Hopf method (this con-
clusion is described in detail in [1]). I will only give the answer. Fro finite field the magnetization is given
by the formula [2]

Mim(H) = S − 1

2
+

i

4π3/2

∫ ∞

−∞
dω

(
H

TH

)−2iω Γ(iω + 1/2)

ω + i0

(
−iω + 0

e

)−2iSω (
iω + 0

e

)i(2S−1)ω

, (57)

where the variable ω is nothing but k/2π, and

TH =

(
2π

e

)1/2 2ϵF
π

e−π/g ∼ TK . (58)

This expression can be expanded for H ≫ TH (which can be compared with the series of the perturbation
theory) and for H ≪ TH (which is unattainable by the perturbation theory). In the leading asymptotics, we
have

Mim(H) = S

(
1− 1

log(H/TH)2
− log log(H/TH)2

log2(H/TH)2
+ · · ·

)
, H ≫ TH , (59)

and

Mim(H) = (S − 1/2)

(
1 +

1

log(TH/H)2
− log log(TH/H)2

log2(TH/H)2
+ · · ·

)
, H ≪ TH , S > 1/2;

Mim(H) =

√
2

πe

H

TH
+ · · · , H ≪ TH , S = 1/2.

(60)

Now we briefly touch on the problem of calculating the thermodynamic characteristics at finite temper-
atures. There are several features here.

First of all, unlike the ground state, the roots of the Bethe equations vi can be not only real, but also
complex. Namely, for N → ∞ the roots of the Bethe equations form p-strings (p = 1, 2, . . .):

vpj,k = vpj +
i

2
(p+ 1− 2k) +O(e− constN ), k = 1, 2, . . . , p. (61)

Real roots correspond to 1-strings.
It can be shown that if we substitute a string solution into the Bethe equations, the right-hand side will

go to zero or infinity, while the left-hand side will tend to zero or, correspondingly, to infinity as N → ∞.
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To construct the equations for the real parts vpj of strings vpj,k, multiply the p Bethe equations for all values
of k. After that, the Bethe equations take the form

eipaL = eiJS
∞∏
p=1

np∏
j=1

ep(v
p
j ), (62)

(ep(v
p
j ))

Nep,2S(v
p
j + g−1) =

∞∏
p′=1

nm∏
j′=1

Epp′(v
p
j − vp

′

j′ ), (63)

where

ep(v) = −eiPp(v) =
v + ip/2

v − ip/2
, ep,S(v) = −ei∆p,S(v) =

p∏
k=1

v + i
2(p+ 1− 2k) + iS

v + i
2(p+ 1− 2k)− iS

,

Epp′(v) = eiΦpp′ (v) = e|p−p′|(v)e
2
|p−p′|+2(v) . . . e

2
p+p′−2(v)ep+p′(v).

(64)

Evidently,

Sz =
N

2
−

∞∑
p=1

pnp.

As before, we should take logarithm of the equations and pass to the continuous limit. However, at a nonzero
temperature, the states are not filled densely, therefore, if the density of states ρp(v) appears on the left-hand
side of the integral equations, then only the density of particles ρ•p(v) appears in the right-hand side (under
the integrals). The difference ρ◦p(v) = ρp(v) − ρ•p(v) represents the density of holes. The densities of states
are expressed in terms of the densities of particles according to the equation

ρp(v) = Pp(v) +
1

N
∆p,S(v) +

∑
p′

∫
dv′

2π
Φpp′(v − v′)ρ•p′(v

′). (65)

Since the densities do not define the states uniquely, the entropy is associated with them:

S = log
∏
p,v

(Nρp(v)
dv
2π )!

(Nρ•p(v)
dv
2π )!(Nρ◦p(v)

dv
2π )!

= N
∞∑
p=1

∫
dv

2π
(ρp(v) log ρp(v)− ρ•p(v) log ρ

•
p(v)− ρ◦p(v) log ρ

◦
p(v)). (66)

The correct system of equations for the density of particles is the minimum condition of the free energy

F [ρ•] = E − TS −HSz

This gives a system of nonlinear integral Yang–Yang equations:

ϵp(v) +
∑
p′

∫
dv′

2π
Φpp′(v − v′) log(1 + e−ϵp′ (v

′)) = T−1

(
Pp(v) +

1

N
∆p,S(v) + pH

)
, (67)

where the pseudoenergies ϵp(v) are defined by the relation

ρ•p(v)

ρp(v)
=

1

eϵp(v) + 1
.

These equations can be solved analytically in the limit of low or high temperatures or numerically and finite
temperatures. Thermodynamic quantities are expressed in terms of pseudoenergies.
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Problems

1. Derive the expression (21) from the expression (33).
2. Show that e−π|ω| =

(
iω+0
e

)iω (−iω+0
e

)−iω. Solve the equation (51) for i = 0 in the approximation (53)
by the Wiener–/Hopf method and derive (54). Check the convergence of the integrals.

3. Solve the equations (30) by the Wiener–/Hopf method and derive the formula (57) for the impurity
magnetization. Check the convergence of the integrals.

4. Obtain the first nontrivial terms in the expansions (59), (60).
5∗. Obtain the Bethe equations (62)–(64) for “string” solutions.
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